gp: [N,k,chi] = [84,8,Mod(5,84)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(84, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 3, 5]))
N = Newforms(chi, 8, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("84.5");
S:= CuspForms(chi, 8);
N := Newforms(S);
Newform invariants
sage: traces = [2]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a primitive root of unity ζ 6 \zeta_{6} ζ 6 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 84 Z ) × \left(\mathbb{Z}/84\mathbb{Z}\right)^\times ( Z / 8 4 Z ) × .
n n n
29 29 2 9
43 43 4 3
73 73 7 3
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
1 1 1
ζ 6 \zeta_{6} ζ 6
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 5 T_{5} T 5
T5
acting on S 8 n e w ( 84 , [ χ ] ) S_{8}^{\mathrm{new}}(84, [\chi]) S 8 n e w ( 8 4 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 T^{2} T 2
T^2
3 3 3
T 2 + 81 T + 2187 T^{2} + 81T + 2187 T 2 + 8 1 T + 2 1 8 7
T^2 + 81*T + 2187
5 5 5
T 2 T^{2} T 2
T^2
7 7 7
T 2 − 1255 T + 823543 T^{2} - 1255 T + 823543 T 2 − 1 2 5 5 T + 8 2 3 5 4 3
T^2 - 1255*T + 823543
11 11 1 1
T 2 T^{2} T 2
T^2
13 13 1 3
T 2 + 92108043 T^{2} + 92108043 T 2 + 9 2 1 0 8 0 4 3
T^2 + 92108043
17 17 1 7
T 2 T^{2} T 2
T^2
19 19 1 9
T 2 + ⋯ + 1718652675 T^{2} + \cdots + 1718652675 T 2 + ⋯ + 1 7 1 8 6 5 2 6 7 5
T^2 - 71805*T + 1718652675
23 23 2 3
T 2 T^{2} T 2
T^2
29 29 2 9
T 2 T^{2} T 2
T^2
31 31 3 1
T 2 + ⋯ + 86803050603 T^{2} + \cdots + 86803050603 T 2 + ⋯ + 8 6 8 0 3 0 5 0 6 0 3
T^2 + 510303*T + 86803050603
37 37 3 7
T 2 + ⋯ + 378683929129 T^{2} + \cdots + 378683929129 T 2 + ⋯ + 3 7 8 6 8 3 9 2 9 1 2 9
T^2 + 615373*T + 378683929129
41 41 4 1
T 2 T^{2} T 2
T^2
43 43 4 3
( T − 625729 ) 2 (T - 625729)^{2} ( T − 6 2 5 7 2 9 ) 2
(T - 625729)^2
47 47 4 7
T 2 T^{2} T 2
T^2
53 53 5 3
T 2 T^{2} T 2
T^2
59 59 5 9
T 2 T^{2} T 2
T^2
61 61 6 1
T 2 + ⋯ + 70885825968 T^{2} + \cdots + 70885825968 T 2 + ⋯ + 7 0 8 8 5 8 2 5 9 6 8
T^2 - 461148*T + 70885825968
67 67 6 7
T 2 + ⋯ + 16471056987025 T^{2} + \cdots + 16471056987025 T 2 + ⋯ + 1 6 4 7 1 0 5 6 9 8 7 0 2 5
T^2 - 4058455*T + 16471056987025
71 71 7 1
T 2 T^{2} T 2
T^2
73 73 7 3
T 2 + ⋯ + 18808140000387 T^{2} + \cdots + 18808140000387 T 2 + ⋯ + 1 8 8 0 8 1 4 0 0 0 0 3 8 7
T^2 + 7511619*T + 18808140000387
79 79 7 9
T 2 + ⋯ + 18023650412329 T^{2} + \cdots + 18023650412329 T 2 + ⋯ + 1 8 0 2 3 6 5 0 4 1 2 3 2 9
T^2 - 4245427*T + 18023650412329
83 83 8 3
T 2 T^{2} T 2
T^2
89 89 8 9
T 2 T^{2} T 2
T^2
97 97 9 7
T 2 + 173248263853248 T^{2} + 173248263853248 T 2 + 1 7 3 2 4 8 2 6 3 8 5 3 2 4 8
T^2 + 173248263853248
show more
show less