Properties

Label 84.8.k.a
Level 8484
Weight 88
Character orbit 84.k
Analytic conductor 26.24026.240
Analytic rank 00
Dimension 22
CM discriminant -3
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [84,8,Mod(5,84)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(84, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 5]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("84.5");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: N N == 84=2237 84 = 2^{2} \cdot 3 \cdot 7
Weight: k k == 8 8
Character orbit: [χ][\chi] == 84.k (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 26.240342140726.2403421407
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: U(1)[D6]\mathrm{U}(1)[D_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(27ζ627)q3+(757ζ6+1006)q7+2187ζ6q9+(11082ζ65541)q13+(23935ζ6+47870)q19+(13716ζ647601)q21+(78125ζ6+78125)q25++(15198608ζ67599304)q97+O(q100) q + ( - 27 \zeta_{6} - 27) q^{3} + ( - 757 \zeta_{6} + 1006) q^{7} + 2187 \zeta_{6} q^{9} + (11082 \zeta_{6} - 5541) q^{13} + ( - 23935 \zeta_{6} + 47870) q^{19} + (13716 \zeta_{6} - 47601) q^{21} + ( - 78125 \zeta_{6} + 78125) q^{25}+ \cdots + (15198608 \zeta_{6} - 7599304) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q81q3+1255q7+2187q9+71805q1981486q21+78125q25510303q31615373q37+448821q39+1251458q4372061q493877470q57+461148q61+3855681q63++13778181q93+O(q100) 2 q - 81 q^{3} + 1255 q^{7} + 2187 q^{9} + 71805 q^{19} - 81486 q^{21} + 78125 q^{25} - 510303 q^{31} - 615373 q^{37} + 448821 q^{39} + 1251458 q^{43} - 72061 q^{49} - 3877470 q^{57} + 461148 q^{61} + 3855681 q^{63}+ \cdots + 13778181 q^{93}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/84Z)×\left(\mathbb{Z}/84\mathbb{Z}\right)^\times.

nn 2929 4343 7373
χ(n)\chi(n) 1-1 11 ζ6\zeta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
5.1
0.500000 0.866025i
0.500000 + 0.866025i
0 −40.5000 + 23.3827i 0 0 0 627.500 + 655.581i 0 1093.50 1894.00i 0
17.1 0 −40.5000 23.3827i 0 0 0 627.500 655.581i 0 1093.50 + 1894.00i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by Q(3)\Q(\sqrt{-3})
7.d odd 6 1 inner
21.g even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 84.8.k.a 2
3.b odd 2 1 CM 84.8.k.a 2
7.c even 3 1 588.8.f.a 2
7.d odd 6 1 inner 84.8.k.a 2
7.d odd 6 1 588.8.f.a 2
21.g even 6 1 inner 84.8.k.a 2
21.g even 6 1 588.8.f.a 2
21.h odd 6 1 588.8.f.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
84.8.k.a 2 1.a even 1 1 trivial
84.8.k.a 2 3.b odd 2 1 CM
84.8.k.a 2 7.d odd 6 1 inner
84.8.k.a 2 21.g even 6 1 inner
588.8.f.a 2 7.c even 3 1
588.8.f.a 2 7.d odd 6 1
588.8.f.a 2 21.g even 6 1
588.8.f.a 2 21.h odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T5 T_{5} acting on S8new(84,[χ])S_{8}^{\mathrm{new}}(84, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+81T+2187 T^{2} + 81T + 2187 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T21255T+823543 T^{2} - 1255 T + 823543 Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T2+92108043 T^{2} + 92108043 Copy content Toggle raw display
1717 T2 T^{2} Copy content Toggle raw display
1919 T2++1718652675 T^{2} + \cdots + 1718652675 Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 T2 T^{2} Copy content Toggle raw display
3131 T2++86803050603 T^{2} + \cdots + 86803050603 Copy content Toggle raw display
3737 T2++378683929129 T^{2} + \cdots + 378683929129 Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 (T625729)2 (T - 625729)^{2} Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 T2++70885825968 T^{2} + \cdots + 70885825968 Copy content Toggle raw display
6767 T2++16471056987025 T^{2} + \cdots + 16471056987025 Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 T2++18808140000387 T^{2} + \cdots + 18808140000387 Copy content Toggle raw display
7979 T2++18023650412329 T^{2} + \cdots + 18023650412329 Copy content Toggle raw display
8383 T2 T^{2} Copy content Toggle raw display
8989 T2 T^{2} Copy content Toggle raw display
9797 T2+173248263853248 T^{2} + 173248263853248 Copy content Toggle raw display
show more
show less