Properties

Label 841.2.a.h.1.3
Level $841$
Weight $2$
Character 841.1
Self dual yes
Analytic conductor $6.715$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [841,2,Mod(1,841)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(841, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("841.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 841 = 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 841.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.71541880999\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.11973625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 8x^{4} + 15x^{3} + 13x^{2} - 27x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.511256\) of defining polynomial
Character \(\chi\) \(=\) 841.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.511256 q^{2} +2.69256 q^{3} -1.73862 q^{4} +2.20381 q^{5} +1.37659 q^{6} -1.30206 q^{7} -1.91139 q^{8} +4.24987 q^{9} +1.12671 q^{10} +5.00853 q^{11} -4.68133 q^{12} +3.13782 q^{13} -0.665686 q^{14} +5.93390 q^{15} +2.50003 q^{16} -1.37659 q^{17} +2.17277 q^{18} -5.95217 q^{19} -3.83159 q^{20} -3.50588 q^{21} +2.56064 q^{22} +0.865330 q^{23} -5.14653 q^{24} -0.143202 q^{25} +1.60423 q^{26} +3.36536 q^{27} +2.26379 q^{28} +3.03374 q^{30} +2.74400 q^{31} +5.10093 q^{32} +13.4858 q^{33} -0.703787 q^{34} -2.86950 q^{35} -7.38891 q^{36} +5.89999 q^{37} -3.04308 q^{38} +8.44877 q^{39} -4.21235 q^{40} -1.90869 q^{41} -1.79240 q^{42} +11.0143 q^{43} -8.70792 q^{44} +9.36593 q^{45} +0.442405 q^{46} -2.87661 q^{47} +6.73147 q^{48} -5.30464 q^{49} -0.0732129 q^{50} -3.70654 q^{51} -5.45547 q^{52} -5.80302 q^{53} +1.72056 q^{54} +11.0379 q^{55} +2.48874 q^{56} -16.0266 q^{57} -4.35304 q^{59} -10.3168 q^{60} -5.43545 q^{61} +1.40288 q^{62} -5.53359 q^{63} -2.39218 q^{64} +6.91518 q^{65} +6.89467 q^{66} -2.36278 q^{67} +2.39336 q^{68} +2.32995 q^{69} -1.46705 q^{70} -15.5897 q^{71} -8.12316 q^{72} +3.39645 q^{73} +3.01640 q^{74} -0.385580 q^{75} +10.3486 q^{76} -6.52141 q^{77} +4.31948 q^{78} +2.11612 q^{79} +5.50960 q^{80} -3.68820 q^{81} -0.975830 q^{82} +6.35906 q^{83} +6.09538 q^{84} -3.03374 q^{85} +5.63110 q^{86} -9.57325 q^{88} +11.9328 q^{89} +4.78838 q^{90} -4.08563 q^{91} -1.50448 q^{92} +7.38838 q^{93} -1.47068 q^{94} -13.1175 q^{95} +13.7346 q^{96} -11.4236 q^{97} -2.71203 q^{98} +21.2856 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{2} + 2 q^{3} + 8 q^{4} - 2 q^{5} - 3 q^{6} - 4 q^{7} + 3 q^{8} + 6 q^{9} + 15 q^{10} + 13 q^{11} - 4 q^{12} - 6 q^{13} - 6 q^{14} + 19 q^{15} + 4 q^{16} + 3 q^{17} + 17 q^{18} - 6 q^{19} - 5 q^{20}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.511256 0.361512 0.180756 0.983528i \(-0.442146\pi\)
0.180756 + 0.983528i \(0.442146\pi\)
\(3\) 2.69256 1.55455 0.777275 0.629161i \(-0.216601\pi\)
0.777275 + 0.629161i \(0.216601\pi\)
\(4\) −1.73862 −0.869309
\(5\) 2.20381 0.985576 0.492788 0.870149i \(-0.335978\pi\)
0.492788 + 0.870149i \(0.335978\pi\)
\(6\) 1.37659 0.561989
\(7\) −1.30206 −0.492133 −0.246066 0.969253i \(-0.579138\pi\)
−0.246066 + 0.969253i \(0.579138\pi\)
\(8\) −1.91139 −0.675778
\(9\) 4.24987 1.41662
\(10\) 1.12671 0.356298
\(11\) 5.00853 1.51013 0.755065 0.655650i \(-0.227605\pi\)
0.755065 + 0.655650i \(0.227605\pi\)
\(12\) −4.68133 −1.35138
\(13\) 3.13782 0.870275 0.435138 0.900364i \(-0.356700\pi\)
0.435138 + 0.900364i \(0.356700\pi\)
\(14\) −0.665686 −0.177912
\(15\) 5.93390 1.53213
\(16\) 2.50003 0.625007
\(17\) −1.37659 −0.333871 −0.166936 0.985968i \(-0.553387\pi\)
−0.166936 + 0.985968i \(0.553387\pi\)
\(18\) 2.17277 0.512127
\(19\) −5.95217 −1.36552 −0.682761 0.730642i \(-0.739221\pi\)
−0.682761 + 0.730642i \(0.739221\pi\)
\(20\) −3.83159 −0.856770
\(21\) −3.50588 −0.765045
\(22\) 2.56064 0.545930
\(23\) 0.865330 0.180434 0.0902169 0.995922i \(-0.471244\pi\)
0.0902169 + 0.995922i \(0.471244\pi\)
\(24\) −5.14653 −1.05053
\(25\) −0.143202 −0.0286404
\(26\) 1.60423 0.314615
\(27\) 3.36536 0.647663
\(28\) 2.26379 0.427815
\(29\) 0 0
\(30\) 3.03374 0.553882
\(31\) 2.74400 0.492837 0.246418 0.969164i \(-0.420746\pi\)
0.246418 + 0.969164i \(0.420746\pi\)
\(32\) 5.10093 0.901726
\(33\) 13.4858 2.34757
\(34\) −0.703787 −0.120698
\(35\) −2.86950 −0.485034
\(36\) −7.38891 −1.23148
\(37\) 5.89999 0.969952 0.484976 0.874527i \(-0.338828\pi\)
0.484976 + 0.874527i \(0.338828\pi\)
\(38\) −3.04308 −0.493653
\(39\) 8.44877 1.35289
\(40\) −4.21235 −0.666030
\(41\) −1.90869 −0.298088 −0.149044 0.988831i \(-0.547620\pi\)
−0.149044 + 0.988831i \(0.547620\pi\)
\(42\) −1.79240 −0.276573
\(43\) 11.0143 1.67966 0.839830 0.542850i \(-0.182655\pi\)
0.839830 + 0.542850i \(0.182655\pi\)
\(44\) −8.70792 −1.31277
\(45\) 9.36593 1.39619
\(46\) 0.442405 0.0652290
\(47\) −2.87661 −0.419597 −0.209799 0.977745i \(-0.567281\pi\)
−0.209799 + 0.977745i \(0.567281\pi\)
\(48\) 6.73147 0.971604
\(49\) −5.30464 −0.757805
\(50\) −0.0732129 −0.0103539
\(51\) −3.70654 −0.519019
\(52\) −5.45547 −0.756538
\(53\) −5.80302 −0.797106 −0.398553 0.917145i \(-0.630487\pi\)
−0.398553 + 0.917145i \(0.630487\pi\)
\(54\) 1.72056 0.234138
\(55\) 11.0379 1.48835
\(56\) 2.48874 0.332572
\(57\) −16.0266 −2.12277
\(58\) 0 0
\(59\) −4.35304 −0.566717 −0.283359 0.959014i \(-0.591449\pi\)
−0.283359 + 0.959014i \(0.591449\pi\)
\(60\) −10.3168 −1.33189
\(61\) −5.43545 −0.695939 −0.347969 0.937506i \(-0.613129\pi\)
−0.347969 + 0.937506i \(0.613129\pi\)
\(62\) 1.40288 0.178166
\(63\) −5.53359 −0.697167
\(64\) −2.39218 −0.299022
\(65\) 6.91518 0.857722
\(66\) 6.89467 0.848676
\(67\) −2.36278 −0.288660 −0.144330 0.989530i \(-0.546103\pi\)
−0.144330 + 0.989530i \(0.546103\pi\)
\(68\) 2.39336 0.290237
\(69\) 2.32995 0.280493
\(70\) −1.46705 −0.175346
\(71\) −15.5897 −1.85016 −0.925081 0.379770i \(-0.876003\pi\)
−0.925081 + 0.379770i \(0.876003\pi\)
\(72\) −8.12316 −0.957324
\(73\) 3.39645 0.397525 0.198762 0.980048i \(-0.436308\pi\)
0.198762 + 0.980048i \(0.436308\pi\)
\(74\) 3.01640 0.350650
\(75\) −0.385580 −0.0445230
\(76\) 10.3486 1.18706
\(77\) −6.52141 −0.743184
\(78\) 4.31948 0.489085
\(79\) 2.11612 0.238083 0.119041 0.992889i \(-0.462018\pi\)
0.119041 + 0.992889i \(0.462018\pi\)
\(80\) 5.50960 0.615992
\(81\) −3.68820 −0.409800
\(82\) −0.975830 −0.107762
\(83\) 6.35906 0.697997 0.348999 0.937123i \(-0.386522\pi\)
0.348999 + 0.937123i \(0.386522\pi\)
\(84\) 6.09538 0.665060
\(85\) −3.03374 −0.329055
\(86\) 5.63110 0.607217
\(87\) 0 0
\(88\) −9.57325 −1.02051
\(89\) 11.9328 1.26488 0.632438 0.774611i \(-0.282054\pi\)
0.632438 + 0.774611i \(0.282054\pi\)
\(90\) 4.78838 0.504740
\(91\) −4.08563 −0.428291
\(92\) −1.50448 −0.156853
\(93\) 7.38838 0.766139
\(94\) −1.47068 −0.151690
\(95\) −13.1175 −1.34583
\(96\) 13.7346 1.40178
\(97\) −11.4236 −1.15989 −0.579944 0.814657i \(-0.696925\pi\)
−0.579944 + 0.814657i \(0.696925\pi\)
\(98\) −2.71203 −0.273956
\(99\) 21.2856 2.13929
\(100\) 0.248974 0.0248974
\(101\) −0.974512 −0.0969676 −0.0484838 0.998824i \(-0.515439\pi\)
−0.0484838 + 0.998824i \(0.515439\pi\)
\(102\) −1.89499 −0.187632
\(103\) −7.77717 −0.766308 −0.383154 0.923685i \(-0.625162\pi\)
−0.383154 + 0.923685i \(0.625162\pi\)
\(104\) −5.99760 −0.588113
\(105\) −7.72630 −0.754009
\(106\) −2.96682 −0.288164
\(107\) −5.44933 −0.526806 −0.263403 0.964686i \(-0.584845\pi\)
−0.263403 + 0.964686i \(0.584845\pi\)
\(108\) −5.85107 −0.563020
\(109\) −7.89151 −0.755870 −0.377935 0.925832i \(-0.623366\pi\)
−0.377935 + 0.925832i \(0.623366\pi\)
\(110\) 5.64317 0.538056
\(111\) 15.8861 1.50784
\(112\) −3.25519 −0.307586
\(113\) −17.3009 −1.62753 −0.813767 0.581191i \(-0.802587\pi\)
−0.813767 + 0.581191i \(0.802587\pi\)
\(114\) −8.19368 −0.767408
\(115\) 1.90703 0.177831
\(116\) 0 0
\(117\) 13.3353 1.23285
\(118\) −2.22551 −0.204875
\(119\) 1.79240 0.164309
\(120\) −11.3420 −1.03538
\(121\) 14.0854 1.28049
\(122\) −2.77891 −0.251590
\(123\) −5.13927 −0.463392
\(124\) −4.77076 −0.428427
\(125\) −11.3347 −1.01380
\(126\) −2.82908 −0.252034
\(127\) 5.51617 0.489481 0.244741 0.969589i \(-0.421297\pi\)
0.244741 + 0.969589i \(0.421297\pi\)
\(128\) −11.4249 −1.00983
\(129\) 29.6565 2.61111
\(130\) 3.53542 0.310077
\(131\) −0.0282924 −0.00247192 −0.00123596 0.999999i \(-0.500393\pi\)
−0.00123596 + 0.999999i \(0.500393\pi\)
\(132\) −23.4466 −2.04076
\(133\) 7.75009 0.672018
\(134\) −1.20798 −0.104354
\(135\) 7.41662 0.638321
\(136\) 2.63119 0.225623
\(137\) 6.15467 0.525829 0.262914 0.964819i \(-0.415316\pi\)
0.262914 + 0.964819i \(0.415316\pi\)
\(138\) 1.19120 0.101402
\(139\) 12.4082 1.05245 0.526223 0.850347i \(-0.323608\pi\)
0.526223 + 0.850347i \(0.323608\pi\)
\(140\) 4.98896 0.421644
\(141\) −7.74545 −0.652285
\(142\) −7.97034 −0.668856
\(143\) 15.7159 1.31423
\(144\) 10.6248 0.885400
\(145\) 0 0
\(146\) 1.73646 0.143710
\(147\) −14.2830 −1.17805
\(148\) −10.2578 −0.843188
\(149\) −20.8077 −1.70464 −0.852318 0.523024i \(-0.824804\pi\)
−0.852318 + 0.523024i \(0.824804\pi\)
\(150\) −0.197130 −0.0160956
\(151\) 20.0283 1.62988 0.814941 0.579544i \(-0.196769\pi\)
0.814941 + 0.579544i \(0.196769\pi\)
\(152\) 11.3769 0.922790
\(153\) −5.85031 −0.472970
\(154\) −3.33411 −0.268670
\(155\) 6.04726 0.485728
\(156\) −14.6892 −1.17608
\(157\) −11.7893 −0.940890 −0.470445 0.882429i \(-0.655907\pi\)
−0.470445 + 0.882429i \(0.655907\pi\)
\(158\) 1.08188 0.0860698
\(159\) −15.6250 −1.23914
\(160\) 11.2415 0.888719
\(161\) −1.12671 −0.0887974
\(162\) −1.88561 −0.148148
\(163\) −2.50662 −0.196333 −0.0981667 0.995170i \(-0.531298\pi\)
−0.0981667 + 0.995170i \(0.531298\pi\)
\(164\) 3.31849 0.259130
\(165\) 29.7201 2.31371
\(166\) 3.25110 0.252334
\(167\) −2.67090 −0.206681 −0.103340 0.994646i \(-0.532953\pi\)
−0.103340 + 0.994646i \(0.532953\pi\)
\(168\) 6.70109 0.517000
\(169\) −3.15408 −0.242621
\(170\) −1.55102 −0.118957
\(171\) −25.2960 −1.93443
\(172\) −19.1496 −1.46014
\(173\) 23.5982 1.79414 0.897071 0.441887i \(-0.145691\pi\)
0.897071 + 0.441887i \(0.145691\pi\)
\(174\) 0 0
\(175\) 0.186458 0.0140949
\(176\) 12.5215 0.943841
\(177\) −11.7208 −0.880990
\(178\) 6.10072 0.457268
\(179\) −20.9584 −1.56651 −0.783253 0.621704i \(-0.786441\pi\)
−0.783253 + 0.621704i \(0.786441\pi\)
\(180\) −16.2838 −1.21372
\(181\) 9.09389 0.675944 0.337972 0.941156i \(-0.390259\pi\)
0.337972 + 0.941156i \(0.390259\pi\)
\(182\) −2.08880 −0.154832
\(183\) −14.6353 −1.08187
\(184\) −1.65398 −0.121933
\(185\) 13.0025 0.955961
\(186\) 3.77735 0.276969
\(187\) −6.89467 −0.504188
\(188\) 5.00133 0.364760
\(189\) −4.38190 −0.318736
\(190\) −6.70639 −0.486533
\(191\) 19.2700 1.39433 0.697163 0.716912i \(-0.254445\pi\)
0.697163 + 0.716912i \(0.254445\pi\)
\(192\) −6.44107 −0.464844
\(193\) 5.31806 0.382802 0.191401 0.981512i \(-0.438697\pi\)
0.191401 + 0.981512i \(0.438697\pi\)
\(194\) −5.84036 −0.419313
\(195\) 18.6195 1.33337
\(196\) 9.22274 0.658767
\(197\) −9.97263 −0.710521 −0.355260 0.934767i \(-0.615608\pi\)
−0.355260 + 0.934767i \(0.615608\pi\)
\(198\) 10.8824 0.773378
\(199\) −22.1902 −1.57302 −0.786510 0.617578i \(-0.788114\pi\)
−0.786510 + 0.617578i \(0.788114\pi\)
\(200\) 0.273715 0.0193546
\(201\) −6.36192 −0.448736
\(202\) −0.498225 −0.0350550
\(203\) 0 0
\(204\) 6.44425 0.451188
\(205\) −4.20641 −0.293788
\(206\) −3.97612 −0.277030
\(207\) 3.67754 0.255607
\(208\) 7.84464 0.543928
\(209\) −29.8117 −2.06212
\(210\) −3.95011 −0.272584
\(211\) 7.31033 0.503264 0.251632 0.967823i \(-0.419033\pi\)
0.251632 + 0.967823i \(0.419033\pi\)
\(212\) 10.0892 0.692931
\(213\) −41.9763 −2.87617
\(214\) −2.78600 −0.190447
\(215\) 24.2734 1.65543
\(216\) −6.43251 −0.437677
\(217\) −3.57285 −0.242541
\(218\) −4.03458 −0.273256
\(219\) 9.14515 0.617972
\(220\) −19.1906 −1.29383
\(221\) −4.31948 −0.290560
\(222\) 8.12184 0.545102
\(223\) 5.50016 0.368318 0.184159 0.982896i \(-0.441044\pi\)
0.184159 + 0.982896i \(0.441044\pi\)
\(224\) −6.64172 −0.443769
\(225\) −0.608591 −0.0405727
\(226\) −8.84519 −0.588373
\(227\) 15.7510 1.04543 0.522716 0.852507i \(-0.324919\pi\)
0.522716 + 0.852507i \(0.324919\pi\)
\(228\) 27.8641 1.84535
\(229\) 14.8322 0.980140 0.490070 0.871683i \(-0.336971\pi\)
0.490070 + 0.871683i \(0.336971\pi\)
\(230\) 0.974978 0.0642881
\(231\) −17.5593 −1.15532
\(232\) 0 0
\(233\) −15.8867 −1.04078 −0.520388 0.853930i \(-0.674213\pi\)
−0.520388 + 0.853930i \(0.674213\pi\)
\(234\) 6.81777 0.445691
\(235\) −6.33952 −0.413545
\(236\) 7.56827 0.492652
\(237\) 5.69779 0.370111
\(238\) 0.916373 0.0593997
\(239\) 9.39994 0.608032 0.304016 0.952667i \(-0.401672\pi\)
0.304016 + 0.952667i \(0.401672\pi\)
\(240\) 14.8349 0.957590
\(241\) −10.4403 −0.672518 −0.336259 0.941769i \(-0.609162\pi\)
−0.336259 + 0.941769i \(0.609162\pi\)
\(242\) 7.20124 0.462913
\(243\) −20.0268 −1.28472
\(244\) 9.45018 0.604986
\(245\) −11.6904 −0.746875
\(246\) −2.62748 −0.167522
\(247\) −18.6769 −1.18838
\(248\) −5.24485 −0.333048
\(249\) 17.1221 1.08507
\(250\) −5.79491 −0.366502
\(251\) 14.7822 0.933042 0.466521 0.884510i \(-0.345507\pi\)
0.466521 + 0.884510i \(0.345507\pi\)
\(252\) 9.62080 0.606054
\(253\) 4.33403 0.272478
\(254\) 2.82017 0.176953
\(255\) −8.16852 −0.511533
\(256\) −1.05668 −0.0660424
\(257\) 1.73053 0.107948 0.0539739 0.998542i \(-0.482811\pi\)
0.0539739 + 0.998542i \(0.482811\pi\)
\(258\) 15.1621 0.943949
\(259\) −7.68214 −0.477345
\(260\) −12.0228 −0.745625
\(261\) 0 0
\(262\) −0.0144647 −0.000893630 0
\(263\) 13.5311 0.834362 0.417181 0.908824i \(-0.363018\pi\)
0.417181 + 0.908824i \(0.363018\pi\)
\(264\) −25.7765 −1.58644
\(265\) −12.7888 −0.785608
\(266\) 3.96228 0.242943
\(267\) 32.1298 1.96631
\(268\) 4.10797 0.250934
\(269\) 29.8893 1.82239 0.911193 0.411980i \(-0.135163\pi\)
0.911193 + 0.411980i \(0.135163\pi\)
\(270\) 3.79179 0.230761
\(271\) 9.36397 0.568821 0.284410 0.958703i \(-0.408202\pi\)
0.284410 + 0.958703i \(0.408202\pi\)
\(272\) −3.44150 −0.208672
\(273\) −11.0008 −0.665799
\(274\) 3.14661 0.190093
\(275\) −0.717232 −0.0432507
\(276\) −4.05090 −0.243835
\(277\) 22.4222 1.34722 0.673610 0.739087i \(-0.264743\pi\)
0.673610 + 0.739087i \(0.264743\pi\)
\(278\) 6.34374 0.380472
\(279\) 11.6616 0.698164
\(280\) 5.48473 0.327775
\(281\) −8.71205 −0.519717 −0.259859 0.965647i \(-0.583676\pi\)
−0.259859 + 0.965647i \(0.583676\pi\)
\(282\) −3.95990 −0.235809
\(283\) −14.4581 −0.859444 −0.429722 0.902961i \(-0.641388\pi\)
−0.429722 + 0.902961i \(0.641388\pi\)
\(284\) 27.1046 1.60836
\(285\) −35.3196 −2.09215
\(286\) 8.03483 0.475110
\(287\) 2.48523 0.146699
\(288\) 21.6783 1.27741
\(289\) −15.1050 −0.888530
\(290\) 0 0
\(291\) −30.7586 −1.80310
\(292\) −5.90513 −0.345572
\(293\) 32.7560 1.91363 0.956813 0.290706i \(-0.0938900\pi\)
0.956813 + 0.290706i \(0.0938900\pi\)
\(294\) −7.30229 −0.425878
\(295\) −9.59329 −0.558543
\(296\) −11.2772 −0.655472
\(297\) 16.8555 0.978055
\(298\) −10.6381 −0.616247
\(299\) 2.71525 0.157027
\(300\) 0.670376 0.0387042
\(301\) −14.3412 −0.826615
\(302\) 10.2396 0.589222
\(303\) −2.62393 −0.150741
\(304\) −14.8806 −0.853461
\(305\) −11.9787 −0.685900
\(306\) −2.99101 −0.170984
\(307\) −28.4921 −1.62613 −0.813065 0.582173i \(-0.802202\pi\)
−0.813065 + 0.582173i \(0.802202\pi\)
\(308\) 11.3382 0.646056
\(309\) −20.9405 −1.19126
\(310\) 3.09170 0.175597
\(311\) −21.8076 −1.23660 −0.618298 0.785944i \(-0.712177\pi\)
−0.618298 + 0.785944i \(0.712177\pi\)
\(312\) −16.1489 −0.914251
\(313\) −23.9276 −1.35247 −0.676234 0.736687i \(-0.736389\pi\)
−0.676234 + 0.736687i \(0.736389\pi\)
\(314\) −6.02735 −0.340143
\(315\) −12.1950 −0.687111
\(316\) −3.67913 −0.206967
\(317\) 9.35254 0.525291 0.262646 0.964892i \(-0.415405\pi\)
0.262646 + 0.964892i \(0.415405\pi\)
\(318\) −7.98835 −0.447964
\(319\) 0 0
\(320\) −5.27191 −0.294709
\(321\) −14.6726 −0.818946
\(322\) −0.576038 −0.0321013
\(323\) 8.19368 0.455908
\(324\) 6.41236 0.356242
\(325\) −0.449343 −0.0249250
\(326\) −1.28152 −0.0709770
\(327\) −21.2484 −1.17504
\(328\) 3.64825 0.201441
\(329\) 3.74552 0.206497
\(330\) 15.1946 0.836434
\(331\) −10.2474 −0.563247 −0.281623 0.959525i \(-0.590873\pi\)
−0.281623 + 0.959525i \(0.590873\pi\)
\(332\) −11.0560 −0.606775
\(333\) 25.0742 1.37406
\(334\) −1.36551 −0.0747176
\(335\) −5.20713 −0.284496
\(336\) −8.76478 −0.478158
\(337\) −15.9436 −0.868502 −0.434251 0.900792i \(-0.642987\pi\)
−0.434251 + 0.900792i \(0.642987\pi\)
\(338\) −1.61254 −0.0877105
\(339\) −46.5838 −2.53008
\(340\) 5.27451 0.286051
\(341\) 13.7434 0.744247
\(342\) −12.9327 −0.699321
\(343\) 16.0214 0.865074
\(344\) −21.0525 −1.13508
\(345\) 5.13478 0.276447
\(346\) 12.0647 0.648604
\(347\) 36.7925 1.97513 0.987563 0.157224i \(-0.0502544\pi\)
0.987563 + 0.157224i \(0.0502544\pi\)
\(348\) 0 0
\(349\) 32.4894 1.73912 0.869558 0.493831i \(-0.164404\pi\)
0.869558 + 0.493831i \(0.164404\pi\)
\(350\) 0.0953276 0.00509547
\(351\) 10.5599 0.563645
\(352\) 25.5482 1.36172
\(353\) −12.0171 −0.639604 −0.319802 0.947484i \(-0.603616\pi\)
−0.319802 + 0.947484i \(0.603616\pi\)
\(354\) −5.99233 −0.318489
\(355\) −34.3569 −1.82347
\(356\) −20.7466 −1.09957
\(357\) 4.82614 0.255426
\(358\) −10.7151 −0.566311
\(359\) 3.90861 0.206288 0.103144 0.994666i \(-0.467110\pi\)
0.103144 + 0.994666i \(0.467110\pi\)
\(360\) −17.9019 −0.943515
\(361\) 16.4284 0.864652
\(362\) 4.64930 0.244362
\(363\) 37.9258 1.99059
\(364\) 7.10336 0.372317
\(365\) 7.48515 0.391791
\(366\) −7.48237 −0.391110
\(367\) −12.7874 −0.667495 −0.333747 0.942663i \(-0.608313\pi\)
−0.333747 + 0.942663i \(0.608313\pi\)
\(368\) 2.16335 0.112772
\(369\) −8.11170 −0.422278
\(370\) 6.64759 0.345592
\(371\) 7.55588 0.392282
\(372\) −12.8456 −0.666011
\(373\) 24.9865 1.29375 0.646876 0.762596i \(-0.276075\pi\)
0.646876 + 0.762596i \(0.276075\pi\)
\(374\) −3.52494 −0.182270
\(375\) −30.5192 −1.57601
\(376\) 5.49833 0.283555
\(377\) 0 0
\(378\) −2.24027 −0.115227
\(379\) −13.0352 −0.669574 −0.334787 0.942294i \(-0.608664\pi\)
−0.334787 + 0.942294i \(0.608664\pi\)
\(380\) 22.8063 1.16994
\(381\) 14.8526 0.760923
\(382\) 9.85188 0.504066
\(383\) 24.0350 1.22813 0.614066 0.789254i \(-0.289533\pi\)
0.614066 + 0.789254i \(0.289533\pi\)
\(384\) −30.7621 −1.56982
\(385\) −14.3720 −0.732464
\(386\) 2.71889 0.138388
\(387\) 46.8092 2.37945
\(388\) 19.8612 1.00830
\(389\) 17.6717 0.895991 0.447995 0.894036i \(-0.352138\pi\)
0.447995 + 0.894036i \(0.352138\pi\)
\(390\) 9.51933 0.482030
\(391\) −1.19120 −0.0602416
\(392\) 10.1392 0.512108
\(393\) −0.0761791 −0.00384272
\(394\) −5.09856 −0.256862
\(395\) 4.66355 0.234648
\(396\) −37.0076 −1.85970
\(397\) 30.2526 1.51833 0.759167 0.650896i \(-0.225607\pi\)
0.759167 + 0.650896i \(0.225607\pi\)
\(398\) −11.3448 −0.568666
\(399\) 20.8676 1.04469
\(400\) −0.358009 −0.0179005
\(401\) −12.3573 −0.617092 −0.308546 0.951209i \(-0.599842\pi\)
−0.308546 + 0.951209i \(0.599842\pi\)
\(402\) −3.25257 −0.162223
\(403\) 8.61018 0.428903
\(404\) 1.69430 0.0842948
\(405\) −8.12810 −0.403889
\(406\) 0 0
\(407\) 29.5503 1.46475
\(408\) 7.08464 0.350742
\(409\) 6.10698 0.301971 0.150985 0.988536i \(-0.451755\pi\)
0.150985 + 0.988536i \(0.451755\pi\)
\(410\) −2.15055 −0.106208
\(411\) 16.5718 0.817427
\(412\) 13.5215 0.666158
\(413\) 5.66792 0.278900
\(414\) 1.88016 0.0924050
\(415\) 14.0142 0.687929
\(416\) 16.0058 0.784749
\(417\) 33.4097 1.63608
\(418\) −15.2414 −0.745480
\(419\) 11.6075 0.567062 0.283531 0.958963i \(-0.408494\pi\)
0.283531 + 0.958963i \(0.408494\pi\)
\(420\) 13.4331 0.655467
\(421\) 20.2867 0.988715 0.494357 0.869259i \(-0.335403\pi\)
0.494357 + 0.869259i \(0.335403\pi\)
\(422\) 3.73745 0.181936
\(423\) −12.2252 −0.594412
\(424\) 11.0918 0.538667
\(425\) 0.197130 0.00956221
\(426\) −21.4606 −1.03977
\(427\) 7.07729 0.342494
\(428\) 9.47429 0.457957
\(429\) 42.3159 2.04303
\(430\) 12.4099 0.598459
\(431\) 16.9837 0.818077 0.409038 0.912517i \(-0.365864\pi\)
0.409038 + 0.912517i \(0.365864\pi\)
\(432\) 8.41349 0.404794
\(433\) 15.9353 0.765800 0.382900 0.923790i \(-0.374925\pi\)
0.382900 + 0.923790i \(0.374925\pi\)
\(434\) −1.82664 −0.0876815
\(435\) 0 0
\(436\) 13.7203 0.657084
\(437\) −5.15060 −0.246386
\(438\) 4.67551 0.223404
\(439\) −5.40352 −0.257896 −0.128948 0.991651i \(-0.541160\pi\)
−0.128948 + 0.991651i \(0.541160\pi\)
\(440\) −21.0977 −1.00579
\(441\) −22.5440 −1.07353
\(442\) −2.20836 −0.105041
\(443\) 19.0514 0.905159 0.452579 0.891724i \(-0.350504\pi\)
0.452579 + 0.891724i \(0.350504\pi\)
\(444\) −27.6198 −1.31078
\(445\) 26.2977 1.24663
\(446\) 2.81199 0.133151
\(447\) −56.0260 −2.64994
\(448\) 3.11476 0.147158
\(449\) 17.6874 0.834721 0.417360 0.908741i \(-0.362955\pi\)
0.417360 + 0.908741i \(0.362955\pi\)
\(450\) −0.311145 −0.0146675
\(451\) −9.55975 −0.450151
\(452\) 30.0797 1.41483
\(453\) 53.9274 2.53373
\(454\) 8.05279 0.377936
\(455\) −9.00398 −0.422113
\(456\) 30.6330 1.43452
\(457\) −15.0980 −0.706255 −0.353127 0.935575i \(-0.614882\pi\)
−0.353127 + 0.935575i \(0.614882\pi\)
\(458\) 7.58305 0.354333
\(459\) −4.63270 −0.216236
\(460\) −3.31559 −0.154590
\(461\) −22.3018 −1.03870 −0.519349 0.854562i \(-0.673825\pi\)
−0.519349 + 0.854562i \(0.673825\pi\)
\(462\) −8.97728 −0.417661
\(463\) −26.7391 −1.24267 −0.621335 0.783545i \(-0.713409\pi\)
−0.621335 + 0.783545i \(0.713409\pi\)
\(464\) 0 0
\(465\) 16.2826 0.755088
\(466\) −8.12219 −0.376253
\(467\) 11.5613 0.534991 0.267496 0.963559i \(-0.413804\pi\)
0.267496 + 0.963559i \(0.413804\pi\)
\(468\) −23.1851 −1.07173
\(469\) 3.07648 0.142059
\(470\) −3.24112 −0.149501
\(471\) −31.7434 −1.46266
\(472\) 8.32035 0.382975
\(473\) 55.1653 2.53650
\(474\) 2.91303 0.133800
\(475\) 0.852364 0.0391091
\(476\) −3.11630 −0.142835
\(477\) −24.6621 −1.12920
\(478\) 4.80577 0.219811
\(479\) 24.3280 1.11158 0.555788 0.831324i \(-0.312417\pi\)
0.555788 + 0.831324i \(0.312417\pi\)
\(480\) 30.2684 1.38156
\(481\) 18.5131 0.844125
\(482\) −5.33766 −0.243124
\(483\) −3.03374 −0.138040
\(484\) −24.4891 −1.11314
\(485\) −25.1754 −1.14316
\(486\) −10.2388 −0.464441
\(487\) 1.28689 0.0583144 0.0291572 0.999575i \(-0.490718\pi\)
0.0291572 + 0.999575i \(0.490718\pi\)
\(488\) 10.3893 0.470300
\(489\) −6.74922 −0.305210
\(490\) −5.97680 −0.270004
\(491\) 32.6584 1.47385 0.736927 0.675972i \(-0.236276\pi\)
0.736927 + 0.675972i \(0.236276\pi\)
\(492\) 8.93522 0.402831
\(493\) 0 0
\(494\) −9.54865 −0.429614
\(495\) 46.9096 2.10843
\(496\) 6.86007 0.308026
\(497\) 20.2988 0.910525
\(498\) 8.75378 0.392266
\(499\) −10.4832 −0.469291 −0.234646 0.972081i \(-0.575393\pi\)
−0.234646 + 0.972081i \(0.575393\pi\)
\(500\) 19.7066 0.881308
\(501\) −7.19156 −0.321295
\(502\) 7.55746 0.337306
\(503\) −3.79036 −0.169004 −0.0845019 0.996423i \(-0.526930\pi\)
−0.0845019 + 0.996423i \(0.526930\pi\)
\(504\) 10.5768 0.471130
\(505\) −2.14764 −0.0955689
\(506\) 2.21580 0.0985043
\(507\) −8.49253 −0.377167
\(508\) −9.59052 −0.425510
\(509\) −8.01829 −0.355404 −0.177702 0.984084i \(-0.556866\pi\)
−0.177702 + 0.984084i \(0.556866\pi\)
\(510\) −4.17620 −0.184925
\(511\) −4.42239 −0.195635
\(512\) 22.3095 0.985951
\(513\) −20.0312 −0.884399
\(514\) 0.884745 0.0390244
\(515\) −17.1394 −0.755254
\(516\) −51.5614 −2.26986
\(517\) −14.4076 −0.633646
\(518\) −3.92754 −0.172566
\(519\) 63.5397 2.78908
\(520\) −13.2176 −0.579630
\(521\) −6.39024 −0.279962 −0.139981 0.990154i \(-0.544704\pi\)
−0.139981 + 0.990154i \(0.544704\pi\)
\(522\) 0 0
\(523\) −16.3261 −0.713891 −0.356946 0.934125i \(-0.616182\pi\)
−0.356946 + 0.934125i \(0.616182\pi\)
\(524\) 0.0491897 0.00214886
\(525\) 0.502049 0.0219112
\(526\) 6.91783 0.301632
\(527\) −3.77735 −0.164544
\(528\) 33.7148 1.46725
\(529\) −22.2512 −0.967444
\(530\) −6.53833 −0.284007
\(531\) −18.4999 −0.802825
\(532\) −13.4744 −0.584191
\(533\) −5.98914 −0.259418
\(534\) 16.4265 0.710846
\(535\) −12.0093 −0.519207
\(536\) 4.51619 0.195070
\(537\) −56.4318 −2.43521
\(538\) 15.2811 0.658815
\(539\) −26.5684 −1.14438
\(540\) −12.8947 −0.554898
\(541\) −21.9611 −0.944182 −0.472091 0.881550i \(-0.656501\pi\)
−0.472091 + 0.881550i \(0.656501\pi\)
\(542\) 4.78738 0.205636
\(543\) 24.4858 1.05079
\(544\) −7.02187 −0.301060
\(545\) −17.3914 −0.744967
\(546\) −5.62423 −0.240695
\(547\) 4.10519 0.175525 0.0877626 0.996141i \(-0.472028\pi\)
0.0877626 + 0.996141i \(0.472028\pi\)
\(548\) −10.7006 −0.457108
\(549\) −23.1000 −0.985884
\(550\) −0.366689 −0.0156357
\(551\) 0 0
\(552\) −4.45344 −0.189551
\(553\) −2.75532 −0.117168
\(554\) 11.4635 0.487037
\(555\) 35.0099 1.48609
\(556\) −21.5730 −0.914900
\(557\) −24.8912 −1.05467 −0.527337 0.849656i \(-0.676810\pi\)
−0.527337 + 0.849656i \(0.676810\pi\)
\(558\) 5.96208 0.252395
\(559\) 34.5608 1.46177
\(560\) −7.17383 −0.303150
\(561\) −18.5643 −0.783786
\(562\) −4.45408 −0.187884
\(563\) 22.6338 0.953902 0.476951 0.878930i \(-0.341742\pi\)
0.476951 + 0.878930i \(0.341742\pi\)
\(564\) 13.4664 0.567037
\(565\) −38.1280 −1.60406
\(566\) −7.39178 −0.310700
\(567\) 4.80226 0.201676
\(568\) 29.7981 1.25030
\(569\) 10.3978 0.435897 0.217948 0.975960i \(-0.430064\pi\)
0.217948 + 0.975960i \(0.430064\pi\)
\(570\) −18.0573 −0.756339
\(571\) 35.6768 1.49303 0.746514 0.665370i \(-0.231726\pi\)
0.746514 + 0.665370i \(0.231726\pi\)
\(572\) −27.3239 −1.14247
\(573\) 51.8856 2.16755
\(574\) 1.27059 0.0530334
\(575\) −0.123917 −0.00516770
\(576\) −10.1664 −0.423602
\(577\) 1.60879 0.0669750 0.0334875 0.999439i \(-0.489339\pi\)
0.0334875 + 0.999439i \(0.489339\pi\)
\(578\) −7.72252 −0.321215
\(579\) 14.3192 0.595085
\(580\) 0 0
\(581\) −8.27988 −0.343507
\(582\) −15.7255 −0.651843
\(583\) −29.0646 −1.20373
\(584\) −6.49194 −0.268639
\(585\) 29.3886 1.21507
\(586\) 16.7467 0.691799
\(587\) 24.7543 1.02172 0.510859 0.859664i \(-0.329327\pi\)
0.510859 + 0.859664i \(0.329327\pi\)
\(588\) 24.8328 1.02409
\(589\) −16.3328 −0.672980
\(590\) −4.90462 −0.201920
\(591\) −26.8519 −1.10454
\(592\) 14.7501 0.606227
\(593\) −10.2075 −0.419171 −0.209586 0.977790i \(-0.567211\pi\)
−0.209586 + 0.977790i \(0.567211\pi\)
\(594\) 8.61747 0.353579
\(595\) 3.95011 0.161939
\(596\) 36.1767 1.48185
\(597\) −59.7483 −2.44534
\(598\) 1.38819 0.0567672
\(599\) 18.7742 0.767093 0.383546 0.923522i \(-0.374703\pi\)
0.383546 + 0.923522i \(0.374703\pi\)
\(600\) 0.736994 0.0300876
\(601\) −40.8108 −1.66471 −0.832355 0.554243i \(-0.813008\pi\)
−0.832355 + 0.554243i \(0.813008\pi\)
\(602\) −7.33204 −0.298831
\(603\) −10.0415 −0.408922
\(604\) −34.8216 −1.41687
\(605\) 31.0416 1.26202
\(606\) −1.34150 −0.0544947
\(607\) 11.7038 0.475043 0.237522 0.971382i \(-0.423665\pi\)
0.237522 + 0.971382i \(0.423665\pi\)
\(608\) −30.3616 −1.23133
\(609\) 0 0
\(610\) −6.12419 −0.247961
\(611\) −9.02630 −0.365165
\(612\) 10.1715 0.411157
\(613\) 13.8696 0.560187 0.280094 0.959973i \(-0.409634\pi\)
0.280094 + 0.959973i \(0.409634\pi\)
\(614\) −14.5667 −0.587866
\(615\) −11.3260 −0.456708
\(616\) 12.4650 0.502227
\(617\) −25.2302 −1.01573 −0.507866 0.861436i \(-0.669565\pi\)
−0.507866 + 0.861436i \(0.669565\pi\)
\(618\) −10.7059 −0.430656
\(619\) −28.9034 −1.16173 −0.580863 0.814001i \(-0.697285\pi\)
−0.580863 + 0.814001i \(0.697285\pi\)
\(620\) −10.5139 −0.422248
\(621\) 2.91215 0.116860
\(622\) −11.1493 −0.447045
\(623\) −15.5373 −0.622487
\(624\) 21.1222 0.845563
\(625\) −24.2635 −0.970539
\(626\) −12.2331 −0.488934
\(627\) −80.2696 −3.20566
\(628\) 20.4971 0.817924
\(629\) −8.12184 −0.323839
\(630\) −6.23477 −0.248399
\(631\) 15.6970 0.624889 0.312445 0.949936i \(-0.398852\pi\)
0.312445 + 0.949936i \(0.398852\pi\)
\(632\) −4.04474 −0.160891
\(633\) 19.6835 0.782349
\(634\) 4.78154 0.189899
\(635\) 12.1566 0.482421
\(636\) 27.1658 1.07720
\(637\) −16.6450 −0.659499
\(638\) 0 0
\(639\) −66.2544 −2.62098
\(640\) −25.1783 −0.995260
\(641\) −32.5456 −1.28547 −0.642737 0.766087i \(-0.722201\pi\)
−0.642737 + 0.766087i \(0.722201\pi\)
\(642\) −7.50146 −0.296059
\(643\) 24.5655 0.968768 0.484384 0.874856i \(-0.339044\pi\)
0.484384 + 0.874856i \(0.339044\pi\)
\(644\) 1.95892 0.0771923
\(645\) 65.3575 2.57345
\(646\) 4.18906 0.164816
\(647\) 13.0218 0.511939 0.255970 0.966685i \(-0.417605\pi\)
0.255970 + 0.966685i \(0.417605\pi\)
\(648\) 7.04958 0.276934
\(649\) −21.8023 −0.855816
\(650\) −0.229729 −0.00901071
\(651\) −9.62012 −0.377042
\(652\) 4.35805 0.170674
\(653\) −29.9591 −1.17239 −0.586195 0.810170i \(-0.699375\pi\)
−0.586195 + 0.810170i \(0.699375\pi\)
\(654\) −10.8633 −0.424790
\(655\) −0.0623513 −0.00243627
\(656\) −4.77178 −0.186307
\(657\) 14.4345 0.563143
\(658\) 1.91492 0.0746514
\(659\) 14.2014 0.553206 0.276603 0.960984i \(-0.410791\pi\)
0.276603 + 0.960984i \(0.410791\pi\)
\(660\) −51.6719 −2.01133
\(661\) 40.3814 1.57066 0.785328 0.619080i \(-0.212494\pi\)
0.785328 + 0.619080i \(0.212494\pi\)
\(662\) −5.23903 −0.203621
\(663\) −11.6305 −0.451689
\(664\) −12.1546 −0.471691
\(665\) 17.0798 0.662325
\(666\) 12.8193 0.496739
\(667\) 0 0
\(668\) 4.64368 0.179669
\(669\) 14.8095 0.572568
\(670\) −2.66217 −0.102849
\(671\) −27.2236 −1.05096
\(672\) −17.8832 −0.689860
\(673\) −40.7941 −1.57250 −0.786249 0.617910i \(-0.787980\pi\)
−0.786249 + 0.617910i \(0.787980\pi\)
\(674\) −8.15124 −0.313974
\(675\) −0.481926 −0.0185493
\(676\) 5.48373 0.210913
\(677\) 20.5887 0.791288 0.395644 0.918404i \(-0.370521\pi\)
0.395644 + 0.918404i \(0.370521\pi\)
\(678\) −23.8162 −0.914656
\(679\) 14.8742 0.570818
\(680\) 5.79866 0.222368
\(681\) 42.4105 1.62518
\(682\) 7.02639 0.269054
\(683\) 12.6374 0.483555 0.241778 0.970332i \(-0.422270\pi\)
0.241778 + 0.970332i \(0.422270\pi\)
\(684\) 43.9801 1.68162
\(685\) 13.5637 0.518244
\(686\) 8.19102 0.312735
\(687\) 39.9366 1.52368
\(688\) 27.5360 1.04980
\(689\) −18.2088 −0.693701
\(690\) 2.62519 0.0999391
\(691\) −22.1174 −0.841385 −0.420692 0.907203i \(-0.638213\pi\)
−0.420692 + 0.907203i \(0.638213\pi\)
\(692\) −41.0283 −1.55966
\(693\) −27.7152 −1.05281
\(694\) 18.8104 0.714032
\(695\) 27.3453 1.03726
\(696\) 0 0
\(697\) 2.62748 0.0995229
\(698\) 16.6104 0.628712
\(699\) −42.7760 −1.61794
\(700\) −0.324179 −0.0122528
\(701\) 2.18774 0.0826296 0.0413148 0.999146i \(-0.486845\pi\)
0.0413148 + 0.999146i \(0.486845\pi\)
\(702\) 5.39880 0.203765
\(703\) −35.1178 −1.32449
\(704\) −11.9813 −0.451562
\(705\) −17.0695 −0.642876
\(706\) −6.14380 −0.231225
\(707\) 1.26887 0.0477209
\(708\) 20.3780 0.765852
\(709\) 29.7979 1.11908 0.559541 0.828803i \(-0.310977\pi\)
0.559541 + 0.828803i \(0.310977\pi\)
\(710\) −17.5652 −0.659209
\(711\) 8.99326 0.337274
\(712\) −22.8083 −0.854775
\(713\) 2.37446 0.0889244
\(714\) 2.46739 0.0923397
\(715\) 34.6349 1.29527
\(716\) 36.4387 1.36178
\(717\) 25.3099 0.945215
\(718\) 1.99830 0.0745758
\(719\) 8.13140 0.303250 0.151625 0.988438i \(-0.451549\pi\)
0.151625 + 0.988438i \(0.451549\pi\)
\(720\) 23.4151 0.872629
\(721\) 10.1264 0.377125
\(722\) 8.39910 0.312582
\(723\) −28.1111 −1.04546
\(724\) −15.8108 −0.587604
\(725\) 0 0
\(726\) 19.3898 0.719621
\(727\) 10.2040 0.378447 0.189223 0.981934i \(-0.439403\pi\)
0.189223 + 0.981934i \(0.439403\pi\)
\(728\) 7.80924 0.289430
\(729\) −42.8586 −1.58736
\(730\) 3.82683 0.141637
\(731\) −15.1621 −0.560790
\(732\) 25.4452 0.940480
\(733\) −24.6598 −0.910829 −0.455415 0.890279i \(-0.650509\pi\)
−0.455415 + 0.890279i \(0.650509\pi\)
\(734\) −6.53761 −0.241307
\(735\) −31.4772 −1.16105
\(736\) 4.41399 0.162702
\(737\) −11.8341 −0.435913
\(738\) −4.14715 −0.152659
\(739\) −4.17165 −0.153457 −0.0767283 0.997052i \(-0.524447\pi\)
−0.0767283 + 0.997052i \(0.524447\pi\)
\(740\) −22.6063 −0.831026
\(741\) −50.2886 −1.84740
\(742\) 3.86299 0.141815
\(743\) −2.79854 −0.102668 −0.0513342 0.998682i \(-0.516347\pi\)
−0.0513342 + 0.998682i \(0.516347\pi\)
\(744\) −14.1221 −0.517740
\(745\) −45.8564 −1.68005
\(746\) 12.7745 0.467707
\(747\) 27.0252 0.988800
\(748\) 11.9872 0.438295
\(749\) 7.09535 0.259259
\(750\) −15.6031 −0.569746
\(751\) −14.7008 −0.536441 −0.268220 0.963358i \(-0.586436\pi\)
−0.268220 + 0.963358i \(0.586436\pi\)
\(752\) −7.19161 −0.262251
\(753\) 39.8019 1.45046
\(754\) 0 0
\(755\) 44.1387 1.60637
\(756\) 7.61845 0.277080
\(757\) 22.9360 0.833623 0.416811 0.908993i \(-0.363148\pi\)
0.416811 + 0.908993i \(0.363148\pi\)
\(758\) −6.66432 −0.242059
\(759\) 11.6696 0.423581
\(760\) 25.0726 0.909480
\(761\) −12.6222 −0.457553 −0.228777 0.973479i \(-0.573473\pi\)
−0.228777 + 0.973479i \(0.573473\pi\)
\(762\) 7.59349 0.275083
\(763\) 10.2752 0.371988
\(764\) −33.5031 −1.21210
\(765\) −12.8930 −0.466148
\(766\) 12.2880 0.443985
\(767\) −13.6591 −0.493200
\(768\) −2.84517 −0.102666
\(769\) 3.52741 0.127202 0.0636009 0.997975i \(-0.479742\pi\)
0.0636009 + 0.997975i \(0.479742\pi\)
\(770\) −7.34776 −0.264795
\(771\) 4.65956 0.167810
\(772\) −9.24607 −0.332773
\(773\) −26.2076 −0.942623 −0.471311 0.881967i \(-0.656219\pi\)
−0.471311 + 0.881967i \(0.656219\pi\)
\(774\) 23.9315 0.860199
\(775\) −0.392946 −0.0141150
\(776\) 21.8349 0.783826
\(777\) −20.6846 −0.742057
\(778\) 9.03476 0.323912
\(779\) 11.3609 0.407046
\(780\) −32.3722 −1.15911
\(781\) −78.0817 −2.79398
\(782\) −0.609008 −0.0217781
\(783\) 0 0
\(784\) −13.2617 −0.473634
\(785\) −25.9815 −0.927318
\(786\) −0.0389470 −0.00138919
\(787\) −18.0121 −0.642061 −0.321031 0.947069i \(-0.604029\pi\)
−0.321031 + 0.947069i \(0.604029\pi\)
\(788\) 17.3386 0.617662
\(789\) 36.4332 1.29706
\(790\) 2.38426 0.0848283
\(791\) 22.5269 0.800963
\(792\) −40.6851 −1.44568
\(793\) −17.0555 −0.605658
\(794\) 15.4668 0.548896
\(795\) −34.4345 −1.22127
\(796\) 38.5802 1.36744
\(797\) −34.9738 −1.23884 −0.619419 0.785061i \(-0.712632\pi\)
−0.619419 + 0.785061i \(0.712632\pi\)
\(798\) 10.6687 0.377667
\(799\) 3.95990 0.140091
\(800\) −0.730464 −0.0258258
\(801\) 50.7130 1.79185
\(802\) −6.31772 −0.223086
\(803\) 17.0112 0.600314
\(804\) 11.0610 0.390090
\(805\) −2.48306 −0.0875165
\(806\) 4.40200 0.155054
\(807\) 80.4788 2.83299
\(808\) 1.86267 0.0655286
\(809\) −38.2616 −1.34521 −0.672603 0.740003i \(-0.734824\pi\)
−0.672603 + 0.740003i \(0.734824\pi\)
\(810\) −4.15554 −0.146011
\(811\) 31.7116 1.11354 0.556772 0.830665i \(-0.312040\pi\)
0.556772 + 0.830665i \(0.312040\pi\)
\(812\) 0 0
\(813\) 25.2130 0.884260
\(814\) 15.1077 0.529526
\(815\) −5.52412 −0.193502
\(816\) −9.26645 −0.324390
\(817\) −65.5588 −2.29361
\(818\) 3.12223 0.109166
\(819\) −17.3634 −0.606727
\(820\) 7.31333 0.255393
\(821\) −21.4880 −0.749938 −0.374969 0.927037i \(-0.622347\pi\)
−0.374969 + 0.927037i \(0.622347\pi\)
\(822\) 8.47243 0.295510
\(823\) 8.90285 0.310334 0.155167 0.987888i \(-0.450408\pi\)
0.155167 + 0.987888i \(0.450408\pi\)
\(824\) 14.8652 0.517854
\(825\) −1.93119 −0.0672354
\(826\) 2.89776 0.100826
\(827\) 27.4341 0.953976 0.476988 0.878910i \(-0.341729\pi\)
0.476988 + 0.878910i \(0.341729\pi\)
\(828\) −6.39384 −0.222201
\(829\) 40.4211 1.40388 0.701942 0.712234i \(-0.252317\pi\)
0.701942 + 0.712234i \(0.252317\pi\)
\(830\) 7.16483 0.248695
\(831\) 60.3731 2.09432
\(832\) −7.50622 −0.260231
\(833\) 7.30229 0.253009
\(834\) 17.0809 0.591463
\(835\) −5.88617 −0.203699
\(836\) 51.8311 1.79262
\(837\) 9.23453 0.319192
\(838\) 5.93438 0.205000
\(839\) −8.10537 −0.279829 −0.139914 0.990164i \(-0.544683\pi\)
−0.139914 + 0.990164i \(0.544683\pi\)
\(840\) 14.7680 0.509543
\(841\) 0 0
\(842\) 10.3717 0.357432
\(843\) −23.4577 −0.807926
\(844\) −12.7099 −0.437492
\(845\) −6.95100 −0.239122
\(846\) −6.25022 −0.214887
\(847\) −18.3400 −0.630171
\(848\) −14.5077 −0.498197
\(849\) −38.9292 −1.33605
\(850\) 0.100784 0.00345685
\(851\) 5.10544 0.175012
\(852\) 72.9807 2.50028
\(853\) 12.7043 0.434988 0.217494 0.976062i \(-0.430212\pi\)
0.217494 + 0.976062i \(0.430212\pi\)
\(854\) 3.61830 0.123816
\(855\) −55.7477 −1.90653
\(856\) 10.4158 0.356004
\(857\) −46.2188 −1.57881 −0.789403 0.613876i \(-0.789610\pi\)
−0.789403 + 0.613876i \(0.789610\pi\)
\(858\) 21.6343 0.738581
\(859\) 6.05228 0.206501 0.103251 0.994655i \(-0.467076\pi\)
0.103251 + 0.994655i \(0.467076\pi\)
\(860\) −42.2021 −1.43908
\(861\) 6.69164 0.228050
\(862\) 8.68302 0.295745
\(863\) −13.1316 −0.447004 −0.223502 0.974704i \(-0.571749\pi\)
−0.223502 + 0.974704i \(0.571749\pi\)
\(864\) 17.1665 0.584015
\(865\) 52.0061 1.76826
\(866\) 8.14699 0.276846
\(867\) −40.6711 −1.38126
\(868\) 6.21182 0.210843
\(869\) 10.5987 0.359536
\(870\) 0 0
\(871\) −7.41398 −0.251213
\(872\) 15.0837 0.510800
\(873\) −48.5487 −1.64312
\(874\) −2.63327 −0.0890717
\(875\) 14.7584 0.498926
\(876\) −15.8999 −0.537209
\(877\) 30.7758 1.03923 0.519613 0.854402i \(-0.326076\pi\)
0.519613 + 0.854402i \(0.326076\pi\)
\(878\) −2.76258 −0.0932325
\(879\) 88.1974 2.97483
\(880\) 27.5950 0.930227
\(881\) 29.5206 0.994574 0.497287 0.867586i \(-0.334330\pi\)
0.497287 + 0.867586i \(0.334330\pi\)
\(882\) −11.5258 −0.388093
\(883\) 36.0213 1.21221 0.606107 0.795383i \(-0.292730\pi\)
0.606107 + 0.795383i \(0.292730\pi\)
\(884\) 7.50992 0.252586
\(885\) −25.8305 −0.868282
\(886\) 9.74013 0.327226
\(887\) −14.2942 −0.479952 −0.239976 0.970779i \(-0.577140\pi\)
−0.239976 + 0.970779i \(0.577140\pi\)
\(888\) −30.3644 −1.01896
\(889\) −7.18239 −0.240890
\(890\) 13.4448 0.450672
\(891\) −18.4725 −0.618850
\(892\) −9.56267 −0.320182
\(893\) 17.1221 0.572969
\(894\) −28.6436 −0.957986
\(895\) −46.1884 −1.54391
\(896\) 14.8759 0.496968
\(897\) 7.31097 0.244106
\(898\) 9.04279 0.301762
\(899\) 0 0
\(900\) 1.05811 0.0352702
\(901\) 7.98835 0.266131
\(902\) −4.88748 −0.162735
\(903\) −38.6146 −1.28501
\(904\) 33.0688 1.09985
\(905\) 20.0412 0.666194
\(906\) 27.5707 0.915975
\(907\) −20.1496 −0.669056 −0.334528 0.942386i \(-0.608577\pi\)
−0.334528 + 0.942386i \(0.608577\pi\)
\(908\) −27.3850 −0.908803
\(909\) −4.14155 −0.137367
\(910\) −4.60333 −0.152599
\(911\) −18.4045 −0.609769 −0.304885 0.952389i \(-0.598618\pi\)
−0.304885 + 0.952389i \(0.598618\pi\)
\(912\) −40.0669 −1.32675
\(913\) 31.8495 1.05407
\(914\) −7.71894 −0.255320
\(915\) −32.2534 −1.06627
\(916\) −25.7875 −0.852044
\(917\) 0.0368385 0.00121651
\(918\) −2.36849 −0.0781720
\(919\) 5.31764 0.175413 0.0877063 0.996146i \(-0.472046\pi\)
0.0877063 + 0.996146i \(0.472046\pi\)
\(920\) −3.64507 −0.120174
\(921\) −76.7166 −2.52790
\(922\) −11.4019 −0.375502
\(923\) −48.9178 −1.61015
\(924\) 30.5289 1.00433
\(925\) −0.844891 −0.0277798
\(926\) −13.6705 −0.449240
\(927\) −33.0520 −1.08557
\(928\) 0 0
\(929\) −1.90689 −0.0625630 −0.0312815 0.999511i \(-0.509959\pi\)
−0.0312815 + 0.999511i \(0.509959\pi\)
\(930\) 8.32457 0.272974
\(931\) 31.5741 1.03480
\(932\) 27.6210 0.904755
\(933\) −58.7183 −1.92235
\(934\) 5.91076 0.193406
\(935\) −15.1946 −0.496916
\(936\) −25.4890 −0.833135
\(937\) −3.37308 −0.110194 −0.0550969 0.998481i \(-0.517547\pi\)
−0.0550969 + 0.998481i \(0.517547\pi\)
\(938\) 1.57287 0.0513560
\(939\) −64.4265 −2.10248
\(940\) 11.0220 0.359498
\(941\) −19.8305 −0.646456 −0.323228 0.946321i \(-0.604768\pi\)
−0.323228 + 0.946321i \(0.604768\pi\)
\(942\) −16.2290 −0.528769
\(943\) −1.65165 −0.0537851
\(944\) −10.8827 −0.354202
\(945\) −9.65689 −0.314139
\(946\) 28.2036 0.916977
\(947\) 40.5147 1.31655 0.658275 0.752778i \(-0.271286\pi\)
0.658275 + 0.752778i \(0.271286\pi\)
\(948\) −9.90628 −0.321741
\(949\) 10.6575 0.345956
\(950\) 0.435776 0.0141384
\(951\) 25.1823 0.816591
\(952\) −3.42597 −0.111036
\(953\) −2.34193 −0.0758624 −0.0379312 0.999280i \(-0.512077\pi\)
−0.0379312 + 0.999280i \(0.512077\pi\)
\(954\) −12.6086 −0.408219
\(955\) 42.4675 1.37421
\(956\) −16.3429 −0.528567
\(957\) 0 0
\(958\) 12.4378 0.401848
\(959\) −8.01375 −0.258777
\(960\) −14.1949 −0.458139
\(961\) −23.4705 −0.757112
\(962\) 9.46493 0.305162
\(963\) −23.1589 −0.746287
\(964\) 18.1517 0.584626
\(965\) 11.7200 0.377280
\(966\) −1.55102 −0.0499031
\(967\) 13.2287 0.425407 0.212703 0.977117i \(-0.431773\pi\)
0.212703 + 0.977117i \(0.431773\pi\)
\(968\) −26.9227 −0.865327
\(969\) 22.0620 0.708732
\(970\) −12.8711 −0.413265
\(971\) 20.6402 0.662374 0.331187 0.943565i \(-0.392551\pi\)
0.331187 + 0.943565i \(0.392551\pi\)
\(972\) 34.8189 1.11682
\(973\) −16.1562 −0.517943
\(974\) 0.657928 0.0210814
\(975\) −1.20988 −0.0387472
\(976\) −13.5888 −0.434966
\(977\) −2.70257 −0.0864630 −0.0432315 0.999065i \(-0.513765\pi\)
−0.0432315 + 0.999065i \(0.513765\pi\)
\(978\) −3.45057 −0.110337
\(979\) 59.7659 1.91013
\(980\) 20.3252 0.649265
\(981\) −33.5379 −1.07078
\(982\) 16.6968 0.532816
\(983\) 14.5855 0.465207 0.232603 0.972572i \(-0.425276\pi\)
0.232603 + 0.972572i \(0.425276\pi\)
\(984\) 9.82314 0.313150
\(985\) −21.9778 −0.700272
\(986\) 0 0
\(987\) 10.0850 0.321011
\(988\) 32.4719 1.03307
\(989\) 9.53097 0.303067
\(990\) 23.9828 0.762223
\(991\) 22.3492 0.709945 0.354973 0.934877i \(-0.384490\pi\)
0.354973 + 0.934877i \(0.384490\pi\)
\(992\) 13.9969 0.444403
\(993\) −27.5917 −0.875595
\(994\) 10.3779 0.329166
\(995\) −48.9030 −1.55033
\(996\) −29.7688 −0.943262
\(997\) −54.4178 −1.72343 −0.861715 0.507392i \(-0.830609\pi\)
−0.861715 + 0.507392i \(0.830609\pi\)
\(998\) −5.35958 −0.169655
\(999\) 19.8556 0.628202
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 841.2.a.h.1.3 yes 6
3.2 odd 2 7569.2.a.y.1.4 6
29.2 odd 28 841.2.e.l.236.7 72
29.3 odd 28 841.2.e.l.270.7 72
29.4 even 14 841.2.d.o.190.3 36
29.5 even 14 841.2.d.o.605.3 36
29.6 even 14 841.2.d.o.645.3 36
29.7 even 7 841.2.d.n.571.4 36
29.8 odd 28 841.2.e.l.267.7 72
29.9 even 14 841.2.d.o.574.4 36
29.10 odd 28 841.2.e.l.651.7 72
29.11 odd 28 841.2.e.l.63.7 72
29.12 odd 4 841.2.b.d.840.7 12
29.13 even 14 841.2.d.o.778.4 36
29.14 odd 28 841.2.e.l.196.6 72
29.15 odd 28 841.2.e.l.196.7 72
29.16 even 7 841.2.d.n.778.3 36
29.17 odd 4 841.2.b.d.840.6 12
29.18 odd 28 841.2.e.l.63.6 72
29.19 odd 28 841.2.e.l.651.6 72
29.20 even 7 841.2.d.n.574.3 36
29.21 odd 28 841.2.e.l.267.6 72
29.22 even 14 841.2.d.o.571.3 36
29.23 even 7 841.2.d.n.645.4 36
29.24 even 7 841.2.d.n.605.4 36
29.25 even 7 841.2.d.n.190.4 36
29.26 odd 28 841.2.e.l.270.6 72
29.27 odd 28 841.2.e.l.236.6 72
29.28 even 2 841.2.a.g.1.4 6
87.86 odd 2 7569.2.a.bc.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
841.2.a.g.1.4 6 29.28 even 2
841.2.a.h.1.3 yes 6 1.1 even 1 trivial
841.2.b.d.840.6 12 29.17 odd 4
841.2.b.d.840.7 12 29.12 odd 4
841.2.d.n.190.4 36 29.25 even 7
841.2.d.n.571.4 36 29.7 even 7
841.2.d.n.574.3 36 29.20 even 7
841.2.d.n.605.4 36 29.24 even 7
841.2.d.n.645.4 36 29.23 even 7
841.2.d.n.778.3 36 29.16 even 7
841.2.d.o.190.3 36 29.4 even 14
841.2.d.o.571.3 36 29.22 even 14
841.2.d.o.574.4 36 29.9 even 14
841.2.d.o.605.3 36 29.5 even 14
841.2.d.o.645.3 36 29.6 even 14
841.2.d.o.778.4 36 29.13 even 14
841.2.e.l.63.6 72 29.18 odd 28
841.2.e.l.63.7 72 29.11 odd 28
841.2.e.l.196.6 72 29.14 odd 28
841.2.e.l.196.7 72 29.15 odd 28
841.2.e.l.236.6 72 29.27 odd 28
841.2.e.l.236.7 72 29.2 odd 28
841.2.e.l.267.6 72 29.21 odd 28
841.2.e.l.267.7 72 29.8 odd 28
841.2.e.l.270.6 72 29.26 odd 28
841.2.e.l.270.7 72 29.3 odd 28
841.2.e.l.651.6 72 29.19 odd 28
841.2.e.l.651.7 72 29.10 odd 28
7569.2.a.y.1.4 6 3.2 odd 2
7569.2.a.bc.1.3 6 87.86 odd 2