Properties

Label 841.2.a.i.1.2
Level $841$
Weight $2$
Character 841.1
Self dual yes
Analytic conductor $6.715$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [841,2,Mod(1,841)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(841, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("841.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 841 = 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 841.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.71541880999\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: 8.8.2841328125.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} - 3x^{6} + 23x^{5} - 43x^{3} + 2x^{2} + 24x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.39427\) of defining polynomial
Character \(\chi\) \(=\) 841.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.39427 q^{2} -2.10137 q^{3} +3.73253 q^{4} -2.42792 q^{5} +5.03125 q^{6} -0.378370 q^{7} -4.14815 q^{8} +1.41576 q^{9} +5.81310 q^{10} -3.84036 q^{11} -7.84343 q^{12} +5.59342 q^{13} +0.905920 q^{14} +5.10197 q^{15} +2.46673 q^{16} +1.82620 q^{17} -3.38971 q^{18} +0.558292 q^{19} -9.06230 q^{20} +0.795095 q^{21} +9.19486 q^{22} -0.335234 q^{23} +8.71680 q^{24} +0.894809 q^{25} -13.3922 q^{26} +3.32908 q^{27} -1.41228 q^{28} -12.2155 q^{30} +4.06809 q^{31} +2.39028 q^{32} +8.07002 q^{33} -4.37242 q^{34} +0.918653 q^{35} +5.28437 q^{36} +8.06015 q^{37} -1.33670 q^{38} -11.7538 q^{39} +10.0714 q^{40} +7.79555 q^{41} -1.90367 q^{42} -0.0226949 q^{43} -14.3343 q^{44} -3.43735 q^{45} +0.802642 q^{46} -7.62892 q^{47} -5.18351 q^{48} -6.85684 q^{49} -2.14242 q^{50} -3.83753 q^{51} +20.8776 q^{52} +6.37259 q^{53} -7.97071 q^{54} +9.32410 q^{55} +1.56953 q^{56} -1.17318 q^{57} +8.13681 q^{59} +19.0433 q^{60} -10.3717 q^{61} -9.74010 q^{62} -0.535681 q^{63} -10.6564 q^{64} -13.5804 q^{65} -19.3218 q^{66} -12.0355 q^{67} +6.81636 q^{68} +0.704452 q^{69} -2.19950 q^{70} -15.5590 q^{71} -5.87278 q^{72} +6.93458 q^{73} -19.2982 q^{74} -1.88033 q^{75} +2.08384 q^{76} +1.45308 q^{77} +28.1419 q^{78} -7.46125 q^{79} -5.98903 q^{80} -11.2429 q^{81} -18.6647 q^{82} +0.671301 q^{83} +2.96772 q^{84} -4.43388 q^{85} +0.0543377 q^{86} +15.9304 q^{88} -9.63916 q^{89} +8.22996 q^{90} -2.11638 q^{91} -1.25127 q^{92} -8.54856 q^{93} +18.2657 q^{94} -1.35549 q^{95} -5.02287 q^{96} -4.45519 q^{97} +16.4171 q^{98} -5.43702 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{2} - 6 q^{3} + 6 q^{4} - q^{5} + 3 q^{6} - 15 q^{8} + 8 q^{9} + 3 q^{10} - 5 q^{11} - 12 q^{12} - 4 q^{13} - 15 q^{14} + 7 q^{15} - 2 q^{16} - 9 q^{17} + 11 q^{18} - 17 q^{19} - 7 q^{20} - 25 q^{21}+ \cdots - 15 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.39427 −1.69300 −0.846502 0.532385i \(-0.821296\pi\)
−0.846502 + 0.532385i \(0.821296\pi\)
\(3\) −2.10137 −1.21323 −0.606614 0.794997i \(-0.707472\pi\)
−0.606614 + 0.794997i \(0.707472\pi\)
\(4\) 3.73253 1.86627
\(5\) −2.42792 −1.08580 −0.542900 0.839797i \(-0.682674\pi\)
−0.542900 + 0.839797i \(0.682674\pi\)
\(6\) 5.03125 2.05400
\(7\) −0.378370 −0.143010 −0.0715052 0.997440i \(-0.522780\pi\)
−0.0715052 + 0.997440i \(0.522780\pi\)
\(8\) −4.14815 −1.46659
\(9\) 1.41576 0.471920
\(10\) 5.81310 1.83827
\(11\) −3.84036 −1.15791 −0.578956 0.815359i \(-0.696540\pi\)
−0.578956 + 0.815359i \(0.696540\pi\)
\(12\) −7.84343 −2.26420
\(13\) 5.59342 1.55133 0.775667 0.631142i \(-0.217414\pi\)
0.775667 + 0.631142i \(0.217414\pi\)
\(14\) 0.905920 0.242117
\(15\) 5.10197 1.31732
\(16\) 2.46673 0.616683
\(17\) 1.82620 0.442919 0.221460 0.975170i \(-0.428918\pi\)
0.221460 + 0.975170i \(0.428918\pi\)
\(18\) −3.38971 −0.798963
\(19\) 0.558292 0.128081 0.0640405 0.997947i \(-0.479601\pi\)
0.0640405 + 0.997947i \(0.479601\pi\)
\(20\) −9.06230 −2.02639
\(21\) 0.795095 0.173504
\(22\) 9.19486 1.96035
\(23\) −0.335234 −0.0699012 −0.0349506 0.999389i \(-0.511127\pi\)
−0.0349506 + 0.999389i \(0.511127\pi\)
\(24\) 8.71680 1.77931
\(25\) 0.894809 0.178962
\(26\) −13.3922 −2.62642
\(27\) 3.32908 0.640681
\(28\) −1.41228 −0.266895
\(29\) 0 0
\(30\) −12.2155 −2.23023
\(31\) 4.06809 0.730650 0.365325 0.930880i \(-0.380958\pi\)
0.365325 + 0.930880i \(0.380958\pi\)
\(32\) 2.39028 0.422546
\(33\) 8.07002 1.40481
\(34\) −4.37242 −0.749864
\(35\) 0.918653 0.155281
\(36\) 5.28437 0.880728
\(37\) 8.06015 1.32508 0.662540 0.749027i \(-0.269478\pi\)
0.662540 + 0.749027i \(0.269478\pi\)
\(38\) −1.33670 −0.216842
\(39\) −11.7538 −1.88212
\(40\) 10.0714 1.59243
\(41\) 7.79555 1.21746 0.608730 0.793377i \(-0.291679\pi\)
0.608730 + 0.793377i \(0.291679\pi\)
\(42\) −1.90367 −0.293743
\(43\) −0.0226949 −0.00346094 −0.00173047 0.999999i \(-0.500551\pi\)
−0.00173047 + 0.999999i \(0.500551\pi\)
\(44\) −14.3343 −2.16097
\(45\) −3.43735 −0.512411
\(46\) 0.802642 0.118343
\(47\) −7.62892 −1.11279 −0.556396 0.830917i \(-0.687816\pi\)
−0.556396 + 0.830917i \(0.687816\pi\)
\(48\) −5.18351 −0.748176
\(49\) −6.85684 −0.979548
\(50\) −2.14242 −0.302983
\(51\) −3.83753 −0.537361
\(52\) 20.8776 2.89520
\(53\) 6.37259 0.875343 0.437672 0.899135i \(-0.355803\pi\)
0.437672 + 0.899135i \(0.355803\pi\)
\(54\) −7.97071 −1.08468
\(55\) 9.32410 1.25726
\(56\) 1.56953 0.209738
\(57\) −1.17318 −0.155391
\(58\) 0 0
\(59\) 8.13681 1.05932 0.529661 0.848209i \(-0.322319\pi\)
0.529661 + 0.848209i \(0.322319\pi\)
\(60\) 19.0433 2.45847
\(61\) −10.3717 −1.32796 −0.663981 0.747749i \(-0.731135\pi\)
−0.663981 + 0.747749i \(0.731135\pi\)
\(62\) −9.74010 −1.23699
\(63\) −0.535681 −0.0674894
\(64\) −10.6564 −1.33205
\(65\) −13.5804 −1.68444
\(66\) −19.3218 −2.37835
\(67\) −12.0355 −1.47038 −0.735188 0.677863i \(-0.762906\pi\)
−0.735188 + 0.677863i \(0.762906\pi\)
\(68\) 6.81636 0.826605
\(69\) 0.704452 0.0848060
\(70\) −2.19950 −0.262891
\(71\) −15.5590 −1.84652 −0.923259 0.384178i \(-0.874485\pi\)
−0.923259 + 0.384178i \(0.874485\pi\)
\(72\) −5.87278 −0.692114
\(73\) 6.93458 0.811631 0.405815 0.913955i \(-0.366988\pi\)
0.405815 + 0.913955i \(0.366988\pi\)
\(74\) −19.2982 −2.24337
\(75\) −1.88033 −0.217121
\(76\) 2.08384 0.239033
\(77\) 1.45308 0.165593
\(78\) 28.1419 3.18644
\(79\) −7.46125 −0.839457 −0.419728 0.907650i \(-0.637875\pi\)
−0.419728 + 0.907650i \(0.637875\pi\)
\(80\) −5.98903 −0.669594
\(81\) −11.2429 −1.24921
\(82\) −18.6647 −2.06117
\(83\) 0.671301 0.0736848 0.0368424 0.999321i \(-0.488270\pi\)
0.0368424 + 0.999321i \(0.488270\pi\)
\(84\) 2.96772 0.323805
\(85\) −4.43388 −0.480922
\(86\) 0.0543377 0.00585939
\(87\) 0 0
\(88\) 15.9304 1.69818
\(89\) −9.63916 −1.02175 −0.510875 0.859655i \(-0.670678\pi\)
−0.510875 + 0.859655i \(0.670678\pi\)
\(90\) 8.22996 0.867514
\(91\) −2.11638 −0.221857
\(92\) −1.25127 −0.130454
\(93\) −8.54856 −0.886444
\(94\) 18.2657 1.88396
\(95\) −1.35549 −0.139070
\(96\) −5.02287 −0.512644
\(97\) −4.45519 −0.452356 −0.226178 0.974086i \(-0.572623\pi\)
−0.226178 + 0.974086i \(0.572623\pi\)
\(98\) 16.4171 1.65838
\(99\) −5.43702 −0.546441
\(100\) 3.33990 0.333990
\(101\) −6.03902 −0.600905 −0.300453 0.953797i \(-0.597138\pi\)
−0.300453 + 0.953797i \(0.597138\pi\)
\(102\) 9.18808 0.909755
\(103\) 6.19845 0.610752 0.305376 0.952232i \(-0.401218\pi\)
0.305376 + 0.952232i \(0.401218\pi\)
\(104\) −23.2023 −2.27518
\(105\) −1.93043 −0.188391
\(106\) −15.2577 −1.48196
\(107\) 5.30153 0.512518 0.256259 0.966608i \(-0.417510\pi\)
0.256259 + 0.966608i \(0.417510\pi\)
\(108\) 12.4259 1.19568
\(109\) 6.29930 0.603364 0.301682 0.953409i \(-0.402452\pi\)
0.301682 + 0.953409i \(0.402452\pi\)
\(110\) −22.3244 −2.12855
\(111\) −16.9374 −1.60762
\(112\) −0.933336 −0.0881920
\(113\) −13.4101 −1.26151 −0.630757 0.775980i \(-0.717256\pi\)
−0.630757 + 0.775980i \(0.717256\pi\)
\(114\) 2.80891 0.263078
\(115\) 0.813923 0.0758987
\(116\) 0 0
\(117\) 7.91893 0.732105
\(118\) −19.4817 −1.79344
\(119\) −0.690980 −0.0633420
\(120\) −21.1637 −1.93197
\(121\) 3.74836 0.340760
\(122\) 24.8327 2.24825
\(123\) −16.3813 −1.47706
\(124\) 15.1843 1.36359
\(125\) 9.96709 0.891483
\(126\) 1.28256 0.114260
\(127\) 5.83032 0.517358 0.258679 0.965963i \(-0.416713\pi\)
0.258679 + 0.965963i \(0.416713\pi\)
\(128\) 20.7338 1.83263
\(129\) 0.0476904 0.00419891
\(130\) 32.5151 2.85176
\(131\) 0.528206 0.0461496 0.0230748 0.999734i \(-0.492654\pi\)
0.0230748 + 0.999734i \(0.492654\pi\)
\(132\) 30.1216 2.62175
\(133\) −0.211241 −0.0183169
\(134\) 28.8164 2.48935
\(135\) −8.08274 −0.695652
\(136\) −7.57536 −0.649582
\(137\) −7.86200 −0.671696 −0.335848 0.941916i \(-0.609023\pi\)
−0.335848 + 0.941916i \(0.609023\pi\)
\(138\) −1.68665 −0.143577
\(139\) −9.24826 −0.784427 −0.392213 0.919874i \(-0.628291\pi\)
−0.392213 + 0.919874i \(0.628291\pi\)
\(140\) 3.42890 0.289795
\(141\) 16.0312 1.35007
\(142\) 37.2525 3.12616
\(143\) −21.4807 −1.79631
\(144\) 3.49230 0.291025
\(145\) 0 0
\(146\) −16.6033 −1.37410
\(147\) 14.4088 1.18841
\(148\) 30.0848 2.47295
\(149\) −0.514276 −0.0421311 −0.0210656 0.999778i \(-0.506706\pi\)
−0.0210656 + 0.999778i \(0.506706\pi\)
\(150\) 4.50201 0.367588
\(151\) −6.55234 −0.533222 −0.266611 0.963804i \(-0.585904\pi\)
−0.266611 + 0.963804i \(0.585904\pi\)
\(152\) −2.31588 −0.187843
\(153\) 2.58546 0.209022
\(154\) −3.47906 −0.280350
\(155\) −9.87700 −0.793340
\(156\) −43.8716 −3.51254
\(157\) −11.4559 −0.914282 −0.457141 0.889394i \(-0.651126\pi\)
−0.457141 + 0.889394i \(0.651126\pi\)
\(158\) 17.8643 1.42120
\(159\) −13.3912 −1.06199
\(160\) −5.80342 −0.458800
\(161\) 0.126843 0.00999660
\(162\) 26.9186 2.11492
\(163\) −18.2330 −1.42812 −0.714060 0.700085i \(-0.753146\pi\)
−0.714060 + 0.700085i \(0.753146\pi\)
\(164\) 29.0972 2.27211
\(165\) −19.5934 −1.52534
\(166\) −1.60728 −0.124749
\(167\) 2.53384 0.196074 0.0980372 0.995183i \(-0.468744\pi\)
0.0980372 + 0.995183i \(0.468744\pi\)
\(168\) −3.29817 −0.254460
\(169\) 18.2863 1.40664
\(170\) 10.6159 0.814203
\(171\) 0.790407 0.0604439
\(172\) −0.0847094 −0.00645903
\(173\) 8.48473 0.645082 0.322541 0.946556i \(-0.395463\pi\)
0.322541 + 0.946556i \(0.395463\pi\)
\(174\) 0 0
\(175\) −0.338569 −0.0255934
\(176\) −9.47313 −0.714064
\(177\) −17.0985 −1.28520
\(178\) 23.0788 1.72983
\(179\) 12.9529 0.968146 0.484073 0.875028i \(-0.339157\pi\)
0.484073 + 0.875028i \(0.339157\pi\)
\(180\) −12.8300 −0.956294
\(181\) 16.4170 1.22026 0.610132 0.792300i \(-0.291116\pi\)
0.610132 + 0.792300i \(0.291116\pi\)
\(182\) 5.06719 0.375605
\(183\) 21.7948 1.61112
\(184\) 1.39060 0.102517
\(185\) −19.5694 −1.43877
\(186\) 20.4676 1.50075
\(187\) −7.01327 −0.512861
\(188\) −28.4752 −2.07677
\(189\) −1.25962 −0.0916240
\(190\) 3.24541 0.235447
\(191\) −7.42138 −0.536992 −0.268496 0.963281i \(-0.586527\pi\)
−0.268496 + 0.963281i \(0.586527\pi\)
\(192\) 22.3931 1.61608
\(193\) 21.9696 1.58141 0.790704 0.612198i \(-0.209715\pi\)
0.790704 + 0.612198i \(0.209715\pi\)
\(194\) 10.6669 0.765841
\(195\) 28.5374 2.04361
\(196\) −25.5934 −1.82810
\(197\) 19.7043 1.40387 0.701936 0.712240i \(-0.252319\pi\)
0.701936 + 0.712240i \(0.252319\pi\)
\(198\) 13.0177 0.925128
\(199\) −16.2382 −1.15110 −0.575549 0.817767i \(-0.695212\pi\)
−0.575549 + 0.817767i \(0.695212\pi\)
\(200\) −3.71180 −0.262464
\(201\) 25.2911 1.78390
\(202\) 14.4591 1.01734
\(203\) 0 0
\(204\) −14.3237 −1.00286
\(205\) −18.9270 −1.32192
\(206\) −14.8408 −1.03401
\(207\) −0.474611 −0.0329878
\(208\) 13.7974 0.956681
\(209\) −2.14404 −0.148306
\(210\) 4.62197 0.318946
\(211\) 23.5359 1.62028 0.810138 0.586239i \(-0.199392\pi\)
0.810138 + 0.586239i \(0.199392\pi\)
\(212\) 23.7859 1.63362
\(213\) 32.6953 2.24025
\(214\) −12.6933 −0.867696
\(215\) 0.0551015 0.00375789
\(216\) −13.8095 −0.939618
\(217\) −1.53924 −0.104490
\(218\) −15.0822 −1.02150
\(219\) −14.5721 −0.984693
\(220\) 34.8025 2.34638
\(221\) 10.2147 0.687116
\(222\) 40.5526 2.72171
\(223\) −0.701931 −0.0470048 −0.0235024 0.999724i \(-0.507482\pi\)
−0.0235024 + 0.999724i \(0.507482\pi\)
\(224\) −0.904410 −0.0604284
\(225\) 1.26683 0.0844557
\(226\) 32.1074 2.13575
\(227\) −7.40249 −0.491321 −0.245660 0.969356i \(-0.579005\pi\)
−0.245660 + 0.969356i \(0.579005\pi\)
\(228\) −4.37893 −0.290002
\(229\) −10.7457 −0.710094 −0.355047 0.934848i \(-0.615535\pi\)
−0.355047 + 0.934848i \(0.615535\pi\)
\(230\) −1.94875 −0.128497
\(231\) −3.05345 −0.200902
\(232\) 0 0
\(233\) −15.5888 −1.02126 −0.510630 0.859801i \(-0.670588\pi\)
−0.510630 + 0.859801i \(0.670588\pi\)
\(234\) −18.9601 −1.23946
\(235\) 18.5224 1.20827
\(236\) 30.3709 1.97698
\(237\) 15.6789 1.01845
\(238\) 1.65439 0.107238
\(239\) 7.44400 0.481512 0.240756 0.970586i \(-0.422605\pi\)
0.240756 + 0.970586i \(0.422605\pi\)
\(240\) 12.5852 0.812370
\(241\) −5.26688 −0.339270 −0.169635 0.985507i \(-0.554259\pi\)
−0.169635 + 0.985507i \(0.554259\pi\)
\(242\) −8.97458 −0.576908
\(243\) 13.6383 0.874896
\(244\) −38.7128 −2.47833
\(245\) 16.6479 1.06359
\(246\) 39.2214 2.50066
\(247\) 3.12276 0.198696
\(248\) −16.8750 −1.07157
\(249\) −1.41065 −0.0893964
\(250\) −23.8639 −1.50929
\(251\) −27.9636 −1.76505 −0.882523 0.470269i \(-0.844157\pi\)
−0.882523 + 0.470269i \(0.844157\pi\)
\(252\) −1.99944 −0.125953
\(253\) 1.28742 0.0809394
\(254\) −13.9594 −0.875889
\(255\) 9.31722 0.583467
\(256\) −28.3295 −1.77060
\(257\) −19.0686 −1.18947 −0.594733 0.803923i \(-0.702742\pi\)
−0.594733 + 0.803923i \(0.702742\pi\)
\(258\) −0.114184 −0.00710877
\(259\) −3.04972 −0.189500
\(260\) −50.6892 −3.14361
\(261\) 0 0
\(262\) −1.26467 −0.0781315
\(263\) 7.11487 0.438721 0.219361 0.975644i \(-0.429603\pi\)
0.219361 + 0.975644i \(0.429603\pi\)
\(264\) −33.4756 −2.06028
\(265\) −15.4722 −0.950448
\(266\) 0.505768 0.0310106
\(267\) 20.2555 1.23961
\(268\) −44.9231 −2.74411
\(269\) −5.95607 −0.363148 −0.181574 0.983377i \(-0.558119\pi\)
−0.181574 + 0.983377i \(0.558119\pi\)
\(270\) 19.3523 1.17774
\(271\) 5.13351 0.311839 0.155919 0.987770i \(-0.450166\pi\)
0.155919 + 0.987770i \(0.450166\pi\)
\(272\) 4.50475 0.273140
\(273\) 4.44730 0.269163
\(274\) 18.8238 1.13719
\(275\) −3.43639 −0.207222
\(276\) 2.62939 0.158271
\(277\) 20.0056 1.20202 0.601010 0.799241i \(-0.294765\pi\)
0.601010 + 0.799241i \(0.294765\pi\)
\(278\) 22.1428 1.32804
\(279\) 5.75943 0.344808
\(280\) −3.81071 −0.227733
\(281\) −11.7312 −0.699822 −0.349911 0.936783i \(-0.613788\pi\)
−0.349911 + 0.936783i \(0.613788\pi\)
\(282\) −38.3830 −2.28568
\(283\) −29.6224 −1.76087 −0.880435 0.474167i \(-0.842749\pi\)
−0.880435 + 0.474167i \(0.842749\pi\)
\(284\) −58.0746 −3.44609
\(285\) 2.84839 0.168724
\(286\) 51.4307 3.04116
\(287\) −2.94960 −0.174110
\(288\) 3.38406 0.199408
\(289\) −13.6650 −0.803823
\(290\) 0 0
\(291\) 9.36201 0.548811
\(292\) 25.8835 1.51472
\(293\) 7.86184 0.459294 0.229647 0.973274i \(-0.426243\pi\)
0.229647 + 0.973274i \(0.426243\pi\)
\(294\) −34.4985 −2.01199
\(295\) −19.7556 −1.15021
\(296\) −33.4347 −1.94335
\(297\) −12.7849 −0.741852
\(298\) 1.23132 0.0713282
\(299\) −1.87511 −0.108440
\(300\) −7.01838 −0.405206
\(301\) 0.00858707 0.000494950 0
\(302\) 15.6881 0.902747
\(303\) 12.6902 0.729034
\(304\) 1.37716 0.0789853
\(305\) 25.1817 1.44190
\(306\) −6.19030 −0.353876
\(307\) −28.3811 −1.61979 −0.809897 0.586572i \(-0.800477\pi\)
−0.809897 + 0.586572i \(0.800477\pi\)
\(308\) 5.42365 0.309041
\(309\) −13.0252 −0.740980
\(310\) 23.6482 1.34313
\(311\) −8.57178 −0.486061 −0.243031 0.970019i \(-0.578142\pi\)
−0.243031 + 0.970019i \(0.578142\pi\)
\(312\) 48.7567 2.76030
\(313\) 0.879004 0.0496843 0.0248421 0.999691i \(-0.492092\pi\)
0.0248421 + 0.999691i \(0.492092\pi\)
\(314\) 27.4286 1.54788
\(315\) 1.30059 0.0732800
\(316\) −27.8494 −1.56665
\(317\) 26.6256 1.49544 0.747722 0.664012i \(-0.231148\pi\)
0.747722 + 0.664012i \(0.231148\pi\)
\(318\) 32.0621 1.79795
\(319\) 0 0
\(320\) 25.8730 1.44635
\(321\) −11.1405 −0.621801
\(322\) −0.303695 −0.0169243
\(323\) 1.01955 0.0567295
\(324\) −41.9645 −2.33136
\(325\) 5.00504 0.277630
\(326\) 43.6548 2.41781
\(327\) −13.2372 −0.732017
\(328\) −32.3371 −1.78552
\(329\) 2.88655 0.159141
\(330\) 46.9119 2.58241
\(331\) −18.6487 −1.02502 −0.512512 0.858680i \(-0.671285\pi\)
−0.512512 + 0.858680i \(0.671285\pi\)
\(332\) 2.50565 0.137515
\(333\) 11.4112 0.625331
\(334\) −6.06670 −0.331955
\(335\) 29.2214 1.59653
\(336\) 1.96129 0.106997
\(337\) 6.04773 0.329441 0.164720 0.986340i \(-0.447328\pi\)
0.164720 + 0.986340i \(0.447328\pi\)
\(338\) −43.7824 −2.38145
\(339\) 28.1795 1.53050
\(340\) −16.5496 −0.897527
\(341\) −15.6229 −0.846028
\(342\) −1.89245 −0.102332
\(343\) 5.24301 0.283096
\(344\) 0.0941419 0.00507579
\(345\) −1.71035 −0.0920824
\(346\) −20.3147 −1.09213
\(347\) −14.4469 −0.775548 −0.387774 0.921754i \(-0.626756\pi\)
−0.387774 + 0.921754i \(0.626756\pi\)
\(348\) 0 0
\(349\) 11.5232 0.616825 0.308413 0.951253i \(-0.400202\pi\)
0.308413 + 0.951253i \(0.400202\pi\)
\(350\) 0.810626 0.0433298
\(351\) 18.6209 0.993911
\(352\) −9.17953 −0.489271
\(353\) −8.47324 −0.450985 −0.225493 0.974245i \(-0.572399\pi\)
−0.225493 + 0.974245i \(0.572399\pi\)
\(354\) 40.9383 2.17585
\(355\) 37.7761 2.00495
\(356\) −35.9785 −1.90686
\(357\) 1.45200 0.0768482
\(358\) −31.0128 −1.63908
\(359\) 4.93526 0.260473 0.130237 0.991483i \(-0.458426\pi\)
0.130237 + 0.991483i \(0.458426\pi\)
\(360\) 14.2587 0.751497
\(361\) −18.6883 −0.983595
\(362\) −39.3067 −2.06591
\(363\) −7.87669 −0.413419
\(364\) −7.89945 −0.414044
\(365\) −16.8366 −0.881269
\(366\) −52.1827 −2.72763
\(367\) −2.90702 −0.151745 −0.0758727 0.997118i \(-0.524174\pi\)
−0.0758727 + 0.997118i \(0.524174\pi\)
\(368\) −0.826933 −0.0431069
\(369\) 11.0366 0.574544
\(370\) 46.8545 2.43585
\(371\) −2.41120 −0.125183
\(372\) −31.9078 −1.65434
\(373\) −31.1460 −1.61268 −0.806340 0.591452i \(-0.798555\pi\)
−0.806340 + 0.591452i \(0.798555\pi\)
\(374\) 16.7917 0.868277
\(375\) −20.9445 −1.08157
\(376\) 31.6459 1.63201
\(377\) 0 0
\(378\) 3.01588 0.155120
\(379\) 24.2758 1.24696 0.623482 0.781838i \(-0.285718\pi\)
0.623482 + 0.781838i \(0.285718\pi\)
\(380\) −5.05941 −0.259542
\(381\) −12.2517 −0.627672
\(382\) 17.7688 0.909130
\(383\) −29.7679 −1.52107 −0.760533 0.649299i \(-0.775062\pi\)
−0.760533 + 0.649299i \(0.775062\pi\)
\(384\) −43.5695 −2.22340
\(385\) −3.52796 −0.179801
\(386\) −52.6012 −2.67733
\(387\) −0.0321305 −0.00163329
\(388\) −16.6291 −0.844217
\(389\) 10.7861 0.546879 0.273440 0.961889i \(-0.411839\pi\)
0.273440 + 0.961889i \(0.411839\pi\)
\(390\) −68.3263 −3.45984
\(391\) −0.612206 −0.0309606
\(392\) 28.4432 1.43660
\(393\) −1.10996 −0.0559899
\(394\) −47.1774 −2.37676
\(395\) 18.1153 0.911482
\(396\) −20.2939 −1.01981
\(397\) 1.14253 0.0573418 0.0286709 0.999589i \(-0.490873\pi\)
0.0286709 + 0.999589i \(0.490873\pi\)
\(398\) 38.8787 1.94882
\(399\) 0.443895 0.0222226
\(400\) 2.20725 0.110363
\(401\) −3.85161 −0.192340 −0.0961702 0.995365i \(-0.530659\pi\)
−0.0961702 + 0.995365i \(0.530659\pi\)
\(402\) −60.5538 −3.02015
\(403\) 22.7545 1.13348
\(404\) −22.5408 −1.12145
\(405\) 27.2969 1.35639
\(406\) 0 0
\(407\) −30.9539 −1.53433
\(408\) 15.9186 0.788090
\(409\) −19.2504 −0.951872 −0.475936 0.879480i \(-0.657891\pi\)
−0.475936 + 0.879480i \(0.657891\pi\)
\(410\) 45.3164 2.23802
\(411\) 16.5210 0.814920
\(412\) 23.1359 1.13983
\(413\) −3.07872 −0.151494
\(414\) 1.13635 0.0558485
\(415\) −1.62987 −0.0800070
\(416\) 13.3698 0.655510
\(417\) 19.4340 0.951688
\(418\) 5.13342 0.251084
\(419\) −2.00471 −0.0979365 −0.0489682 0.998800i \(-0.515593\pi\)
−0.0489682 + 0.998800i \(0.515593\pi\)
\(420\) −7.20539 −0.351587
\(421\) −39.8563 −1.94248 −0.971239 0.238106i \(-0.923474\pi\)
−0.971239 + 0.238106i \(0.923474\pi\)
\(422\) −56.3512 −2.74314
\(423\) −10.8007 −0.525149
\(424\) −26.4345 −1.28377
\(425\) 1.63410 0.0792656
\(426\) −78.2814 −3.79275
\(427\) 3.92435 0.189912
\(428\) 19.7881 0.956495
\(429\) 45.1390 2.17933
\(430\) −0.131928 −0.00636213
\(431\) 14.3148 0.689520 0.344760 0.938691i \(-0.387960\pi\)
0.344760 + 0.938691i \(0.387960\pi\)
\(432\) 8.21194 0.395097
\(433\) −8.83404 −0.424537 −0.212268 0.977211i \(-0.568085\pi\)
−0.212268 + 0.977211i \(0.568085\pi\)
\(434\) 3.68536 0.176903
\(435\) 0 0
\(436\) 23.5123 1.12604
\(437\) −0.187159 −0.00895302
\(438\) 34.8896 1.66709
\(439\) −11.5826 −0.552807 −0.276403 0.961042i \(-0.589143\pi\)
−0.276403 + 0.961042i \(0.589143\pi\)
\(440\) −38.6777 −1.84389
\(441\) −9.70763 −0.462268
\(442\) −24.4568 −1.16329
\(443\) −35.4891 −1.68614 −0.843068 0.537807i \(-0.819253\pi\)
−0.843068 + 0.537807i \(0.819253\pi\)
\(444\) −63.2192 −3.00025
\(445\) 23.4031 1.10942
\(446\) 1.68061 0.0795793
\(447\) 1.08068 0.0511146
\(448\) 4.03207 0.190498
\(449\) 20.7485 0.979183 0.489592 0.871952i \(-0.337146\pi\)
0.489592 + 0.871952i \(0.337146\pi\)
\(450\) −3.03315 −0.142984
\(451\) −29.9377 −1.40971
\(452\) −50.0535 −2.35432
\(453\) 13.7689 0.646919
\(454\) 17.7236 0.831808
\(455\) 5.13841 0.240892
\(456\) 4.86652 0.227896
\(457\) 38.1037 1.78242 0.891208 0.453596i \(-0.149859\pi\)
0.891208 + 0.453596i \(0.149859\pi\)
\(458\) 25.7281 1.20219
\(459\) 6.07957 0.283770
\(460\) 3.03799 0.141647
\(461\) 17.7244 0.825506 0.412753 0.910843i \(-0.364567\pi\)
0.412753 + 0.910843i \(0.364567\pi\)
\(462\) 7.31079 0.340129
\(463\) 9.21914 0.428450 0.214225 0.976784i \(-0.431277\pi\)
0.214225 + 0.976784i \(0.431277\pi\)
\(464\) 0 0
\(465\) 20.7552 0.962501
\(466\) 37.3239 1.72900
\(467\) 7.80216 0.361041 0.180521 0.983571i \(-0.442222\pi\)
0.180521 + 0.983571i \(0.442222\pi\)
\(468\) 29.5577 1.36630
\(469\) 4.55389 0.210279
\(470\) −44.3477 −2.04561
\(471\) 24.0731 1.10923
\(472\) −33.7527 −1.55359
\(473\) 0.0871566 0.00400746
\(474\) −37.5394 −1.72424
\(475\) 0.499565 0.0229216
\(476\) −2.57910 −0.118213
\(477\) 9.02206 0.413092
\(478\) −17.8229 −0.815203
\(479\) −17.7227 −0.809770 −0.404885 0.914368i \(-0.632688\pi\)
−0.404885 + 0.914368i \(0.632688\pi\)
\(480\) 12.1951 0.556629
\(481\) 45.0838 2.05564
\(482\) 12.6103 0.574385
\(483\) −0.266543 −0.0121281
\(484\) 13.9909 0.635948
\(485\) 10.8169 0.491168
\(486\) −32.6537 −1.48120
\(487\) −21.1590 −0.958805 −0.479403 0.877595i \(-0.659147\pi\)
−0.479403 + 0.877595i \(0.659147\pi\)
\(488\) 43.0234 1.94758
\(489\) 38.3143 1.73263
\(490\) −39.8595 −1.80067
\(491\) 17.7063 0.799076 0.399538 0.916717i \(-0.369171\pi\)
0.399538 + 0.916717i \(0.369171\pi\)
\(492\) −61.1439 −2.75658
\(493\) 0 0
\(494\) −7.47673 −0.336394
\(495\) 13.2007 0.593326
\(496\) 10.0349 0.450579
\(497\) 5.88707 0.264071
\(498\) 3.37748 0.151349
\(499\) 29.2051 1.30740 0.653700 0.756754i \(-0.273216\pi\)
0.653700 + 0.756754i \(0.273216\pi\)
\(500\) 37.2025 1.66374
\(501\) −5.32453 −0.237883
\(502\) 66.9524 2.98823
\(503\) −43.0842 −1.92103 −0.960516 0.278225i \(-0.910254\pi\)
−0.960516 + 0.278225i \(0.910254\pi\)
\(504\) 2.22208 0.0989795
\(505\) 14.6623 0.652463
\(506\) −3.08243 −0.137031
\(507\) −38.4263 −1.70657
\(508\) 21.7619 0.965527
\(509\) 32.4926 1.44021 0.720104 0.693866i \(-0.244094\pi\)
0.720104 + 0.693866i \(0.244094\pi\)
\(510\) −22.3079 −0.987813
\(511\) −2.62383 −0.116072
\(512\) 26.3609 1.16500
\(513\) 1.85860 0.0820591
\(514\) 45.6554 2.01377
\(515\) −15.0494 −0.663154
\(516\) 0.178006 0.00783628
\(517\) 29.2978 1.28852
\(518\) 7.30185 0.320825
\(519\) −17.8296 −0.782631
\(520\) 56.3335 2.47039
\(521\) 28.2658 1.23835 0.619173 0.785254i \(-0.287468\pi\)
0.619173 + 0.785254i \(0.287468\pi\)
\(522\) 0 0
\(523\) −8.63499 −0.377582 −0.188791 0.982017i \(-0.560457\pi\)
−0.188791 + 0.982017i \(0.560457\pi\)
\(524\) 1.97155 0.0861274
\(525\) 0.711459 0.0310506
\(526\) −17.0349 −0.742758
\(527\) 7.42915 0.323619
\(528\) 19.9066 0.866322
\(529\) −22.8876 −0.995114
\(530\) 37.0446 1.60911
\(531\) 11.5198 0.499915
\(532\) −0.788463 −0.0341842
\(533\) 43.6038 1.88869
\(534\) −48.4970 −2.09867
\(535\) −12.8717 −0.556492
\(536\) 49.9253 2.15644
\(537\) −27.2189 −1.17458
\(538\) 14.2605 0.614812
\(539\) 26.3327 1.13423
\(540\) −30.1691 −1.29827
\(541\) −10.5447 −0.453352 −0.226676 0.973970i \(-0.572786\pi\)
−0.226676 + 0.973970i \(0.572786\pi\)
\(542\) −12.2910 −0.527945
\(543\) −34.4982 −1.48046
\(544\) 4.36513 0.187154
\(545\) −15.2942 −0.655132
\(546\) −10.6480 −0.455694
\(547\) 38.7197 1.65554 0.827768 0.561070i \(-0.189610\pi\)
0.827768 + 0.561070i \(0.189610\pi\)
\(548\) −29.3452 −1.25356
\(549\) −14.6839 −0.626692
\(550\) 8.22765 0.350828
\(551\) 0 0
\(552\) −2.92217 −0.124376
\(553\) 2.82311 0.120051
\(554\) −47.8989 −2.03503
\(555\) 41.1226 1.74556
\(556\) −34.5194 −1.46395
\(557\) 8.38724 0.355379 0.177689 0.984087i \(-0.443138\pi\)
0.177689 + 0.984087i \(0.443138\pi\)
\(558\) −13.7896 −0.583762
\(559\) −0.126942 −0.00536908
\(560\) 2.26607 0.0957589
\(561\) 14.7375 0.622217
\(562\) 28.0876 1.18480
\(563\) −27.6892 −1.16696 −0.583480 0.812127i \(-0.698309\pi\)
−0.583480 + 0.812127i \(0.698309\pi\)
\(564\) 59.8369 2.51959
\(565\) 32.5586 1.36975
\(566\) 70.9241 2.98116
\(567\) 4.25398 0.178650
\(568\) 64.5412 2.70809
\(569\) −9.79842 −0.410771 −0.205386 0.978681i \(-0.565845\pi\)
−0.205386 + 0.978681i \(0.565845\pi\)
\(570\) −6.81981 −0.285650
\(571\) −14.4018 −0.602696 −0.301348 0.953514i \(-0.597437\pi\)
−0.301348 + 0.953514i \(0.597437\pi\)
\(572\) −80.1775 −3.35239
\(573\) 15.5951 0.651493
\(574\) 7.06215 0.294768
\(575\) −0.299971 −0.0125097
\(576\) −15.0870 −0.628623
\(577\) 10.3904 0.432557 0.216279 0.976332i \(-0.430608\pi\)
0.216279 + 0.976332i \(0.430608\pi\)
\(578\) 32.7177 1.36088
\(579\) −46.1663 −1.91861
\(580\) 0 0
\(581\) −0.254000 −0.0105377
\(582\) −22.4152 −0.929139
\(583\) −24.4730 −1.01357
\(584\) −28.7657 −1.19033
\(585\) −19.2266 −0.794920
\(586\) −18.8234 −0.777587
\(587\) 1.62703 0.0671548 0.0335774 0.999436i \(-0.489310\pi\)
0.0335774 + 0.999436i \(0.489310\pi\)
\(588\) 53.7811 2.21790
\(589\) 2.27118 0.0935823
\(590\) 47.3001 1.94732
\(591\) −41.4060 −1.70321
\(592\) 19.8822 0.817154
\(593\) 31.0584 1.27541 0.637707 0.770279i \(-0.279883\pi\)
0.637707 + 0.770279i \(0.279883\pi\)
\(594\) 30.6104 1.25596
\(595\) 1.67765 0.0687768
\(596\) −1.91955 −0.0786278
\(597\) 34.1226 1.39654
\(598\) 4.48951 0.183590
\(599\) 16.3366 0.667495 0.333748 0.942662i \(-0.391687\pi\)
0.333748 + 0.942662i \(0.391687\pi\)
\(600\) 7.79988 0.318429
\(601\) 9.95353 0.406013 0.203007 0.979177i \(-0.434929\pi\)
0.203007 + 0.979177i \(0.434929\pi\)
\(602\) −0.0205598 −0.000837953 0
\(603\) −17.0394 −0.693900
\(604\) −24.4568 −0.995133
\(605\) −9.10072 −0.369997
\(606\) −30.3838 −1.23426
\(607\) −26.2102 −1.06384 −0.531920 0.846794i \(-0.678529\pi\)
−0.531920 + 0.846794i \(0.678529\pi\)
\(608\) 1.33447 0.0541201
\(609\) 0 0
\(610\) −60.2919 −2.44115
\(611\) −42.6717 −1.72631
\(612\) 9.65032 0.390091
\(613\) −46.4433 −1.87583 −0.937913 0.346871i \(-0.887244\pi\)
−0.937913 + 0.346871i \(0.887244\pi\)
\(614\) 67.9520 2.74232
\(615\) 39.7727 1.60379
\(616\) −6.02758 −0.242858
\(617\) 9.57571 0.385504 0.192752 0.981248i \(-0.438259\pi\)
0.192752 + 0.981248i \(0.438259\pi\)
\(618\) 31.1860 1.25448
\(619\) 20.0731 0.806808 0.403404 0.915022i \(-0.367827\pi\)
0.403404 + 0.915022i \(0.367827\pi\)
\(620\) −36.8662 −1.48058
\(621\) −1.11602 −0.0447844
\(622\) 20.5232 0.822904
\(623\) 3.64717 0.146121
\(624\) −28.9936 −1.16067
\(625\) −28.6734 −1.14693
\(626\) −2.10457 −0.0841157
\(627\) 4.50543 0.179929
\(628\) −42.7596 −1.70629
\(629\) 14.7195 0.586903
\(630\) −3.11397 −0.124063
\(631\) −28.5654 −1.13717 −0.568585 0.822625i \(-0.692509\pi\)
−0.568585 + 0.822625i \(0.692509\pi\)
\(632\) 30.9504 1.23114
\(633\) −49.4576 −1.96576
\(634\) −63.7489 −2.53179
\(635\) −14.1556 −0.561747
\(636\) −49.9830 −1.98196
\(637\) −38.3531 −1.51961
\(638\) 0 0
\(639\) −22.0278 −0.871408
\(640\) −50.3402 −1.98987
\(641\) 7.47195 0.295124 0.147562 0.989053i \(-0.452857\pi\)
0.147562 + 0.989053i \(0.452857\pi\)
\(642\) 26.6733 1.05271
\(643\) −20.9078 −0.824524 −0.412262 0.911065i \(-0.635261\pi\)
−0.412262 + 0.911065i \(0.635261\pi\)
\(644\) 0.473444 0.0186563
\(645\) −0.115789 −0.00455917
\(646\) −2.44109 −0.0960433
\(647\) −9.13842 −0.359268 −0.179634 0.983733i \(-0.557491\pi\)
−0.179634 + 0.983733i \(0.557491\pi\)
\(648\) 46.6373 1.83208
\(649\) −31.2483 −1.22660
\(650\) −11.9834 −0.470029
\(651\) 3.23452 0.126771
\(652\) −68.0553 −2.66525
\(653\) −14.6392 −0.572876 −0.286438 0.958099i \(-0.592471\pi\)
−0.286438 + 0.958099i \(0.592471\pi\)
\(654\) 31.6934 1.23931
\(655\) −1.28244 −0.0501092
\(656\) 19.2295 0.750787
\(657\) 9.81769 0.383025
\(658\) −6.91119 −0.269426
\(659\) −38.3439 −1.49367 −0.746833 0.665011i \(-0.768427\pi\)
−0.746833 + 0.665011i \(0.768427\pi\)
\(660\) −73.1329 −2.84670
\(661\) −24.0889 −0.936951 −0.468475 0.883477i \(-0.655197\pi\)
−0.468475 + 0.883477i \(0.655197\pi\)
\(662\) 44.6500 1.73537
\(663\) −21.4649 −0.833627
\(664\) −2.78466 −0.108066
\(665\) 0.512877 0.0198885
\(666\) −27.3216 −1.05869
\(667\) 0 0
\(668\) 9.45763 0.365927
\(669\) 1.47502 0.0570275
\(670\) −69.9639 −2.70294
\(671\) 39.8311 1.53766
\(672\) 1.90050 0.0733134
\(673\) −2.01034 −0.0774928 −0.0387464 0.999249i \(-0.512336\pi\)
−0.0387464 + 0.999249i \(0.512336\pi\)
\(674\) −14.4799 −0.557745
\(675\) 2.97889 0.114658
\(676\) 68.2542 2.62516
\(677\) 16.4646 0.632788 0.316394 0.948628i \(-0.397528\pi\)
0.316394 + 0.948628i \(0.397528\pi\)
\(678\) −67.4695 −2.59115
\(679\) 1.68571 0.0646916
\(680\) 18.3924 0.705316
\(681\) 15.5554 0.596084
\(682\) 37.4055 1.43233
\(683\) −4.43283 −0.169617 −0.0848087 0.996397i \(-0.527028\pi\)
−0.0848087 + 0.996397i \(0.527028\pi\)
\(684\) 2.95022 0.112804
\(685\) 19.0883 0.729328
\(686\) −12.5532 −0.479283
\(687\) 22.5807 0.861506
\(688\) −0.0559822 −0.00213430
\(689\) 35.6446 1.35795
\(690\) 4.09505 0.155896
\(691\) 20.1730 0.767416 0.383708 0.923454i \(-0.374647\pi\)
0.383708 + 0.923454i \(0.374647\pi\)
\(692\) 31.6695 1.20389
\(693\) 2.05721 0.0781468
\(694\) 34.5897 1.31301
\(695\) 22.4541 0.851731
\(696\) 0 0
\(697\) 14.2363 0.539237
\(698\) −27.5898 −1.04429
\(699\) 32.7579 1.23902
\(700\) −1.26372 −0.0477641
\(701\) −31.8660 −1.20356 −0.601781 0.798661i \(-0.705542\pi\)
−0.601781 + 0.798661i \(0.705542\pi\)
\(702\) −44.5835 −1.68270
\(703\) 4.49992 0.169718
\(704\) 40.9246 1.54240
\(705\) −38.9225 −1.46591
\(706\) 20.2872 0.763520
\(707\) 2.28498 0.0859356
\(708\) −63.8205 −2.39852
\(709\) −46.7660 −1.75633 −0.878167 0.478354i \(-0.841234\pi\)
−0.878167 + 0.478354i \(0.841234\pi\)
\(710\) −90.4463 −3.39439
\(711\) −10.5633 −0.396156
\(712\) 39.9847 1.49849
\(713\) −1.36376 −0.0510733
\(714\) −3.47649 −0.130104
\(715\) 52.1535 1.95043
\(716\) 48.3472 1.80682
\(717\) −15.6426 −0.584184
\(718\) −11.8164 −0.440983
\(719\) 34.7679 1.29662 0.648312 0.761375i \(-0.275475\pi\)
0.648312 + 0.761375i \(0.275475\pi\)
\(720\) −8.47903 −0.315995
\(721\) −2.34531 −0.0873438
\(722\) 44.7449 1.66523
\(723\) 11.0677 0.411611
\(724\) 61.2769 2.27734
\(725\) 0 0
\(726\) 18.8589 0.699920
\(727\) −23.0602 −0.855257 −0.427628 0.903955i \(-0.640651\pi\)
−0.427628 + 0.903955i \(0.640651\pi\)
\(728\) 8.77906 0.325374
\(729\) 5.06963 0.187764
\(730\) 40.3114 1.49199
\(731\) −0.0414455 −0.00153292
\(732\) 81.3499 3.00678
\(733\) −38.4511 −1.42022 −0.710112 0.704088i \(-0.751356\pi\)
−0.710112 + 0.704088i \(0.751356\pi\)
\(734\) 6.96020 0.256906
\(735\) −34.9833 −1.29038
\(736\) −0.801304 −0.0295365
\(737\) 46.2208 1.70257
\(738\) −26.4247 −0.972706
\(739\) 29.0800 1.06972 0.534862 0.844940i \(-0.320364\pi\)
0.534862 + 0.844940i \(0.320364\pi\)
\(740\) −73.0435 −2.68513
\(741\) −6.56208 −0.241064
\(742\) 5.77306 0.211936
\(743\) −32.6399 −1.19744 −0.598721 0.800958i \(-0.704324\pi\)
−0.598721 + 0.800958i \(0.704324\pi\)
\(744\) 35.4607 1.30005
\(745\) 1.24862 0.0457460
\(746\) 74.5720 2.73028
\(747\) 0.950400 0.0347733
\(748\) −26.1773 −0.957135
\(749\) −2.00594 −0.0732954
\(750\) 50.1469 1.83111
\(751\) 0.139181 0.00507879 0.00253940 0.999997i \(-0.499192\pi\)
0.00253940 + 0.999997i \(0.499192\pi\)
\(752\) −18.8185 −0.686240
\(753\) 58.7619 2.14140
\(754\) 0 0
\(755\) 15.9086 0.578972
\(756\) −4.70158 −0.170995
\(757\) −1.71328 −0.0622703 −0.0311352 0.999515i \(-0.509912\pi\)
−0.0311352 + 0.999515i \(0.509912\pi\)
\(758\) −58.1228 −2.11112
\(759\) −2.70535 −0.0981979
\(760\) 5.62278 0.203960
\(761\) −38.7063 −1.40310 −0.701551 0.712620i \(-0.747509\pi\)
−0.701551 + 0.712620i \(0.747509\pi\)
\(762\) 29.3338 1.06265
\(763\) −2.38347 −0.0862873
\(764\) −27.7005 −1.00217
\(765\) −6.27730 −0.226956
\(766\) 71.2723 2.57517
\(767\) 45.5126 1.64336
\(768\) 59.5309 2.14814
\(769\) 45.4266 1.63813 0.819063 0.573703i \(-0.194494\pi\)
0.819063 + 0.573703i \(0.194494\pi\)
\(770\) 8.44688 0.304404
\(771\) 40.0702 1.44309
\(772\) 82.0023 2.95133
\(773\) 50.6609 1.82215 0.911074 0.412243i \(-0.135255\pi\)
0.911074 + 0.412243i \(0.135255\pi\)
\(774\) 0.0769292 0.00276516
\(775\) 3.64016 0.130758
\(776\) 18.4808 0.663422
\(777\) 6.40858 0.229907
\(778\) −25.8249 −0.925869
\(779\) 4.35220 0.155934
\(780\) 106.517 3.81391
\(781\) 59.7523 2.13810
\(782\) 1.46579 0.0524164
\(783\) 0 0
\(784\) −16.9140 −0.604070
\(785\) 27.8141 0.992727
\(786\) 2.65754 0.0947912
\(787\) 40.0683 1.42828 0.714140 0.700003i \(-0.246818\pi\)
0.714140 + 0.700003i \(0.246818\pi\)
\(788\) 73.5468 2.62000
\(789\) −14.9510 −0.532269
\(790\) −43.3730 −1.54314
\(791\) 5.07397 0.180410
\(792\) 22.5536 0.801407
\(793\) −58.0133 −2.06011
\(794\) −2.73552 −0.0970800
\(795\) 32.5128 1.15311
\(796\) −60.6098 −2.14826
\(797\) 9.11767 0.322965 0.161482 0.986876i \(-0.448373\pi\)
0.161482 + 0.986876i \(0.448373\pi\)
\(798\) −1.06281 −0.0376229
\(799\) −13.9320 −0.492877
\(800\) 2.13885 0.0756196
\(801\) −13.6467 −0.482184
\(802\) 9.22181 0.325633
\(803\) −26.6313 −0.939797
\(804\) 94.4000 3.32923
\(805\) −0.307964 −0.0108543
\(806\) −54.4804 −1.91899
\(807\) 12.5159 0.440581
\(808\) 25.0508 0.881283
\(809\) −4.31479 −0.151700 −0.0758499 0.997119i \(-0.524167\pi\)
−0.0758499 + 0.997119i \(0.524167\pi\)
\(810\) −65.3562 −2.29638
\(811\) −46.7124 −1.64029 −0.820147 0.572153i \(-0.806108\pi\)
−0.820147 + 0.572153i \(0.806108\pi\)
\(812\) 0 0
\(813\) −10.7874 −0.378331
\(814\) 74.1119 2.59762
\(815\) 44.2684 1.55065
\(816\) −9.46615 −0.331381
\(817\) −0.0126704 −0.000443281 0
\(818\) 46.0907 1.61152
\(819\) −2.99628 −0.104699
\(820\) −70.6456 −2.46705
\(821\) −2.27936 −0.0795504 −0.0397752 0.999209i \(-0.512664\pi\)
−0.0397752 + 0.999209i \(0.512664\pi\)
\(822\) −39.5557 −1.37966
\(823\) −26.1115 −0.910191 −0.455096 0.890443i \(-0.650395\pi\)
−0.455096 + 0.890443i \(0.650395\pi\)
\(824\) −25.7121 −0.895724
\(825\) 7.22113 0.251407
\(826\) 7.37130 0.256480
\(827\) 25.6037 0.890327 0.445164 0.895449i \(-0.353146\pi\)
0.445164 + 0.895449i \(0.353146\pi\)
\(828\) −1.77150 −0.0615639
\(829\) −43.4804 −1.51014 −0.755069 0.655645i \(-0.772397\pi\)
−0.755069 + 0.655645i \(0.772397\pi\)
\(830\) 3.90234 0.135452
\(831\) −42.0392 −1.45832
\(832\) −59.6059 −2.06646
\(833\) −12.5220 −0.433860
\(834\) −46.5303 −1.61121
\(835\) −6.15196 −0.212898
\(836\) −8.00270 −0.276779
\(837\) 13.5430 0.468114
\(838\) 4.79982 0.165807
\(839\) −46.9937 −1.62240 −0.811202 0.584766i \(-0.801186\pi\)
−0.811202 + 0.584766i \(0.801186\pi\)
\(840\) 8.00771 0.276292
\(841\) 0 0
\(842\) 95.4268 3.28863
\(843\) 24.6515 0.849043
\(844\) 87.8484 3.02387
\(845\) −44.3977 −1.52733
\(846\) 25.8598 0.889079
\(847\) −1.41827 −0.0487322
\(848\) 15.7195 0.539809
\(849\) 62.2477 2.13633
\(850\) −3.91248 −0.134197
\(851\) −2.70204 −0.0926247
\(852\) 122.036 4.18089
\(853\) 25.7853 0.882872 0.441436 0.897293i \(-0.354469\pi\)
0.441436 + 0.897293i \(0.354469\pi\)
\(854\) −9.39594 −0.321523
\(855\) −1.91905 −0.0656300
\(856\) −21.9915 −0.751655
\(857\) −51.3809 −1.75514 −0.877569 0.479450i \(-0.840836\pi\)
−0.877569 + 0.479450i \(0.840836\pi\)
\(858\) −108.075 −3.68962
\(859\) 18.1709 0.619982 0.309991 0.950740i \(-0.399674\pi\)
0.309991 + 0.950740i \(0.399674\pi\)
\(860\) 0.205668 0.00701322
\(861\) 6.19821 0.211234
\(862\) −34.2735 −1.16736
\(863\) −14.6394 −0.498330 −0.249165 0.968461i \(-0.580156\pi\)
−0.249165 + 0.968461i \(0.580156\pi\)
\(864\) 7.95743 0.270717
\(865\) −20.6003 −0.700430
\(866\) 21.1511 0.718743
\(867\) 28.7152 0.975219
\(868\) −5.74527 −0.195007
\(869\) 28.6539 0.972017
\(870\) 0 0
\(871\) −67.3198 −2.28105
\(872\) −26.1305 −0.884889
\(873\) −6.30748 −0.213476
\(874\) 0.448109 0.0151575
\(875\) −3.77124 −0.127491
\(876\) −54.3909 −1.83770
\(877\) 20.1811 0.681467 0.340734 0.940160i \(-0.389325\pi\)
0.340734 + 0.940160i \(0.389325\pi\)
\(878\) 27.7318 0.935904
\(879\) −16.5206 −0.557228
\(880\) 23.0000 0.775331
\(881\) 17.5588 0.591572 0.295786 0.955254i \(-0.404419\pi\)
0.295786 + 0.955254i \(0.404419\pi\)
\(882\) 23.2427 0.782622
\(883\) −8.49192 −0.285776 −0.142888 0.989739i \(-0.545639\pi\)
−0.142888 + 0.989739i \(0.545639\pi\)
\(884\) 38.1267 1.28234
\(885\) 41.5137 1.39547
\(886\) 84.9704 2.85464
\(887\) −9.27160 −0.311310 −0.155655 0.987812i \(-0.549749\pi\)
−0.155655 + 0.987812i \(0.549749\pi\)
\(888\) 70.2587 2.35773
\(889\) −2.20602 −0.0739875
\(890\) −56.0335 −1.87825
\(891\) 43.1768 1.44648
\(892\) −2.61998 −0.0877234
\(893\) −4.25917 −0.142528
\(894\) −2.58745 −0.0865373
\(895\) −31.4487 −1.05121
\(896\) −7.84506 −0.262085
\(897\) 3.94029 0.131563
\(898\) −49.6776 −1.65776
\(899\) 0 0
\(900\) 4.72850 0.157617
\(901\) 11.6376 0.387706
\(902\) 71.6790 2.38665
\(903\) −0.0180446 −0.000600487 0
\(904\) 55.6270 1.85013
\(905\) −39.8592 −1.32496
\(906\) −32.9664 −1.09524
\(907\) 19.9856 0.663610 0.331805 0.943348i \(-0.392342\pi\)
0.331805 + 0.943348i \(0.392342\pi\)
\(908\) −27.6300 −0.916935
\(909\) −8.54980 −0.283579
\(910\) −12.3027 −0.407832
\(911\) −14.2969 −0.473676 −0.236838 0.971549i \(-0.576111\pi\)
−0.236838 + 0.971549i \(0.576111\pi\)
\(912\) −2.89392 −0.0958271
\(913\) −2.57804 −0.0853205
\(914\) −91.2305 −3.01764
\(915\) −52.9162 −1.74935
\(916\) −40.1086 −1.32523
\(917\) −0.199857 −0.00659987
\(918\) −14.5561 −0.480424
\(919\) 57.8964 1.90983 0.954913 0.296885i \(-0.0959476\pi\)
0.954913 + 0.296885i \(0.0959476\pi\)
\(920\) −3.37628 −0.111313
\(921\) 59.6392 1.96518
\(922\) −42.4369 −1.39759
\(923\) −87.0282 −2.86457
\(924\) −11.3971 −0.374937
\(925\) 7.21230 0.237139
\(926\) −22.0731 −0.725367
\(927\) 8.77552 0.288226
\(928\) 0 0
\(929\) 28.1340 0.923048 0.461524 0.887128i \(-0.347303\pi\)
0.461524 + 0.887128i \(0.347303\pi\)
\(930\) −49.6937 −1.62952
\(931\) −3.82812 −0.125461
\(932\) −58.1859 −1.90594
\(933\) 18.0125 0.589702
\(934\) −18.6805 −0.611244
\(935\) 17.0277 0.556865
\(936\) −32.8489 −1.07370
\(937\) −47.1882 −1.54157 −0.770786 0.637094i \(-0.780136\pi\)
−0.770786 + 0.637094i \(0.780136\pi\)
\(938\) −10.9032 −0.356003
\(939\) −1.84711 −0.0602783
\(940\) 69.1356 2.25495
\(941\) −22.1832 −0.723153 −0.361576 0.932342i \(-0.617761\pi\)
−0.361576 + 0.932342i \(0.617761\pi\)
\(942\) −57.6376 −1.87793
\(943\) −2.61334 −0.0851020
\(944\) 20.0713 0.653266
\(945\) 3.05827 0.0994854
\(946\) −0.208676 −0.00678466
\(947\) 31.0675 1.00956 0.504780 0.863248i \(-0.331574\pi\)
0.504780 + 0.863248i \(0.331574\pi\)
\(948\) 58.5218 1.90070
\(949\) 38.7880 1.25911
\(950\) −1.19609 −0.0388064
\(951\) −55.9503 −1.81431
\(952\) 2.86629 0.0928969
\(953\) 20.2566 0.656175 0.328088 0.944647i \(-0.393596\pi\)
0.328088 + 0.944647i \(0.393596\pi\)
\(954\) −21.6013 −0.699366
\(955\) 18.0185 0.583066
\(956\) 27.7850 0.898630
\(957\) 0 0
\(958\) 42.4329 1.37094
\(959\) 2.97475 0.0960595
\(960\) −54.3688 −1.75475
\(961\) −14.4507 −0.466151
\(962\) −107.943 −3.48021
\(963\) 7.50569 0.241867
\(964\) −19.6588 −0.633167
\(965\) −53.3406 −1.71709
\(966\) 0.638177 0.0205330
\(967\) 26.0892 0.838972 0.419486 0.907762i \(-0.362210\pi\)
0.419486 + 0.907762i \(0.362210\pi\)
\(968\) −15.5487 −0.499756
\(969\) −2.14246 −0.0688258
\(970\) −25.8985 −0.831551
\(971\) −15.3621 −0.492993 −0.246496 0.969144i \(-0.579279\pi\)
−0.246496 + 0.969144i \(0.579279\pi\)
\(972\) 50.9053 1.63279
\(973\) 3.49926 0.112181
\(974\) 50.6603 1.62326
\(975\) −10.5174 −0.336828
\(976\) −25.5842 −0.818931
\(977\) 42.4438 1.35790 0.678949 0.734186i \(-0.262436\pi\)
0.678949 + 0.734186i \(0.262436\pi\)
\(978\) −91.7349 −2.93336
\(979\) 37.0178 1.18310
\(980\) 62.1387 1.98495
\(981\) 8.91830 0.284739
\(982\) −42.3938 −1.35284
\(983\) −29.9384 −0.954886 −0.477443 0.878663i \(-0.658436\pi\)
−0.477443 + 0.878663i \(0.658436\pi\)
\(984\) 67.9523 2.16624
\(985\) −47.8405 −1.52432
\(986\) 0 0
\(987\) −6.06572 −0.193074
\(988\) 11.6558 0.370820
\(989\) 0.00760811 0.000241924 0
\(990\) −31.6060 −1.00450
\(991\) −50.7629 −1.61254 −0.806269 0.591550i \(-0.798516\pi\)
−0.806269 + 0.591550i \(0.798516\pi\)
\(992\) 9.72387 0.308733
\(993\) 39.1878 1.24359
\(994\) −14.0952 −0.447074
\(995\) 39.4252 1.24986
\(996\) −5.26530 −0.166838
\(997\) 8.21297 0.260107 0.130054 0.991507i \(-0.458485\pi\)
0.130054 + 0.991507i \(0.458485\pi\)
\(998\) −69.9250 −2.21344
\(999\) 26.8328 0.848954
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 841.2.a.i.1.2 8
3.2 odd 2 7569.2.a.bi.1.7 8
29.2 odd 28 841.2.e.m.236.2 96
29.3 odd 28 841.2.e.m.270.2 96
29.4 even 14 841.2.d.p.190.2 48
29.5 even 14 841.2.d.p.605.2 48
29.6 even 14 841.2.d.p.645.2 48
29.7 even 7 841.2.d.q.571.7 48
29.8 odd 28 841.2.e.m.267.2 96
29.9 even 14 841.2.d.p.574.7 48
29.10 odd 28 841.2.e.m.651.2 96
29.11 odd 28 841.2.e.m.63.2 96
29.12 odd 4 841.2.b.f.840.2 16
29.13 even 14 841.2.d.p.778.7 48
29.14 odd 28 841.2.e.m.196.15 96
29.15 odd 28 841.2.e.m.196.2 96
29.16 even 7 841.2.d.q.778.2 48
29.17 odd 4 841.2.b.f.840.15 16
29.18 odd 28 841.2.e.m.63.15 96
29.19 odd 28 841.2.e.m.651.15 96
29.20 even 7 841.2.d.q.574.2 48
29.21 odd 28 841.2.e.m.267.15 96
29.22 even 14 841.2.d.p.571.2 48
29.23 even 7 841.2.d.q.645.7 48
29.24 even 7 841.2.d.q.605.7 48
29.25 even 7 841.2.d.q.190.7 48
29.26 odd 28 841.2.e.m.270.15 96
29.27 odd 28 841.2.e.m.236.15 96
29.28 even 2 841.2.a.j.1.7 yes 8
87.86 odd 2 7569.2.a.bd.1.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
841.2.a.i.1.2 8 1.1 even 1 trivial
841.2.a.j.1.7 yes 8 29.28 even 2
841.2.b.f.840.2 16 29.12 odd 4
841.2.b.f.840.15 16 29.17 odd 4
841.2.d.p.190.2 48 29.4 even 14
841.2.d.p.571.2 48 29.22 even 14
841.2.d.p.574.7 48 29.9 even 14
841.2.d.p.605.2 48 29.5 even 14
841.2.d.p.645.2 48 29.6 even 14
841.2.d.p.778.7 48 29.13 even 14
841.2.d.q.190.7 48 29.25 even 7
841.2.d.q.571.7 48 29.7 even 7
841.2.d.q.574.2 48 29.20 even 7
841.2.d.q.605.7 48 29.24 even 7
841.2.d.q.645.7 48 29.23 even 7
841.2.d.q.778.2 48 29.16 even 7
841.2.e.m.63.2 96 29.11 odd 28
841.2.e.m.63.15 96 29.18 odd 28
841.2.e.m.196.2 96 29.15 odd 28
841.2.e.m.196.15 96 29.14 odd 28
841.2.e.m.236.2 96 29.2 odd 28
841.2.e.m.236.15 96 29.27 odd 28
841.2.e.m.267.2 96 29.8 odd 28
841.2.e.m.267.15 96 29.21 odd 28
841.2.e.m.270.2 96 29.3 odd 28
841.2.e.m.270.15 96 29.26 odd 28
841.2.e.m.651.2 96 29.10 odd 28
841.2.e.m.651.15 96 29.19 odd 28
7569.2.a.bd.1.2 8 87.86 odd 2
7569.2.a.bi.1.7 8 3.2 odd 2