Properties

Label 84.6.i.c.25.4
Level $84$
Weight $6$
Character 84.25
Analytic conductor $13.472$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [84,6,Mod(25,84)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(84, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("84.25");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 84 = 2^{2} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 84.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4722408643\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 703x^{6} + 2770x^{5} + 427565x^{4} + 718170x^{3} + 42175732x^{2} - 40929504x + 3559792896 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{3}\cdot 7 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 25.4
Root \(-11.2416 + 19.4709i\) of defining polynomial
Character \(\chi\) \(=\) 84.25
Dual form 84.6.i.c.37.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.50000 - 7.79423i) q^{3} +(46.4128 + 80.3893i) q^{5} +(-118.369 + 52.8745i) q^{7} +(-40.5000 - 70.1481i) q^{9} +(-70.3812 + 121.904i) q^{11} -1111.24 q^{13} +835.430 q^{15} +(-27.4435 + 47.5335i) q^{17} +(855.929 + 1482.51i) q^{19} +(-120.546 + 1160.53i) q^{21} +(1643.95 + 2847.41i) q^{23} +(-2745.79 + 4755.85i) q^{25} -729.000 q^{27} -3790.72 q^{29} +(2423.66 - 4197.90i) q^{31} +(633.431 + 1097.13i) q^{33} +(-9744.39 - 7061.57i) q^{35} +(5683.35 + 9843.86i) q^{37} +(-5000.59 + 8661.28i) q^{39} -10385.6 q^{41} +7137.16 q^{43} +(3759.43 - 6511.53i) q^{45} +(8207.53 + 14215.9i) q^{47} +(11215.6 - 12517.4i) q^{49} +(246.991 + 427.801i) q^{51} +(10487.2 - 18164.3i) q^{53} -13066.3 q^{55} +15406.7 q^{57} +(18106.0 - 31360.5i) q^{59} +(-2474.35 - 4285.70i) q^{61} +(8503.00 + 6161.96i) q^{63} +(-51575.9 - 89332.0i) q^{65} +(11482.8 - 19888.8i) q^{67} +29591.2 q^{69} -26341.8 q^{71} +(-27693.7 + 47966.9i) q^{73} +(24712.1 + 42802.6i) q^{75} +(1885.36 - 18151.0i) q^{77} +(24978.3 + 43263.7i) q^{79} +(-3280.50 + 5681.99i) q^{81} +44858.9 q^{83} -5094.91 q^{85} +(-17058.2 + 29545.8i) q^{87} +(-63972.5 - 110804. i) q^{89} +(131537. - 58756.4i) q^{91} +(-21812.9 - 37781.1i) q^{93} +(-79452.1 + 137615. i) q^{95} -65685.9 q^{97} +11401.8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 36 q^{3} - 42 q^{7} - 324 q^{9} - 462 q^{11} - 1204 q^{13} + 228 q^{17} + 358 q^{19} + 1404 q^{21} - 2148 q^{23} - 5454 q^{25} - 5832 q^{27} - 11064 q^{29} + 830 q^{31} + 4158 q^{33} + 7692 q^{35}+ \cdots + 74844 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/84\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(43\) \(73\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 4.50000 7.79423i 0.288675 0.500000i
\(4\) 0 0
\(5\) 46.4128 + 80.3893i 0.830257 + 1.43805i 0.897834 + 0.440333i \(0.145140\pi\)
−0.0675775 + 0.997714i \(0.521527\pi\)
\(6\) 0 0
\(7\) −118.369 + 52.8745i −0.913049 + 0.407851i
\(8\) 0 0
\(9\) −40.5000 70.1481i −0.166667 0.288675i
\(10\) 0 0
\(11\) −70.3812 + 121.904i −0.175378 + 0.303763i −0.940292 0.340369i \(-0.889448\pi\)
0.764914 + 0.644132i \(0.222781\pi\)
\(12\) 0 0
\(13\) −1111.24 −1.82369 −0.911844 0.410537i \(-0.865341\pi\)
−0.911844 + 0.410537i \(0.865341\pi\)
\(14\) 0 0
\(15\) 835.430 0.958698
\(16\) 0 0
\(17\) −27.4435 + 47.5335i −0.0230312 + 0.0398912i −0.877311 0.479922i \(-0.840665\pi\)
0.854280 + 0.519813i \(0.173998\pi\)
\(18\) 0 0
\(19\) 855.929 + 1482.51i 0.543943 + 0.942138i 0.998673 + 0.0515079i \(0.0164027\pi\)
−0.454729 + 0.890630i \(0.650264\pi\)
\(20\) 0 0
\(21\) −120.546 + 1160.53i −0.0596490 + 0.574261i
\(22\) 0 0
\(23\) 1643.95 + 2847.41i 0.647993 + 1.12236i 0.983602 + 0.180355i \(0.0577247\pi\)
−0.335609 + 0.942001i \(0.608942\pi\)
\(24\) 0 0
\(25\) −2745.79 + 4755.85i −0.878653 + 1.52187i
\(26\) 0 0
\(27\) −729.000 −0.192450
\(28\) 0 0
\(29\) −3790.72 −0.837003 −0.418501 0.908216i \(-0.637445\pi\)
−0.418501 + 0.908216i \(0.637445\pi\)
\(30\) 0 0
\(31\) 2423.66 4197.90i 0.452968 0.784563i −0.545601 0.838045i \(-0.683699\pi\)
0.998569 + 0.0534817i \(0.0170319\pi\)
\(32\) 0 0
\(33\) 633.431 + 1097.13i 0.101254 + 0.175378i
\(34\) 0 0
\(35\) −9744.39 7061.57i −1.34457 0.974386i
\(36\) 0 0
\(37\) 5683.35 + 9843.86i 0.682496 + 1.18212i 0.974217 + 0.225615i \(0.0724391\pi\)
−0.291720 + 0.956504i \(0.594228\pi\)
\(38\) 0 0
\(39\) −5000.59 + 8661.28i −0.526453 + 0.911844i
\(40\) 0 0
\(41\) −10385.6 −0.964881 −0.482440 0.875929i \(-0.660249\pi\)
−0.482440 + 0.875929i \(0.660249\pi\)
\(42\) 0 0
\(43\) 7137.16 0.588646 0.294323 0.955706i \(-0.404906\pi\)
0.294323 + 0.955706i \(0.404906\pi\)
\(44\) 0 0
\(45\) 3759.43 6511.53i 0.276752 0.479349i
\(46\) 0 0
\(47\) 8207.53 + 14215.9i 0.541961 + 0.938704i 0.998791 + 0.0491499i \(0.0156512\pi\)
−0.456831 + 0.889554i \(0.651015\pi\)
\(48\) 0 0
\(49\) 11215.6 12517.4i 0.667315 0.744775i
\(50\) 0 0
\(51\) 246.991 + 427.801i 0.0132971 + 0.0230312i
\(52\) 0 0
\(53\) 10487.2 18164.3i 0.512824 0.888238i −0.487065 0.873366i \(-0.661933\pi\)
0.999889 0.0148720i \(-0.00473407\pi\)
\(54\) 0 0
\(55\) −13066.3 −0.582435
\(56\) 0 0
\(57\) 15406.7 0.628092
\(58\) 0 0
\(59\) 18106.0 31360.5i 0.677161 1.17288i −0.298672 0.954356i \(-0.596544\pi\)
0.975832 0.218521i \(-0.0701231\pi\)
\(60\) 0 0
\(61\) −2474.35 4285.70i −0.0851405 0.147468i 0.820311 0.571918i \(-0.193801\pi\)
−0.905451 + 0.424451i \(0.860467\pi\)
\(62\) 0 0
\(63\) 8503.00 + 6161.96i 0.269911 + 0.195599i
\(64\) 0 0
\(65\) −51575.9 89332.0i −1.51413 2.62255i
\(66\) 0 0
\(67\) 11482.8 19888.8i 0.312507 0.541279i −0.666397 0.745597i \(-0.732164\pi\)
0.978905 + 0.204318i \(0.0654978\pi\)
\(68\) 0 0
\(69\) 29591.2 0.748238
\(70\) 0 0
\(71\) −26341.8 −0.620154 −0.310077 0.950711i \(-0.600355\pi\)
−0.310077 + 0.950711i \(0.600355\pi\)
\(72\) 0 0
\(73\) −27693.7 + 47966.9i −0.608238 + 1.05350i 0.383293 + 0.923627i \(0.374790\pi\)
−0.991531 + 0.129872i \(0.958543\pi\)
\(74\) 0 0
\(75\) 24712.1 + 42802.6i 0.507291 + 0.878653i
\(76\) 0 0
\(77\) 1885.36 18151.0i 0.0362383 0.348879i
\(78\) 0 0
\(79\) 24978.3 + 43263.7i 0.450293 + 0.779930i 0.998404 0.0564752i \(-0.0179862\pi\)
−0.548111 + 0.836406i \(0.684653\pi\)
\(80\) 0 0
\(81\) −3280.50 + 5681.99i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) 44858.9 0.714749 0.357374 0.933961i \(-0.383672\pi\)
0.357374 + 0.933961i \(0.383672\pi\)
\(84\) 0 0
\(85\) −5094.91 −0.0764873
\(86\) 0 0
\(87\) −17058.2 + 29545.8i −0.241622 + 0.418501i
\(88\) 0 0
\(89\) −63972.5 110804.i −0.856087 1.48279i −0.875633 0.482978i \(-0.839555\pi\)
0.0195454 0.999809i \(-0.493778\pi\)
\(90\) 0 0
\(91\) 131537. 58756.4i 1.66512 0.743793i
\(92\) 0 0
\(93\) −21812.9 37781.1i −0.261521 0.452968i
\(94\) 0 0
\(95\) −79452.1 + 137615.i −0.903226 + 1.56443i
\(96\) 0 0
\(97\) −65685.9 −0.708831 −0.354415 0.935088i \(-0.615320\pi\)
−0.354415 + 0.935088i \(0.615320\pi\)
\(98\) 0 0
\(99\) 11401.8 0.116919
\(100\) 0 0
\(101\) −87891.4 + 152232.i −0.857320 + 1.48492i 0.0171565 + 0.999853i \(0.494539\pi\)
−0.874476 + 0.485068i \(0.838795\pi\)
\(102\) 0 0
\(103\) 77054.7 + 133463.i 0.715659 + 1.23956i 0.962705 + 0.270554i \(0.0872068\pi\)
−0.247046 + 0.969004i \(0.579460\pi\)
\(104\) 0 0
\(105\) −98889.2 + 44173.0i −0.875338 + 0.391006i
\(106\) 0 0
\(107\) −91681.0 158796.i −0.774141 1.34085i −0.935276 0.353919i \(-0.884849\pi\)
0.161135 0.986932i \(-0.448485\pi\)
\(108\) 0 0
\(109\) 67322.3 116606.i 0.542741 0.940055i −0.456004 0.889978i \(-0.650720\pi\)
0.998745 0.0500775i \(-0.0159468\pi\)
\(110\) 0 0
\(111\) 102300. 0.788079
\(112\) 0 0
\(113\) 176955. 1.30367 0.651833 0.758362i \(-0.274000\pi\)
0.651833 + 0.758362i \(0.274000\pi\)
\(114\) 0 0
\(115\) −152601. + 264313.i −1.07600 + 1.86369i
\(116\) 0 0
\(117\) 45005.3 + 77951.5i 0.303948 + 0.526453i
\(118\) 0 0
\(119\) 735.153 7077.57i 0.00475894 0.0458159i
\(120\) 0 0
\(121\) 70618.5 + 122315.i 0.438485 + 0.759479i
\(122\) 0 0
\(123\) −46735.4 + 80948.0i −0.278537 + 0.482440i
\(124\) 0 0
\(125\) −219679. −1.25752
\(126\) 0 0
\(127\) 144432. 0.794608 0.397304 0.917687i \(-0.369946\pi\)
0.397304 + 0.917687i \(0.369946\pi\)
\(128\) 0 0
\(129\) 32117.2 55628.6i 0.169927 0.294323i
\(130\) 0 0
\(131\) 118754. + 205688.i 0.604602 + 1.04720i 0.992114 + 0.125337i \(0.0400013\pi\)
−0.387512 + 0.921865i \(0.626665\pi\)
\(132\) 0 0
\(133\) −179703. 130227.i −0.880899 0.638370i
\(134\) 0 0
\(135\) −33834.9 58603.8i −0.159783 0.276752i
\(136\) 0 0
\(137\) 48101.6 83314.5i 0.218957 0.379244i −0.735533 0.677489i \(-0.763068\pi\)
0.954489 + 0.298245i \(0.0964013\pi\)
\(138\) 0 0
\(139\) −391373. −1.71812 −0.859060 0.511874i \(-0.828951\pi\)
−0.859060 + 0.511874i \(0.828951\pi\)
\(140\) 0 0
\(141\) 147736. 0.625802
\(142\) 0 0
\(143\) 78210.6 135465.i 0.319835 0.553970i
\(144\) 0 0
\(145\) −175938. 304733.i −0.694927 1.20365i
\(146\) 0 0
\(147\) −47093.7 143745.i −0.179750 0.548656i
\(148\) 0 0
\(149\) 40339.4 + 69869.9i 0.148855 + 0.257825i 0.930805 0.365517i \(-0.119108\pi\)
−0.781949 + 0.623342i \(0.785775\pi\)
\(150\) 0 0
\(151\) −47841.3 + 82863.6i −0.170750 + 0.295748i −0.938682 0.344783i \(-0.887952\pi\)
0.767932 + 0.640531i \(0.221286\pi\)
\(152\) 0 0
\(153\) 4445.84 0.0153541
\(154\) 0 0
\(155\) 449955. 1.50432
\(156\) 0 0
\(157\) 97812.7 169417.i 0.316699 0.548538i −0.663098 0.748532i \(-0.730759\pi\)
0.979797 + 0.199994i \(0.0640923\pi\)
\(158\) 0 0
\(159\) −94384.5 163479.i −0.296079 0.512824i
\(160\) 0 0
\(161\) −345149. 250123.i −1.04940 0.760481i
\(162\) 0 0
\(163\) −18822.8 32602.1i −0.0554902 0.0961118i 0.836946 0.547286i \(-0.184339\pi\)
−0.892436 + 0.451174i \(0.851005\pi\)
\(164\) 0 0
\(165\) −58798.5 + 101842.i −0.168134 + 0.291217i
\(166\) 0 0
\(167\) 646778. 1.79458 0.897292 0.441437i \(-0.145531\pi\)
0.897292 + 0.441437i \(0.145531\pi\)
\(168\) 0 0
\(169\) 863568. 2.32584
\(170\) 0 0
\(171\) 69330.3 120084.i 0.181314 0.314046i
\(172\) 0 0
\(173\) 193454. + 335072.i 0.491431 + 0.851184i 0.999951 0.00986616i \(-0.00314055\pi\)
−0.508520 + 0.861050i \(0.669807\pi\)
\(174\) 0 0
\(175\) 73554.0 708129.i 0.181556 1.74790i
\(176\) 0 0
\(177\) −162954. 282244.i −0.390959 0.677161i
\(178\) 0 0
\(179\) −13705.3 + 23738.2i −0.0319709 + 0.0553752i −0.881568 0.472057i \(-0.843512\pi\)
0.849597 + 0.527432i \(0.176845\pi\)
\(180\) 0 0
\(181\) −196155. −0.445044 −0.222522 0.974928i \(-0.571429\pi\)
−0.222522 + 0.974928i \(0.571429\pi\)
\(182\) 0 0
\(183\) −44538.3 −0.0983118
\(184\) 0 0
\(185\) −527560. + 913761.i −1.13329 + 1.96292i
\(186\) 0 0
\(187\) −3863.01 6690.93i −0.00807833 0.0139921i
\(188\) 0 0
\(189\) 86291.2 38545.5i 0.175716 0.0784909i
\(190\) 0 0
\(191\) −133491. 231213.i −0.264770 0.458595i 0.702733 0.711453i \(-0.251963\pi\)
−0.967503 + 0.252858i \(0.918629\pi\)
\(192\) 0 0
\(193\) 50681.9 87783.6i 0.0979398 0.169637i −0.812892 0.582415i \(-0.802108\pi\)
0.910832 + 0.412778i \(0.135441\pi\)
\(194\) 0 0
\(195\) −928366. −1.74837
\(196\) 0 0
\(197\) 362366. 0.665245 0.332623 0.943060i \(-0.392066\pi\)
0.332623 + 0.943060i \(0.392066\pi\)
\(198\) 0 0
\(199\) −112706. + 195213.i −0.201751 + 0.349443i −0.949093 0.314997i \(-0.897997\pi\)
0.747342 + 0.664440i \(0.231330\pi\)
\(200\) 0 0
\(201\) −103345. 178999.i −0.180426 0.312507i
\(202\) 0 0
\(203\) 448705. 200433.i 0.764224 0.341372i
\(204\) 0 0
\(205\) −482026. 834894.i −0.801099 1.38754i
\(206\) 0 0
\(207\) 133160. 230640.i 0.215998 0.374119i
\(208\) 0 0
\(209\) −240965. −0.381583
\(210\) 0 0
\(211\) −327801. −0.506878 −0.253439 0.967351i \(-0.581562\pi\)
−0.253439 + 0.967351i \(0.581562\pi\)
\(212\) 0 0
\(213\) −118538. + 205314.i −0.179023 + 0.310077i
\(214\) 0 0
\(215\) 331255. + 573751.i 0.488727 + 0.846501i
\(216\) 0 0
\(217\) −64924.7 + 625053.i −0.0935968 + 0.901088i
\(218\) 0 0
\(219\) 249243. + 431702.i 0.351166 + 0.608238i
\(220\) 0 0
\(221\) 30496.4 52821.2i 0.0420017 0.0727492i
\(222\) 0 0
\(223\) 109690. 0.147708 0.0738538 0.997269i \(-0.476470\pi\)
0.0738538 + 0.997269i \(0.476470\pi\)
\(224\) 0 0
\(225\) 444818. 0.585769
\(226\) 0 0
\(227\) −608733. + 1.05436e6i −0.784083 + 1.35807i 0.145463 + 0.989364i \(0.453533\pi\)
−0.929545 + 0.368708i \(0.879800\pi\)
\(228\) 0 0
\(229\) 668013. + 1.15703e6i 0.841776 + 1.45800i 0.888392 + 0.459086i \(0.151823\pi\)
−0.0466161 + 0.998913i \(0.514844\pi\)
\(230\) 0 0
\(231\) −132989. 96374.6i −0.163978 0.118832i
\(232\) 0 0
\(233\) −23394.2 40520.0i −0.0282305 0.0488967i 0.851565 0.524249i \(-0.175654\pi\)
−0.879795 + 0.475352i \(0.842321\pi\)
\(234\) 0 0
\(235\) −761868. + 1.31959e6i −0.899933 + 1.55873i
\(236\) 0 0
\(237\) 449609. 0.519954
\(238\) 0 0
\(239\) 86350.2 0.0977841 0.0488921 0.998804i \(-0.484431\pi\)
0.0488921 + 0.998804i \(0.484431\pi\)
\(240\) 0 0
\(241\) −412649. + 714730.i −0.457655 + 0.792682i −0.998837 0.0482236i \(-0.984644\pi\)
0.541181 + 0.840906i \(0.317977\pi\)
\(242\) 0 0
\(243\) 29524.5 + 51137.9i 0.0320750 + 0.0555556i
\(244\) 0 0
\(245\) 1.52681e6 + 320642.i 1.62507 + 0.341276i
\(246\) 0 0
\(247\) −951145. 1.64743e6i −0.991983 1.71817i
\(248\) 0 0
\(249\) 201865. 349641.i 0.206330 0.357374i
\(250\) 0 0
\(251\) −130188. −0.130432 −0.0652162 0.997871i \(-0.520774\pi\)
−0.0652162 + 0.997871i \(0.520774\pi\)
\(252\) 0 0
\(253\) −462814. −0.454574
\(254\) 0 0
\(255\) −22927.1 + 39710.9i −0.0220800 + 0.0382436i
\(256\) 0 0
\(257\) −51395.1 89018.9i −0.0485388 0.0840716i 0.840735 0.541446i \(-0.182123\pi\)
−0.889274 + 0.457375i \(0.848790\pi\)
\(258\) 0 0
\(259\) −1.19322e6 864706.i −1.10528 0.800975i
\(260\) 0 0
\(261\) 153524. + 265912.i 0.139500 + 0.241622i
\(262\) 0 0
\(263\) 17750.4 30744.5i 0.0158241 0.0274081i −0.858005 0.513641i \(-0.828296\pi\)
0.873829 + 0.486233i \(0.161630\pi\)
\(264\) 0 0
\(265\) 1.94695e6 1.70310
\(266\) 0 0
\(267\) −1.15150e6 −0.988524
\(268\) 0 0
\(269\) −523171. + 906158.i −0.440821 + 0.763525i −0.997751 0.0670350i \(-0.978646\pi\)
0.556929 + 0.830560i \(0.311979\pi\)
\(270\) 0 0
\(271\) −88639.2 153528.i −0.0733167 0.126988i 0.827036 0.562148i \(-0.190025\pi\)
−0.900353 + 0.435160i \(0.856692\pi\)
\(272\) 0 0
\(273\) 133955. 1.28963e6i 0.108781 1.04727i
\(274\) 0 0
\(275\) −386504. 669445.i −0.308193 0.533805i
\(276\) 0 0
\(277\) −72793.0 + 126081.i −0.0570020 + 0.0987304i −0.893118 0.449822i \(-0.851487\pi\)
0.836116 + 0.548552i \(0.184821\pi\)
\(278\) 0 0
\(279\) −392633. −0.301979
\(280\) 0 0
\(281\) −1.03073e6 −0.778714 −0.389357 0.921087i \(-0.627303\pi\)
−0.389357 + 0.921087i \(0.627303\pi\)
\(282\) 0 0
\(283\) 558631. 967577.i 0.414628 0.718157i −0.580761 0.814074i \(-0.697245\pi\)
0.995389 + 0.0959167i \(0.0305783\pi\)
\(284\) 0 0
\(285\) 715069. + 1.23854e6i 0.521478 + 0.903226i
\(286\) 0 0
\(287\) 1.22934e6 549136.i 0.880983 0.393527i
\(288\) 0 0
\(289\) 708422. + 1.22702e6i 0.498939 + 0.864188i
\(290\) 0 0
\(291\) −295586. + 511971.i −0.204622 + 0.354415i
\(292\) 0 0
\(293\) −2.02032e6 −1.37484 −0.687418 0.726262i \(-0.741256\pi\)
−0.687418 + 0.726262i \(0.741256\pi\)
\(294\) 0 0
\(295\) 3.36139e6 2.24887
\(296\) 0 0
\(297\) 51307.9 88867.9i 0.0337515 0.0584593i
\(298\) 0 0
\(299\) −1.82683e6 3.16417e6i −1.18174 2.04683i
\(300\) 0 0
\(301\) −844820. + 377374.i −0.537462 + 0.240080i
\(302\) 0 0
\(303\) 791022. + 1.37009e6i 0.494974 + 0.857320i
\(304\) 0 0
\(305\) 229683. 397822.i 0.141377 0.244872i
\(306\) 0 0
\(307\) −535150. −0.324063 −0.162031 0.986786i \(-0.551805\pi\)
−0.162031 + 0.986786i \(0.551805\pi\)
\(308\) 0 0
\(309\) 1.38698e6 0.826372
\(310\) 0 0
\(311\) 1.15009e6 1.99202e6i 0.674268 1.16787i −0.302415 0.953176i \(-0.597793\pi\)
0.976682 0.214689i \(-0.0688739\pi\)
\(312\) 0 0
\(313\) 1.37863e6 + 2.38786e6i 0.795404 + 1.37768i 0.922582 + 0.385801i \(0.126075\pi\)
−0.127178 + 0.991880i \(0.540592\pi\)
\(314\) 0 0
\(315\) −100707. + 969544.i −0.0571853 + 0.550543i
\(316\) 0 0
\(317\) −1.27404e6 2.20671e6i −0.712092 1.23338i −0.964070 0.265647i \(-0.914414\pi\)
0.251978 0.967733i \(-0.418919\pi\)
\(318\) 0 0
\(319\) 266795. 462103.i 0.146792 0.254251i
\(320\) 0 0
\(321\) −1.65026e6 −0.893901
\(322\) 0 0
\(323\) −93958.7 −0.0501107
\(324\) 0 0
\(325\) 3.05124e6 5.28490e6i 1.60239 2.77542i
\(326\) 0 0
\(327\) −605901. 1.04945e6i −0.313352 0.542741i
\(328\) 0 0
\(329\) −1.72318e6 1.24875e6i −0.877688 0.636043i
\(330\) 0 0
\(331\) 244667. + 423776.i 0.122746 + 0.212602i 0.920849 0.389918i \(-0.127497\pi\)
−0.798104 + 0.602520i \(0.794163\pi\)
\(332\) 0 0
\(333\) 460352. 797352.i 0.227499 0.394039i
\(334\) 0 0
\(335\) 2.13179e6 1.03785
\(336\) 0 0
\(337\) −1.47140e6 −0.705757 −0.352878 0.935669i \(-0.614797\pi\)
−0.352878 + 0.935669i \(0.614797\pi\)
\(338\) 0 0
\(339\) 796297. 1.37923e6i 0.376336 0.651833i
\(340\) 0 0
\(341\) 341160. + 590907.i 0.158881 + 0.275190i
\(342\) 0 0
\(343\) −665725. + 2.07470e6i −0.305534 + 0.952181i
\(344\) 0 0
\(345\) 1.37341e6 + 2.37881e6i 0.621229 + 1.07600i
\(346\) 0 0
\(347\) 1.20963e6 2.09513e6i 0.539296 0.934088i −0.459646 0.888102i \(-0.652024\pi\)
0.998942 0.0459859i \(-0.0146429\pi\)
\(348\) 0 0
\(349\) −2.58571e6 −1.13636 −0.568180 0.822905i \(-0.692352\pi\)
−0.568180 + 0.822905i \(0.692352\pi\)
\(350\) 0 0
\(351\) 810096. 0.350969
\(352\) 0 0
\(353\) −502198. + 869832.i −0.214505 + 0.371534i −0.953119 0.302594i \(-0.902147\pi\)
0.738614 + 0.674128i \(0.235481\pi\)
\(354\) 0 0
\(355\) −1.22260e6 2.11760e6i −0.514887 0.891811i
\(356\) 0 0
\(357\) −51856.0 37579.0i −0.0215342 0.0156054i
\(358\) 0 0
\(359\) 1.13383e6 + 1.96384e6i 0.464313 + 0.804213i 0.999170 0.0407292i \(-0.0129681\pi\)
−0.534858 + 0.844942i \(0.679635\pi\)
\(360\) 0 0
\(361\) −227180. + 393487.i −0.0917490 + 0.158914i
\(362\) 0 0
\(363\) 1.27113e6 0.506319
\(364\) 0 0
\(365\) −5.14136e6 −2.01998
\(366\) 0 0
\(367\) −2.39312e6 + 4.14500e6i −0.927467 + 1.60642i −0.139923 + 0.990162i \(0.544685\pi\)
−0.787545 + 0.616258i \(0.788648\pi\)
\(368\) 0 0
\(369\) 420618. + 728532.i 0.160813 + 0.278537i
\(370\) 0 0
\(371\) −280929. + 2.70460e6i −0.105965 + 1.02016i
\(372\) 0 0
\(373\) 2.31351e6 + 4.00711e6i 0.860991 + 1.49128i 0.870973 + 0.491331i \(0.163489\pi\)
−0.00998166 + 0.999950i \(0.503177\pi\)
\(374\) 0 0
\(375\) −988557. + 1.71223e6i −0.363014 + 0.628759i
\(376\) 0 0
\(377\) 4.21241e6 1.52643
\(378\) 0 0
\(379\) −497760. −0.178001 −0.0890004 0.996032i \(-0.528367\pi\)
−0.0890004 + 0.996032i \(0.528367\pi\)
\(380\) 0 0
\(381\) 649942. 1.12573e6i 0.229384 0.397304i
\(382\) 0 0
\(383\) −693745. 1.20160e6i −0.241659 0.418566i 0.719528 0.694463i \(-0.244358\pi\)
−0.961187 + 0.275898i \(0.911025\pi\)
\(384\) 0 0
\(385\) 1.54665e6 690877.i 0.531791 0.237547i
\(386\) 0 0
\(387\) −289055. 500658.i −0.0981077 0.169927i
\(388\) 0 0
\(389\) 293028. 507539.i 0.0981826 0.170057i −0.812750 0.582613i \(-0.802030\pi\)
0.910932 + 0.412556i \(0.135364\pi\)
\(390\) 0 0
\(391\) −180463. −0.0596962
\(392\) 0 0
\(393\) 2.13757e6 0.698135
\(394\) 0 0
\(395\) −2.31862e6 + 4.01598e6i −0.747718 + 1.29509i
\(396\) 0 0
\(397\) −1.52668e6 2.64429e6i −0.486151 0.842039i 0.513722 0.857957i \(-0.328266\pi\)
−0.999873 + 0.0159181i \(0.994933\pi\)
\(398\) 0 0
\(399\) −1.82368e6 + 814623.i −0.573478 + 0.256168i
\(400\) 0 0
\(401\) −2.76158e6 4.78320e6i −0.857624 1.48545i −0.874189 0.485585i \(-0.838607\pi\)
0.0165657 0.999863i \(-0.494727\pi\)
\(402\) 0 0
\(403\) −2.69327e6 + 4.66489e6i −0.826072 + 1.43080i
\(404\) 0 0
\(405\) −609028. −0.184502
\(406\) 0 0
\(407\) −1.60000e6 −0.478779
\(408\) 0 0
\(409\) 1.67464e6 2.90055e6i 0.495008 0.857379i −0.504975 0.863134i \(-0.668498\pi\)
0.999983 + 0.00575475i \(0.00183180\pi\)
\(410\) 0 0
\(411\) −432915. 749830.i −0.126415 0.218957i
\(412\) 0 0
\(413\) −485021. + 4.66946e6i −0.139922 + 1.34707i
\(414\) 0 0
\(415\) 2.08203e6 + 3.60618e6i 0.593425 + 1.02784i
\(416\) 0 0
\(417\) −1.76118e6 + 3.05045e6i −0.495979 + 0.859060i
\(418\) 0 0
\(419\) 2.97012e6 0.826493 0.413247 0.910619i \(-0.364395\pi\)
0.413247 + 0.910619i \(0.364395\pi\)
\(420\) 0 0
\(421\) −5.41478e6 −1.48894 −0.744468 0.667658i \(-0.767297\pi\)
−0.744468 + 0.667658i \(0.767297\pi\)
\(422\) 0 0
\(423\) 664810. 1.15148e6i 0.180654 0.312901i
\(424\) 0 0
\(425\) −150708. 261034.i −0.0404729 0.0701011i
\(426\) 0 0
\(427\) 519491. + 376465.i 0.137882 + 0.0999205i
\(428\) 0 0
\(429\) −703895. 1.21918e6i −0.184657 0.319835i
\(430\) 0 0
\(431\) 2.52975e6 4.38165e6i 0.655970 1.13617i −0.325679 0.945480i \(-0.605593\pi\)
0.981650 0.190694i \(-0.0610737\pi\)
\(432\) 0 0
\(433\) 3.84174e6 0.984711 0.492355 0.870394i \(-0.336136\pi\)
0.492355 + 0.870394i \(0.336136\pi\)
\(434\) 0 0
\(435\) −3.16688e6 −0.802433
\(436\) 0 0
\(437\) −2.81422e6 + 4.87437e6i −0.704943 + 1.22100i
\(438\) 0 0
\(439\) 762859. + 1.32131e6i 0.188922 + 0.327223i 0.944891 0.327385i \(-0.106167\pi\)
−0.755969 + 0.654607i \(0.772834\pi\)
\(440\) 0 0
\(441\) −1.33230e6 279794.i −0.326217 0.0685081i
\(442\) 0 0
\(443\) 735068. + 1.27317e6i 0.177958 + 0.308233i 0.941181 0.337903i \(-0.109717\pi\)
−0.763223 + 0.646135i \(0.776384\pi\)
\(444\) 0 0
\(445\) 5.93828e6 1.02854e7i 1.42154 2.46219i
\(446\) 0 0
\(447\) 726110. 0.171883
\(448\) 0 0
\(449\) −6.05071e6 −1.41641 −0.708207 0.706004i \(-0.750496\pi\)
−0.708207 + 0.706004i \(0.750496\pi\)
\(450\) 0 0
\(451\) 730954. 1.26605e6i 0.169219 0.293095i
\(452\) 0 0
\(453\) 430572. + 745772.i 0.0985826 + 0.170750i
\(454\) 0 0
\(455\) 1.08284e7 + 7.84712e6i 2.45208 + 1.77698i
\(456\) 0 0
\(457\) 2.87710e6 + 4.98328e6i 0.644413 + 1.11616i 0.984437 + 0.175739i \(0.0562315\pi\)
−0.340024 + 0.940417i \(0.610435\pi\)
\(458\) 0 0
\(459\) 20006.3 34651.9i 0.00443236 0.00767707i
\(460\) 0 0
\(461\) 2.83684e6 0.621703 0.310851 0.950458i \(-0.399386\pi\)
0.310851 + 0.950458i \(0.399386\pi\)
\(462\) 0 0
\(463\) 5.19089e6 1.12535 0.562677 0.826677i \(-0.309771\pi\)
0.562677 + 0.826677i \(0.309771\pi\)
\(464\) 0 0
\(465\) 2.02480e6 3.50705e6i 0.434260 0.752160i
\(466\) 0 0
\(467\) −544520. 943136.i −0.115537 0.200116i 0.802457 0.596710i \(-0.203526\pi\)
−0.917994 + 0.396594i \(0.870192\pi\)
\(468\) 0 0
\(469\) −307600. + 2.96137e6i −0.0645734 + 0.621670i
\(470\) 0 0
\(471\) −880315. 1.52475e6i −0.182846 0.316699i
\(472\) 0 0
\(473\) −502322. + 870047.i −0.103235 + 0.178809i
\(474\) 0 0
\(475\) −9.40081e6 −1.91175
\(476\) 0 0
\(477\) −1.69892e6 −0.341883
\(478\) 0 0
\(479\) 2.84705e6 4.93124e6i 0.566966 0.982013i −0.429898 0.902877i \(-0.641451\pi\)
0.996864 0.0791359i \(-0.0252161\pi\)
\(480\) 0 0
\(481\) −6.31559e6 1.09389e7i −1.24466 2.15582i
\(482\) 0 0
\(483\) −3.50269e6 + 1.56462e6i −0.683177 + 0.305169i
\(484\) 0 0
\(485\) −3.04866e6 5.28044e6i −0.588512 1.01933i
\(486\) 0 0
\(487\) 2.05713e6 3.56305e6i 0.393042 0.680768i −0.599807 0.800144i \(-0.704756\pi\)
0.992849 + 0.119376i \(0.0380895\pi\)
\(488\) 0 0
\(489\) −338811. −0.0640745
\(490\) 0 0
\(491\) −609530. −0.114101 −0.0570507 0.998371i \(-0.518170\pi\)
−0.0570507 + 0.998371i \(0.518170\pi\)
\(492\) 0 0
\(493\) 104031. 180186.i 0.0192772 0.0333891i
\(494\) 0 0
\(495\) 529187. + 916579.i 0.0970725 + 0.168134i
\(496\) 0 0
\(497\) 3.11806e6 1.39281e6i 0.566231 0.252930i
\(498\) 0 0
\(499\) −497896. 862382.i −0.0895133 0.155042i 0.817792 0.575514i \(-0.195198\pi\)
−0.907306 + 0.420472i \(0.861864\pi\)
\(500\) 0 0
\(501\) 2.91050e6 5.04113e6i 0.518052 0.897292i
\(502\) 0 0
\(503\) 1.02730e7 1.81042 0.905209 0.424966i \(-0.139714\pi\)
0.905209 + 0.424966i \(0.139714\pi\)
\(504\) 0 0
\(505\) −1.63171e7 −2.84718
\(506\) 0 0
\(507\) 3.88605e6 6.73084e6i 0.671412 1.16292i
\(508\) 0 0
\(509\) 1.39213e6 + 2.41125e6i 0.238170 + 0.412522i 0.960189 0.279351i \(-0.0901193\pi\)
−0.722020 + 0.691873i \(0.756786\pi\)
\(510\) 0 0
\(511\) 741856. 7.14210e6i 0.125680 1.20997i
\(512\) 0 0
\(513\) −623972. 1.08075e6i −0.104682 0.181314i
\(514\) 0 0
\(515\) −7.15264e6 + 1.23887e7i −1.18836 + 2.05830i
\(516\) 0 0
\(517\) −2.31062e6 −0.380192
\(518\) 0 0
\(519\) 3.48218e6 0.567456
\(520\) 0 0
\(521\) −522678. + 905306.i −0.0843607 + 0.146117i −0.905119 0.425159i \(-0.860218\pi\)
0.820758 + 0.571276i \(0.193551\pi\)
\(522\) 0 0
\(523\) 1.81578e6 + 3.14503e6i 0.290275 + 0.502771i 0.973875 0.227086i \(-0.0729199\pi\)
−0.683600 + 0.729857i \(0.739587\pi\)
\(524\) 0 0
\(525\) −5.18833e6 3.75988e6i −0.821540 0.595354i
\(526\) 0 0
\(527\) 133027. + 230410.i 0.0208648 + 0.0361389i
\(528\) 0 0
\(529\) −2.18700e6 + 3.78800e6i −0.339789 + 0.588532i
\(530\) 0 0
\(531\) −2.93317e6 −0.451440
\(532\) 0 0
\(533\) 1.15410e7 1.75964
\(534\) 0 0
\(535\) 8.51034e6 1.47403e7i 1.28547 2.22650i
\(536\) 0 0
\(537\) 123347. + 213644.i 0.0184584 + 0.0319709i
\(538\) 0 0
\(539\) 736558. + 2.24821e6i 0.109203 + 0.333323i
\(540\) 0 0
\(541\) 4.72442e6 + 8.18294e6i 0.693994 + 1.20203i 0.970519 + 0.241025i \(0.0774837\pi\)
−0.276525 + 0.961007i \(0.589183\pi\)
\(542\) 0 0
\(543\) −882698. + 1.52888e6i −0.128473 + 0.222522i
\(544\) 0 0
\(545\) 1.24985e7 1.80246
\(546\) 0 0
\(547\) 2.69014e6 0.384421 0.192210 0.981354i \(-0.438434\pi\)
0.192210 + 0.981354i \(0.438434\pi\)
\(548\) 0 0
\(549\) −200422. + 347142.i −0.0283802 + 0.0491559i
\(550\) 0 0
\(551\) −3.24459e6 5.61979e6i −0.455282 0.788572i
\(552\) 0 0
\(553\) −5.24421e6 3.80038e6i −0.729235 0.528462i
\(554\) 0 0
\(555\) 4.74804e6 + 8.22385e6i 0.654308 + 1.13329i
\(556\) 0 0
\(557\) 4.44490e6 7.69880e6i 0.607050 1.05144i −0.384674 0.923052i \(-0.625686\pi\)
0.991724 0.128389i \(-0.0409805\pi\)
\(558\) 0 0
\(559\) −7.93112e6 −1.07351
\(560\) 0 0
\(561\) −69534.1 −0.00932805
\(562\) 0 0
\(563\) −629963. + 1.09113e6i −0.0837615 + 0.145079i −0.904863 0.425703i \(-0.860027\pi\)
0.821101 + 0.570782i \(0.193360\pi\)
\(564\) 0 0
\(565\) 8.21297e6 + 1.42253e7i 1.08238 + 1.87473i
\(566\) 0 0
\(567\) 87877.7 846028.i 0.0114794 0.110517i
\(568\) 0 0
\(569\) 2.91019e6 + 5.04059e6i 0.376826 + 0.652681i 0.990598 0.136801i \(-0.0436822\pi\)
−0.613773 + 0.789483i \(0.710349\pi\)
\(570\) 0 0
\(571\) −2.32980e6 + 4.03534e6i −0.299040 + 0.517952i −0.975917 0.218144i \(-0.930000\pi\)
0.676877 + 0.736096i \(0.263333\pi\)
\(572\) 0 0
\(573\) −2.40284e6 −0.305730
\(574\) 0 0
\(575\) −1.80558e7 −2.27744
\(576\) 0 0
\(577\) 762391. 1.32050e6i 0.0953319 0.165120i −0.814415 0.580283i \(-0.802942\pi\)
0.909747 + 0.415163i \(0.136275\pi\)
\(578\) 0 0
\(579\) −456137. 790052.i −0.0565456 0.0979398i
\(580\) 0 0
\(581\) −5.30992e6 + 2.37189e6i −0.652600 + 0.291511i
\(582\) 0 0
\(583\) 1.47620e6 + 2.55685e6i 0.179876 + 0.311554i
\(584\) 0 0
\(585\) −4.17764e6 + 7.23589e6i −0.504710 + 0.874183i
\(586\) 0 0
\(587\) −1.50087e7 −1.79783 −0.898914 0.438124i \(-0.855643\pi\)
−0.898914 + 0.438124i \(0.855643\pi\)
\(588\) 0 0
\(589\) 8.29792e6 0.985556
\(590\) 0 0
\(591\) 1.63065e6 2.82436e6i 0.192040 0.332623i
\(592\) 0 0
\(593\) 3.53973e6 + 6.13099e6i 0.413364 + 0.715968i 0.995255 0.0972987i \(-0.0310202\pi\)
−0.581891 + 0.813267i \(0.697687\pi\)
\(594\) 0 0
\(595\) 603081. 269391.i 0.0698366 0.0311954i
\(596\) 0 0
\(597\) 1.01436e6 + 1.75692e6i 0.116481 + 0.201751i
\(598\) 0 0
\(599\) 1.08761e6 1.88379e6i 0.123853 0.214519i −0.797431 0.603410i \(-0.793808\pi\)
0.921284 + 0.388891i \(0.127142\pi\)
\(600\) 0 0
\(601\) 2.69785e6 0.304671 0.152336 0.988329i \(-0.451321\pi\)
0.152336 + 0.988329i \(0.451321\pi\)
\(602\) 0 0
\(603\) −1.86021e6 −0.208338
\(604\) 0 0
\(605\) −6.55520e6 + 1.13539e7i −0.728111 + 1.26112i
\(606\) 0 0
\(607\) −2.49417e6 4.32003e6i −0.274760 0.475899i 0.695314 0.718706i \(-0.255265\pi\)
−0.970075 + 0.242807i \(0.921932\pi\)
\(608\) 0 0
\(609\) 456955. 4.39926e6i 0.0499263 0.480658i
\(610\) 0 0
\(611\) −9.12056e6 1.57973e7i −0.988367 1.71190i
\(612\) 0 0
\(613\) −556820. + 964441.i −0.0598500 + 0.103663i −0.894398 0.447272i \(-0.852396\pi\)
0.834548 + 0.550935i \(0.185729\pi\)
\(614\) 0 0
\(615\) −8.67647e6 −0.925029
\(616\) 0 0
\(617\) −5.14757e6 −0.544364 −0.272182 0.962246i \(-0.587745\pi\)
−0.272182 + 0.962246i \(0.587745\pi\)
\(618\) 0 0
\(619\) −121588. + 210597.i −0.0127545 + 0.0220915i −0.872332 0.488914i \(-0.837393\pi\)
0.859578 + 0.511005i \(0.170727\pi\)
\(620\) 0 0
\(621\) −1.19844e6 2.07576e6i −0.124706 0.215998i
\(622\) 0 0
\(623\) 1.34311e7 + 9.73322e6i 1.38641 + 1.00470i
\(624\) 0 0
\(625\) −1.61533e6 2.79783e6i −0.165410 0.286498i
\(626\) 0 0
\(627\) −1.08434e6 + 1.87814e6i −0.110153 + 0.190791i
\(628\) 0 0
\(629\) −623884. −0.0628749
\(630\) 0 0
\(631\) 9.94255e6 0.994087 0.497044 0.867726i \(-0.334419\pi\)
0.497044 + 0.867726i \(0.334419\pi\)
\(632\) 0 0
\(633\) −1.47510e6 + 2.55495e6i −0.146323 + 0.253439i
\(634\) 0 0
\(635\) 6.70347e6 + 1.16108e7i 0.659729 + 1.14268i
\(636\) 0 0
\(637\) −1.24632e7 + 1.39099e7i −1.21697 + 1.35824i
\(638\) 0 0
\(639\) 1.06684e6 + 1.84783e6i 0.103359 + 0.179023i
\(640\) 0 0
\(641\) 5.77767e6 1.00072e7i 0.555402 0.961985i −0.442470 0.896783i \(-0.645898\pi\)
0.997872 0.0652017i \(-0.0207691\pi\)
\(642\) 0 0
\(643\) 1.35139e6 0.128900 0.0644500 0.997921i \(-0.479471\pi\)
0.0644500 + 0.997921i \(0.479471\pi\)
\(644\) 0 0
\(645\) 5.96260e6 0.564334
\(646\) 0 0
\(647\) −8.77678e6 + 1.52018e7i −0.824279 + 1.42769i 0.0781895 + 0.996939i \(0.475086\pi\)
−0.902469 + 0.430755i \(0.858247\pi\)
\(648\) 0 0
\(649\) 2.54864e6 + 4.41437e6i 0.237518 + 0.411393i
\(650\) 0 0
\(651\) 4.57964e6 + 3.31877e6i 0.423525 + 0.306920i
\(652\) 0 0
\(653\) 3.99936e6 + 6.92710e6i 0.367035 + 0.635724i 0.989101 0.147242i \(-0.0470395\pi\)
−0.622065 + 0.782965i \(0.713706\pi\)
\(654\) 0 0
\(655\) −1.10234e7 + 1.90931e7i −1.00395 + 1.73889i
\(656\) 0 0
\(657\) 4.48638e6 0.405492
\(658\) 0 0
\(659\) 229419. 0.0205786 0.0102893 0.999947i \(-0.496725\pi\)
0.0102893 + 0.999947i \(0.496725\pi\)
\(660\) 0 0
\(661\) 1.64279e6 2.84539e6i 0.146244 0.253302i −0.783593 0.621275i \(-0.786615\pi\)
0.929836 + 0.367973i \(0.119948\pi\)
\(662\) 0 0
\(663\) −274467. 475391.i −0.0242497 0.0420017i
\(664\) 0 0
\(665\) 2.12835e6 2.04904e7i 0.186634 1.79678i
\(666\) 0 0
\(667\) −6.23177e6 1.07937e7i −0.542372 0.939416i
\(668\) 0 0
\(669\) 493603. 854945.i 0.0426395 0.0738538i
\(670\) 0 0
\(671\) 696590. 0.0597271
\(672\) 0 0
\(673\) 8.22188e6 0.699734 0.349867 0.936799i \(-0.386227\pi\)
0.349867 + 0.936799i \(0.386227\pi\)
\(674\) 0 0
\(675\) 2.00168e6 3.46701e6i 0.169097 0.292884i
\(676\) 0 0
\(677\) −1.07702e7 1.86546e7i −0.903138 1.56428i −0.823397 0.567465i \(-0.807924\pi\)
−0.0797405 0.996816i \(-0.525409\pi\)
\(678\) 0 0
\(679\) 7.77519e6 3.47311e6i 0.647197 0.289097i
\(680\) 0 0
\(681\) 5.47859e6 + 9.48920e6i 0.452690 + 0.784083i
\(682\) 0 0
\(683\) 8.08706e6 1.40072e7i 0.663344 1.14895i −0.316387 0.948630i \(-0.602470\pi\)
0.979731 0.200316i \(-0.0641968\pi\)
\(684\) 0 0
\(685\) 8.93012e6 0.727162
\(686\) 0 0
\(687\) 1.20242e7 0.971999
\(688\) 0 0
\(689\) −1.16538e7 + 2.01850e7i −0.935231 + 1.61987i
\(690\) 0 0
\(691\) −5.32318e6 9.22002e6i −0.424108 0.734576i 0.572229 0.820094i \(-0.306079\pi\)
−0.996337 + 0.0855179i \(0.972746\pi\)
\(692\) 0 0
\(693\) −1.34962e6 + 602862.i −0.106752 + 0.0476854i
\(694\) 0 0
\(695\) −1.81647e7 3.14622e7i −1.42648 2.47074i
\(696\) 0 0
\(697\) 285018. 493666.i 0.0222224 0.0384903i
\(698\) 0 0
\(699\) −421096. −0.0325978
\(700\) 0 0
\(701\) −4.55461e6 −0.350071 −0.175035 0.984562i \(-0.556004\pi\)
−0.175035 + 0.984562i \(0.556004\pi\)
\(702\) 0 0
\(703\) −9.72909e6 + 1.68513e7i −0.742479 + 1.28601i
\(704\) 0 0
\(705\) 6.85682e6 + 1.18764e7i 0.519577 + 0.899933i
\(706\) 0 0
\(707\) 2.35442e6 2.26668e7i 0.177148 1.70546i
\(708\) 0 0
\(709\) −6.55174e6 1.13479e7i −0.489487 0.847816i 0.510440 0.859913i \(-0.329483\pi\)
−0.999927 + 0.0120971i \(0.996149\pi\)
\(710\) 0 0
\(711\) 2.02324e6 3.50436e6i 0.150098 0.259977i
\(712\) 0 0
\(713\) 1.59375e7 1.17408
\(714\) 0 0
\(715\) 1.45199e7 1.06218
\(716\) 0 0
\(717\) 388576. 673033.i 0.0282278 0.0488921i
\(718\) 0 0
\(719\) −8.95942e6 1.55182e7i −0.646335 1.11949i −0.983991 0.178216i \(-0.942968\pi\)
0.337656 0.941269i \(-0.390366\pi\)
\(720\) 0 0
\(721\) −1.61777e7 1.17236e7i −1.15899 0.839894i
\(722\) 0 0
\(723\) 3.71384e6 + 6.43257e6i 0.264227 + 0.457655i
\(724\) 0 0
\(725\) 1.04085e7 1.80281e7i 0.735435 1.27381i
\(726\) 0 0
\(727\) 1.41466e7 0.992693 0.496347 0.868125i \(-0.334675\pi\)
0.496347 + 0.868125i \(0.334675\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) −195868. + 339254.i −0.0135572 + 0.0234818i
\(732\) 0 0
\(733\) 6.22241e6 + 1.07775e7i 0.427758 + 0.740899i 0.996674 0.0814969i \(-0.0259701\pi\)
−0.568915 + 0.822396i \(0.692637\pi\)
\(734\) 0 0
\(735\) 9.36982e6 1.04574e7i 0.639754 0.714015i
\(736\) 0 0
\(737\) 1.61634e6 + 2.79959e6i 0.109614 + 0.189857i
\(738\) 0 0
\(739\) 883322. 1.52996e6i 0.0594988 0.103055i −0.834742 0.550642i \(-0.814383\pi\)
0.894241 + 0.447587i \(0.147716\pi\)
\(740\) 0 0
\(741\) −1.71206e7 −1.14544
\(742\) 0 0
\(743\) 5.73250e6 0.380953 0.190477 0.981692i \(-0.438997\pi\)
0.190477 + 0.981692i \(0.438997\pi\)
\(744\) 0 0
\(745\) −3.74453e6 + 6.48571e6i −0.247176 + 0.428122i
\(746\) 0 0
\(747\) −1.81679e6 3.14677e6i −0.119125 0.206330i
\(748\) 0 0
\(749\) 1.92485e7 + 1.39490e7i 1.25370 + 0.908528i
\(750\) 0 0
\(751\) −1.31566e7 2.27879e7i −0.851224 1.47436i −0.880104 0.474780i \(-0.842528\pi\)
0.0288804 0.999583i \(-0.490806\pi\)
\(752\) 0 0
\(753\) −585844. + 1.01471e6i −0.0376526 + 0.0652162i
\(754\) 0 0
\(755\) −8.88179e6 −0.567066
\(756\) 0 0
\(757\) 1.63104e7 1.03449 0.517245 0.855838i \(-0.326958\pi\)
0.517245 + 0.855838i \(0.326958\pi\)
\(758\) 0 0
\(759\) −2.08266e6 + 3.60728e6i −0.131224 + 0.227287i
\(760\) 0 0
\(761\) −8.42080e6 1.45853e7i −0.527098 0.912961i −0.999501 0.0315785i \(-0.989947\pi\)
0.472403 0.881383i \(-0.343387\pi\)
\(762\) 0 0
\(763\) −1.80342e6 + 1.73622e7i −0.112147 + 1.07967i
\(764\) 0 0
\(765\) 206344. + 357398.i 0.0127479 + 0.0220800i
\(766\) 0 0
\(767\) −2.01201e7 + 3.48491e7i −1.23493 + 2.13896i
\(768\) 0 0
\(769\) 1.19890e7 0.731084 0.365542 0.930795i \(-0.380884\pi\)
0.365542 + 0.930795i \(0.380884\pi\)
\(770\) 0 0
\(771\) −925112. −0.0560477
\(772\) 0 0
\(773\) −8.48868e6 + 1.47028e7i −0.510965 + 0.885018i 0.488954 + 0.872310i \(0.337379\pi\)
−0.999919 + 0.0127081i \(0.995955\pi\)
\(774\) 0 0
\(775\) 1.33097e7 + 2.30531e7i 0.796003 + 1.37872i
\(776\) 0 0
\(777\) −1.21092e7 + 5.40908e6i −0.719554 + 0.321419i
\(778\) 0 0
\(779\) −8.88937e6 1.53968e7i −0.524841 0.909050i
\(780\) 0 0
\(781\) 1.85397e6 3.21117e6i 0.108761 0.188380i
\(782\) 0 0
\(783\) 2.76344e6 0.161081
\(784\) 0 0
\(785\) 1.81590e7 1.05177
\(786\) 0 0
\(787\) 1.59750e7 2.76696e7i 0.919400 1.59245i 0.119072 0.992886i \(-0.462008\pi\)
0.800328 0.599563i \(-0.204659\pi\)
\(788\) 0 0
\(789\) −159753. 276701.i −0.00913602 0.0158241i
\(790\) 0 0
\(791\) −2.09460e7 + 9.35641e6i −1.19031 + 0.531702i
\(792\) 0 0
\(793\) 2.74960e6 + 4.76245e6i 0.155270 + 0.268935i
\(794\) 0 0
\(795\) 8.76129e6 1.51750e7i 0.491644 0.851552i
\(796\) 0 0
\(797\) −1.63006e7 −0.908988 −0.454494 0.890750i \(-0.650180\pi\)
−0.454494 + 0.890750i \(0.650180\pi\)
\(798\) 0 0
\(799\) −900972. −0.0499280
\(800\) 0 0
\(801\) −5.18177e6 + 8.97509e6i −0.285362 + 0.494262i
\(802\) 0 0
\(803\) −3.89823e6 6.75193e6i −0.213343 0.369521i
\(804\) 0 0
\(805\) 4.08786e6 3.93552e7i 0.222334 2.14049i
\(806\) 0 0
\(807\) 4.70853e6 + 8.15542e6i 0.254508 + 0.440821i
\(808\) 0 0
\(809\) 1.25699e7 2.17717e7i 0.675244 1.16956i −0.301153 0.953576i \(-0.597371\pi\)
0.976397 0.215982i \(-0.0692952\pi\)
\(810\) 0 0
\(811\) −2.27245e7 −1.21323 −0.606613 0.794997i \(-0.707472\pi\)
−0.606613 + 0.794997i \(0.707472\pi\)
\(812\) 0 0
\(813\) −1.59551e6 −0.0846588
\(814\) 0 0
\(815\) 1.74724e6 3.02631e6i 0.0921422 0.159595i
\(816\) 0 0
\(817\) 6.10890e6 + 1.05809e7i 0.320190 + 0.554586i
\(818\) 0 0
\(819\) −9.44890e6 6.84743e6i −0.492234 0.356712i
\(820\) 0 0
\(821\) −5.52439e6 9.56853e6i −0.286040 0.495436i 0.686821 0.726827i \(-0.259006\pi\)
−0.972861 + 0.231391i \(0.925672\pi\)
\(822\) 0 0
\(823\) 3.65240e6 6.32613e6i 0.187966 0.325566i −0.756606 0.653871i \(-0.773144\pi\)
0.944572 + 0.328305i \(0.106477\pi\)
\(824\) 0 0
\(825\) −6.95707e6 −0.355870
\(826\) 0 0
\(827\) 3.01208e7 1.53145 0.765724 0.643170i \(-0.222381\pi\)
0.765724 + 0.643170i \(0.222381\pi\)
\(828\) 0 0
\(829\) −6.79019e6 + 1.17610e7i −0.343159 + 0.594369i −0.985018 0.172454i \(-0.944830\pi\)
0.641858 + 0.766823i \(0.278164\pi\)
\(830\) 0 0
\(831\) 655137. + 1.13473e6i 0.0329101 + 0.0570020i
\(832\) 0 0
\(833\) 287203. + 876637.i 0.0143409 + 0.0437731i
\(834\) 0 0
\(835\) 3.00187e7 + 5.19940e7i 1.48997 + 2.58070i
\(836\) 0 0
\(837\) −1.76685e6 + 3.06027e6i −0.0871737 + 0.150989i
\(838\) 0 0
\(839\) −3.78208e7 −1.85492 −0.927460 0.373922i \(-0.878013\pi\)
−0.927460 + 0.373922i \(0.878013\pi\)
\(840\) 0 0
\(841\) −6.14158e6 −0.299426
\(842\) 0 0
\(843\) −4.63827e6 + 8.03372e6i −0.224795 + 0.389357i
\(844\) 0 0
\(845\) 4.00806e7 + 6.94216e7i 1.93104 + 3.34467i
\(846\) 0 0
\(847\) −1.48264e7 1.07444e7i −0.710112 0.514604i
\(848\) 0 0
\(849\) −5.02768e6 8.70820e6i −0.239386 0.414628i
\(850\) 0 0
\(851\) −1.86863e7 + 3.23657e7i −0.884506 + 1.53201i
\(852\) 0 0
\(853\) −3.36325e7 −1.58265 −0.791327 0.611393i \(-0.790609\pi\)
−0.791327 + 0.611393i \(0.790609\pi\)
\(854\) 0 0
\(855\) 1.28712e7 0.602150
\(856\) 0 0
\(857\) 8.58981e6 1.48780e7i 0.399514 0.691978i −0.594152 0.804353i \(-0.702512\pi\)
0.993666 + 0.112375i \(0.0358456\pi\)
\(858\) 0 0
\(859\) −1.24577e7 2.15774e7i −0.576043 0.997735i −0.995927 0.0901579i \(-0.971263\pi\)
0.419885 0.907577i \(-0.362071\pi\)
\(860\) 0 0
\(861\) 1.25194e6 1.20529e7i 0.0575541 0.554093i
\(862\) 0 0
\(863\) 1.85419e7 + 3.21156e7i 0.847477 + 1.46787i 0.883452 + 0.468521i \(0.155213\pi\)
−0.0359751 + 0.999353i \(0.511454\pi\)
\(864\) 0 0
\(865\) −1.79575e7 + 3.11033e7i −0.816029 + 1.41340i
\(866\) 0 0
\(867\) 1.27516e7 0.576125
\(868\) 0 0
\(869\) −7.03201e6 −0.315886
\(870\) 0 0
\(871\) −1.27602e7 + 2.21013e7i −0.569916 + 0.987124i
\(872\) 0 0
\(873\) 2.66028e6 + 4.60774e6i 0.118138 + 0.204622i
\(874\) 0 0
\(875\) 2.60033e7 1.16154e7i 1.14817 0.512880i
\(876\) 0 0
\(877\) −1.17842e7 2.04109e7i −0.517370 0.896112i −0.999796 0.0201750i \(-0.993578\pi\)
0.482426 0.875937i \(-0.339756\pi\)
\(878\) 0 0
\(879\) −9.09143e6 + 1.57468e7i −0.396881 + 0.687418i
\(880\) 0 0
\(881\) 3.52124e7 1.52847 0.764234 0.644939i \(-0.223117\pi\)
0.764234 + 0.644939i \(0.223117\pi\)
\(882\) 0 0
\(883\) 4.08063e7 1.76127 0.880634 0.473796i \(-0.157117\pi\)
0.880634 + 0.473796i \(0.157117\pi\)
\(884\) 0 0
\(885\) 1.51263e7 2.61995e7i 0.649193 1.12443i
\(886\) 0 0
\(887\) −3.01429e6 5.22090e6i −0.128640 0.222811i 0.794510 0.607251i \(-0.207728\pi\)
−0.923150 + 0.384440i \(0.874394\pi\)
\(888\) 0 0
\(889\) −1.70963e7 + 7.63675e6i −0.725516 + 0.324082i
\(890\) 0 0
\(891\) −461771. 799811.i −0.0194864 0.0337515i
\(892\) 0 0
\(893\) −1.40501e7 + 2.43355e7i −0.589592 + 1.02120i
\(894\) 0 0
\(895\) −2.54440e6 −0.106176
\(896\) 0 0
\(897\) −3.28830e7 −1.36455
\(898\) 0 0
\(899\) −9.18742e6 + 1.59131e7i −0.379135 + 0.656682i
\(900\) 0 0
\(901\) 575609. + 996983.i 0.0236219 + 0.0409144i
\(902\) 0 0
\(903\) −860352. + 8.28290e6i −0.0351121 + 0.338036i
\(904\) 0 0
\(905\) −9.10410e6 1.57688e7i −0.369501 0.639994i
\(906\) 0 0
\(907\) −7.13994e6 + 1.23667e7i −0.288188 + 0.499157i −0.973377 0.229209i \(-0.926386\pi\)
0.685189 + 0.728365i \(0.259720\pi\)
\(908\) 0 0
\(909\) 1.42384e7 0.571546
\(910\) 0 0
\(911\) 2.11130e7 0.842855 0.421428 0.906862i \(-0.361529\pi\)
0.421428 + 0.906862i \(0.361529\pi\)
\(912\) 0 0
\(913\) −3.15722e6 + 5.46847e6i −0.125351 + 0.217115i
\(914\) 0 0
\(915\) −2.06715e6 3.58040e6i −0.0816241 0.141377i
\(916\) 0 0
\(917\) −2.49325e7 1.80681e7i −0.979134 0.709559i
\(918\) 0 0
\(919\) −8.28681e6 1.43532e7i −0.323667 0.560608i 0.657575 0.753389i \(-0.271582\pi\)
−0.981242 + 0.192782i \(0.938249\pi\)
\(920\) 0 0
\(921\) −2.40817e6 + 4.17108e6i −0.0935489 + 0.162031i
\(922\) 0 0
\(923\) 2.92721e7 1.13097
\(924\) 0 0
\(925\) −6.24212e7 −2.39871
\(926\) 0 0
\(927\) 6.24143e6 1.08105e7i 0.238553 0.413186i
\(928\) 0 0
\(929\) −8.19669e6 1.41971e7i −0.311601 0.539709i 0.667108 0.744961i \(-0.267532\pi\)
−0.978709 + 0.205252i \(0.934199\pi\)
\(930\) 0 0
\(931\) 2.81570e7 + 5.91318e6i 1.06466 + 0.223587i
\(932\) 0 0
\(933\) −1.03508e7 1.79282e7i −0.389289 0.674268i
\(934\) 0 0
\(935\) 358586. 621089.i 0.0134142 0.0232340i
\(936\) 0 0
\(937\) −2.68057e7 −0.997420 −0.498710 0.866769i \(-0.666193\pi\)
−0.498710 + 0.866769i \(0.666193\pi\)
\(938\) 0 0
\(939\) 2.48154e7 0.918454
\(940\) 0 0
\(941\) 2.81437e6 4.87464e6i 0.103611 0.179460i −0.809559 0.587039i \(-0.800293\pi\)
0.913170 + 0.407579i \(0.133627\pi\)
\(942\) 0 0
\(943\) −1.70735e7 2.95722e7i −0.625236 1.08294i
\(944\) 0 0
\(945\) 7.10366e6 + 5.14788e6i 0.258763 + 0.187521i
\(946\) 0 0
\(947\) 1.38391e7 + 2.39700e7i 0.501456 + 0.868547i 0.999999 + 0.00168181i \(0.000535336\pi\)
−0.498543 + 0.866865i \(0.666131\pi\)
\(948\) 0 0
\(949\) 3.07744e7 5.33028e7i 1.10924 1.92125i
\(950\) 0 0
\(951\) −2.29328e7 −0.822253
\(952\) 0 0
\(953\) −2.40114e7 −0.856416 −0.428208 0.903680i \(-0.640855\pi\)
−0.428208 + 0.903680i \(0.640855\pi\)
\(954\) 0 0
\(955\) 1.23914e7 2.14625e7i 0.439654 0.761504i
\(956\) 0 0
\(957\) −2.40116e6 4.15893e6i −0.0847503 0.146792i
\(958\) 0 0
\(959\) −1.28854e6 + 1.24052e7i −0.0452430 + 0.435570i
\(960\) 0 0
\(961\) 2.56632e6 + 4.44500e6i 0.0896401 + 0.155261i
\(962\) 0 0
\(963\) −7.42616e6 + 1.28625e7i −0.258047 + 0.446951i
\(964\) 0 0
\(965\) 9.40914e6 0.325261
\(966\) 0 0
\(967\) −1.43801e7 −0.494535 −0.247267 0.968947i \(-0.579533\pi\)
−0.247267 + 0.968947i \(0.579533\pi\)
\(968\) 0 0
\(969\) −422814. + 732335.i −0.0144657 + 0.0250554i
\(970\) 0 0
\(971\) 2.43891e7 + 4.22431e7i 0.830133 + 1.43783i 0.897933 + 0.440133i \(0.145069\pi\)
−0.0678001 + 0.997699i \(0.521598\pi\)
\(972\) 0 0
\(973\) 4.63265e7 2.06937e7i 1.56873 0.700737i
\(974\) 0 0
\(975\) −2.74612e7 4.75641e7i −0.925140 1.60239i
\(976\) 0 0
\(977\) 2.35153e7 4.07296e7i 0.788158 1.36513i −0.138936 0.990301i \(-0.544368\pi\)
0.927094 0.374829i \(-0.122299\pi\)
\(978\) 0 0
\(979\) 1.80098e7 0.600555
\(980\) 0 0
\(981\) −1.09062e7 −0.361827
\(982\) 0 0
\(983\) −3.72208e6 + 6.44684e6i −0.122858 + 0.212796i −0.920893 0.389814i \(-0.872539\pi\)
0.798036 + 0.602610i \(0.205873\pi\)
\(984\) 0 0
\(985\) 1.68184e7 + 2.91303e7i 0.552324 + 0.956654i
\(986\) 0 0
\(987\) −1.74873e7 + 7.81145e6i −0.571388 + 0.255234i
\(988\) 0 0
\(989\) 1.17332e7 + 2.03224e7i 0.381438 + 0.660671i
\(990\) 0 0
\(991\) 2.31147e7 4.00358e7i 0.747659 1.29498i −0.201283 0.979533i \(-0.564511\pi\)
0.948942 0.315451i \(-0.102156\pi\)
\(992\) 0 0
\(993\) 4.40401e6 0.141734
\(994\) 0 0
\(995\) −2.09241e7 −0.670021
\(996\) 0 0
\(997\) 3.09391e6 5.35880e6i 0.0985755 0.170738i −0.812520 0.582934i \(-0.801905\pi\)
0.911095 + 0.412196i \(0.135238\pi\)
\(998\) 0 0
\(999\) −4.14316e6 7.17617e6i −0.131346 0.227499i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 84.6.i.c.25.4 8
3.2 odd 2 252.6.k.f.109.1 8
4.3 odd 2 336.6.q.i.193.4 8
7.2 even 3 inner 84.6.i.c.37.4 yes 8
7.3 odd 6 588.6.a.p.1.4 4
7.4 even 3 588.6.a.n.1.1 4
7.5 odd 6 588.6.i.o.373.1 8
7.6 odd 2 588.6.i.o.361.1 8
21.2 odd 6 252.6.k.f.37.1 8
28.23 odd 6 336.6.q.i.289.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.6.i.c.25.4 8 1.1 even 1 trivial
84.6.i.c.37.4 yes 8 7.2 even 3 inner
252.6.k.f.37.1 8 21.2 odd 6
252.6.k.f.109.1 8 3.2 odd 2
336.6.q.i.193.4 8 4.3 odd 2
336.6.q.i.289.4 8 28.23 odd 6
588.6.a.n.1.1 4 7.4 even 3
588.6.a.p.1.4 4 7.3 odd 6
588.6.i.o.361.1 8 7.6 odd 2
588.6.i.o.373.1 8 7.5 odd 6