Properties

Label 845.2.e.o.191.6
Level $845$
Weight $2$
Character 845.191
Analytic conductor $6.747$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(146,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.146");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} + 17 x^{16} - 18 x^{15} + 230 x^{14} - 185 x^{13} + 996 x^{12} - 534 x^{11} + 3020 x^{10} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 191.6
Root \(1.03666 + 1.79554i\) of defining polynomial
Character \(\chi\) \(=\) 845.191
Dual form 845.2.e.o.146.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.135687 - 0.235017i) q^{2} +(0.159809 - 0.276797i) q^{3} +(0.963178 + 1.66827i) q^{4} +1.00000 q^{5} +(-0.0433679 - 0.0751154i) q^{6} +(1.69076 + 2.92848i) q^{7} +1.06551 q^{8} +(1.44892 + 2.50961i) q^{9} +(0.135687 - 0.235017i) q^{10} +(0.876022 - 1.51732i) q^{11} +0.615697 q^{12} +0.917654 q^{14} +(0.159809 - 0.276797i) q^{15} +(-1.78178 + 3.08613i) q^{16} +(-0.977094 - 1.69238i) q^{17} +0.786399 q^{18} +(-3.56631 - 6.17702i) q^{19} +(0.963178 + 1.66827i) q^{20} +1.08079 q^{21} +(-0.237729 - 0.411760i) q^{22} +(-3.80710 + 6.59409i) q^{23} +(0.170278 - 0.294930i) q^{24} +1.00000 q^{25} +1.88505 q^{27} +(-3.25700 + 5.64129i) q^{28} +(-1.99190 + 3.45007i) q^{29} +(-0.0433679 - 0.0751154i) q^{30} -4.86923 q^{31} +(1.54904 + 2.68301i) q^{32} +(-0.279992 - 0.484961i) q^{33} -0.530316 q^{34} +(1.69076 + 2.92848i) q^{35} +(-2.79114 + 4.83440i) q^{36} +(5.25050 - 9.09413i) q^{37} -1.93560 q^{38} +1.06551 q^{40} +(0.455555 - 0.789045i) q^{41} +(0.146649 - 0.254004i) q^{42} +(-2.29276 - 3.97118i) q^{43} +3.37506 q^{44} +(1.44892 + 2.50961i) q^{45} +(1.03315 + 1.78946i) q^{46} +8.58491 q^{47} +(0.569488 + 0.986383i) q^{48} +(-2.21732 + 3.84051i) q^{49} +(0.135687 - 0.235017i) q^{50} -0.624593 q^{51} +11.9646 q^{53} +(0.255777 - 0.443019i) q^{54} +(0.876022 - 1.51732i) q^{55} +(1.80152 + 3.12032i) q^{56} -2.27971 q^{57} +(0.540549 + 0.936259i) q^{58} +(1.91149 + 3.31079i) q^{59} +0.615697 q^{60} +(-3.99238 - 6.91500i) q^{61} +(-0.660691 + 1.14435i) q^{62} +(-4.89955 + 8.48627i) q^{63} -6.28638 q^{64} -0.151965 q^{66} +(0.236374 - 0.409412i) q^{67} +(1.88223 - 3.26012i) q^{68} +(1.21682 + 2.10759i) q^{69} +0.917654 q^{70} +(-2.75156 - 4.76584i) q^{71} +(1.54384 + 2.67401i) q^{72} -2.93857 q^{73} +(-1.42485 - 2.46791i) q^{74} +(0.159809 - 0.276797i) q^{75} +(6.86998 - 11.8992i) q^{76} +5.92456 q^{77} +4.09938 q^{79} +(-1.78178 + 3.08613i) q^{80} +(-4.04552 + 7.00704i) q^{81} +(-0.123626 - 0.214126i) q^{82} +11.7733 q^{83} +(1.04099 + 1.80306i) q^{84} +(-0.977094 - 1.69238i) q^{85} -1.24439 q^{86} +(0.636646 + 1.10270i) q^{87} +(0.933411 - 1.61671i) q^{88} +(-1.92996 + 3.34279i) q^{89} +0.786399 q^{90} -14.6677 q^{92} +(-0.778146 + 1.34779i) q^{93} +(1.16486 - 2.01760i) q^{94} +(-3.56631 - 6.17702i) q^{95} +0.990200 q^{96} +(-3.47888 - 6.02559i) q^{97} +(0.601723 + 1.04221i) q^{98} +5.07715 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 3 q^{2} - 7 q^{3} - 17 q^{4} + 18 q^{5} + 2 q^{6} - 7 q^{7} + 24 q^{8} - 16 q^{9} - 3 q^{10} + 9 q^{11} + 24 q^{12} - 4 q^{14} - 7 q^{15} - 37 q^{16} + q^{17} - 20 q^{18} + 4 q^{19} - 17 q^{20}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.135687 0.235017i 0.0959451 0.166182i −0.814058 0.580784i \(-0.802746\pi\)
0.910003 + 0.414602i \(0.136079\pi\)
\(3\) 0.159809 0.276797i 0.0922656 0.159809i −0.816198 0.577772i \(-0.803922\pi\)
0.908464 + 0.417963i \(0.137256\pi\)
\(4\) 0.963178 + 1.66827i 0.481589 + 0.834137i
\(5\) 1.00000 0.447214
\(6\) −0.0433679 0.0751154i −0.0177049 0.0306657i
\(7\) 1.69076 + 2.92848i 0.639046 + 1.10686i 0.985642 + 0.168846i \(0.0540041\pi\)
−0.346596 + 0.938014i \(0.612663\pi\)
\(8\) 1.06551 0.376715
\(9\) 1.44892 + 2.50961i 0.482974 + 0.836536i
\(10\) 0.135687 0.235017i 0.0429080 0.0743188i
\(11\) 0.876022 1.51732i 0.264131 0.457488i −0.703205 0.710987i \(-0.748248\pi\)
0.967335 + 0.253500i \(0.0815817\pi\)
\(12\) 0.615697 0.177736
\(13\) 0 0
\(14\) 0.917654 0.245253
\(15\) 0.159809 0.276797i 0.0412624 0.0714687i
\(16\) −1.78178 + 3.08613i −0.445445 + 0.771534i
\(17\) −0.977094 1.69238i −0.236980 0.410462i 0.722866 0.690988i \(-0.242824\pi\)
−0.959846 + 0.280526i \(0.909491\pi\)
\(18\) 0.786399 0.185356
\(19\) −3.56631 6.17702i −0.818167 1.41711i −0.907031 0.421063i \(-0.861657\pi\)
0.0888645 0.996044i \(-0.471676\pi\)
\(20\) 0.963178 + 1.66827i 0.215373 + 0.373037i
\(21\) 1.08079 0.235848
\(22\) −0.237729 0.411760i −0.0506841 0.0877874i
\(23\) −3.80710 + 6.59409i −0.793835 + 1.37496i 0.129741 + 0.991548i \(0.458585\pi\)
−0.923576 + 0.383415i \(0.874748\pi\)
\(24\) 0.170278 0.294930i 0.0347578 0.0602023i
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 1.88505 0.362779
\(28\) −3.25700 + 5.64129i −0.615515 + 1.06610i
\(29\) −1.99190 + 3.45007i −0.369886 + 0.640662i −0.989547 0.144208i \(-0.953937\pi\)
0.619661 + 0.784869i \(0.287270\pi\)
\(30\) −0.0433679 0.0751154i −0.00791786 0.0137141i
\(31\) −4.86923 −0.874540 −0.437270 0.899330i \(-0.644055\pi\)
−0.437270 + 0.899330i \(0.644055\pi\)
\(32\) 1.54904 + 2.68301i 0.273834 + 0.474294i
\(33\) −0.279992 0.484961i −0.0487404 0.0844208i
\(34\) −0.530316 −0.0909484
\(35\) 1.69076 + 2.92848i 0.285790 + 0.495003i
\(36\) −2.79114 + 4.83440i −0.465190 + 0.805733i
\(37\) 5.25050 9.09413i 0.863176 1.49507i −0.00567044 0.999984i \(-0.501805\pi\)
0.868847 0.495081i \(-0.164862\pi\)
\(38\) −1.93560 −0.313997
\(39\) 0 0
\(40\) 1.06551 0.168472
\(41\) 0.455555 0.789045i 0.0711458 0.123228i −0.828258 0.560347i \(-0.810668\pi\)
0.899404 + 0.437119i \(0.144001\pi\)
\(42\) 0.146649 0.254004i 0.0226285 0.0391937i
\(43\) −2.29276 3.97118i −0.349643 0.605600i 0.636543 0.771241i \(-0.280364\pi\)
−0.986186 + 0.165642i \(0.947030\pi\)
\(44\) 3.37506 0.508810
\(45\) 1.44892 + 2.50961i 0.215993 + 0.374110i
\(46\) 1.03315 + 1.78946i 0.152329 + 0.263842i
\(47\) 8.58491 1.25224 0.626119 0.779728i \(-0.284643\pi\)
0.626119 + 0.779728i \(0.284643\pi\)
\(48\) 0.569488 + 0.986383i 0.0821986 + 0.142372i
\(49\) −2.21732 + 3.84051i −0.316760 + 0.548644i
\(50\) 0.135687 0.235017i 0.0191890 0.0332364i
\(51\) −0.624593 −0.0874605
\(52\) 0 0
\(53\) 11.9646 1.64347 0.821734 0.569871i \(-0.193007\pi\)
0.821734 + 0.569871i \(0.193007\pi\)
\(54\) 0.255777 0.443019i 0.0348069 0.0602873i
\(55\) 0.876022 1.51732i 0.118123 0.204595i
\(56\) 1.80152 + 3.12032i 0.240738 + 0.416971i
\(57\) −2.27971 −0.301955
\(58\) 0.540549 + 0.936259i 0.0709776 + 0.122937i
\(59\) 1.91149 + 3.31079i 0.248854 + 0.431028i 0.963208 0.268756i \(-0.0866127\pi\)
−0.714354 + 0.699785i \(0.753279\pi\)
\(60\) 0.615697 0.0794862
\(61\) −3.99238 6.91500i −0.511172 0.885375i −0.999916 0.0129483i \(-0.995878\pi\)
0.488745 0.872427i \(-0.337455\pi\)
\(62\) −0.660691 + 1.14435i −0.0839078 + 0.145333i
\(63\) −4.89955 + 8.48627i −0.617286 + 1.06917i
\(64\) −6.28638 −0.785798
\(65\) 0 0
\(66\) −0.151965 −0.0187056
\(67\) 0.236374 0.409412i 0.0288777 0.0500177i −0.851225 0.524800i \(-0.824140\pi\)
0.880103 + 0.474783i \(0.157473\pi\)
\(68\) 1.88223 3.26012i 0.228254 0.395348i
\(69\) 1.21682 + 2.10759i 0.146487 + 0.253724i
\(70\) 0.917654 0.109681
\(71\) −2.75156 4.76584i −0.326550 0.565602i 0.655275 0.755391i \(-0.272553\pi\)
−0.981825 + 0.189789i \(0.939220\pi\)
\(72\) 1.54384 + 2.67401i 0.181943 + 0.315135i
\(73\) −2.93857 −0.343934 −0.171967 0.985103i \(-0.555012\pi\)
−0.171967 + 0.985103i \(0.555012\pi\)
\(74\) −1.42485 2.46791i −0.165635 0.286888i
\(75\) 0.159809 0.276797i 0.0184531 0.0319618i
\(76\) 6.86998 11.8992i 0.788040 1.36493i
\(77\) 5.92456 0.675167
\(78\) 0 0
\(79\) 4.09938 0.461216 0.230608 0.973047i \(-0.425928\pi\)
0.230608 + 0.973047i \(0.425928\pi\)
\(80\) −1.78178 + 3.08613i −0.199209 + 0.345040i
\(81\) −4.04552 + 7.00704i −0.449502 + 0.778560i
\(82\) −0.123626 0.214126i −0.0136522 0.0236463i
\(83\) 11.7733 1.29229 0.646144 0.763215i \(-0.276381\pi\)
0.646144 + 0.763215i \(0.276381\pi\)
\(84\) 1.04099 + 1.80306i 0.113582 + 0.196729i
\(85\) −0.977094 1.69238i −0.105981 0.183564i
\(86\) −1.24439 −0.134186
\(87\) 0.636646 + 1.10270i 0.0682556 + 0.118222i
\(88\) 0.933411 1.61671i 0.0995019 0.172342i
\(89\) −1.92996 + 3.34279i −0.204576 + 0.354335i −0.949997 0.312258i \(-0.898915\pi\)
0.745422 + 0.666593i \(0.232248\pi\)
\(90\) 0.786399 0.0828937
\(91\) 0 0
\(92\) −14.6677 −1.52921
\(93\) −0.778146 + 1.34779i −0.0806899 + 0.139759i
\(94\) 1.16486 2.01760i 0.120146 0.208099i
\(95\) −3.56631 6.17702i −0.365895 0.633749i
\(96\) 0.990200 0.101062
\(97\) −3.47888 6.02559i −0.353226 0.611806i 0.633586 0.773672i \(-0.281582\pi\)
−0.986813 + 0.161866i \(0.948249\pi\)
\(98\) 0.601723 + 1.04221i 0.0607832 + 0.105280i
\(99\) 5.07715 0.510273
\(100\) 0.963178 + 1.66827i 0.0963178 + 0.166827i
\(101\) 8.94614 15.4952i 0.890175 1.54183i 0.0505093 0.998724i \(-0.483916\pi\)
0.839665 0.543104i \(-0.182751\pi\)
\(102\) −0.0847491 + 0.146790i −0.00839141 + 0.0145343i
\(103\) 10.2561 1.01056 0.505281 0.862955i \(-0.331389\pi\)
0.505281 + 0.862955i \(0.331389\pi\)
\(104\) 0 0
\(105\) 1.08079 0.105474
\(106\) 1.62344 2.81189i 0.157683 0.273115i
\(107\) −6.44930 + 11.1705i −0.623478 + 1.07990i 0.365355 + 0.930868i \(0.380948\pi\)
−0.988833 + 0.149027i \(0.952386\pi\)
\(108\) 1.81564 + 3.14479i 0.174710 + 0.302607i
\(109\) −10.4476 −1.00070 −0.500348 0.865825i \(-0.666794\pi\)
−0.500348 + 0.865825i \(0.666794\pi\)
\(110\) −0.237729 0.411760i −0.0226666 0.0392597i
\(111\) −1.67815 2.90664i −0.159283 0.275886i
\(112\) −12.0502 −1.13864
\(113\) 9.48828 + 16.4342i 0.892582 + 1.54600i 0.836769 + 0.547557i \(0.184442\pi\)
0.0558139 + 0.998441i \(0.482225\pi\)
\(114\) −0.309327 + 0.535769i −0.0289711 + 0.0501794i
\(115\) −3.80710 + 6.59409i −0.355014 + 0.614902i
\(116\) −7.67421 −0.712533
\(117\) 0 0
\(118\) 1.03745 0.0955054
\(119\) 3.30406 5.72280i 0.302883 0.524608i
\(120\) 0.170278 0.294930i 0.0155442 0.0269233i
\(121\) 3.96517 + 6.86788i 0.360470 + 0.624352i
\(122\) −2.16685 −0.196178
\(123\) −0.145603 0.252193i −0.0131286 0.0227394i
\(124\) −4.68994 8.12321i −0.421169 0.729486i
\(125\) 1.00000 0.0894427
\(126\) 1.32961 + 2.30295i 0.118451 + 0.205163i
\(127\) 4.94244 8.56056i 0.438571 0.759627i −0.559009 0.829162i \(-0.688818\pi\)
0.997580 + 0.0695347i \(0.0221515\pi\)
\(128\) −3.95106 + 6.84343i −0.349227 + 0.604880i
\(129\) −1.46561 −0.129040
\(130\) 0 0
\(131\) −11.4705 −1.00218 −0.501089 0.865396i \(-0.667067\pi\)
−0.501089 + 0.865396i \(0.667067\pi\)
\(132\) 0.539365 0.934207i 0.0469457 0.0813123i
\(133\) 12.0595 20.8877i 1.04569 1.81119i
\(134\) −0.0641458 0.111104i −0.00554135 0.00959790i
\(135\) 1.88505 0.162240
\(136\) −1.04110 1.80324i −0.0892739 0.154627i
\(137\) −6.54130 11.3299i −0.558861 0.967976i −0.997592 0.0693572i \(-0.977905\pi\)
0.438731 0.898619i \(-0.355428\pi\)
\(138\) 0.660424 0.0562190
\(139\) −5.98810 10.3717i −0.507904 0.879715i −0.999958 0.00915055i \(-0.997087\pi\)
0.492054 0.870564i \(-0.336246\pi\)
\(140\) −3.25700 + 5.64129i −0.275267 + 0.476776i
\(141\) 1.37194 2.37628i 0.115538 0.200118i
\(142\) −1.49340 −0.125324
\(143\) 0 0
\(144\) −10.3266 −0.860554
\(145\) −1.99190 + 3.45007i −0.165418 + 0.286513i
\(146\) −0.398726 + 0.690614i −0.0329988 + 0.0571556i
\(147\) 0.708694 + 1.22749i 0.0584521 + 0.101242i
\(148\) 20.2287 1.66278
\(149\) 8.15261 + 14.1207i 0.667887 + 1.15681i 0.978494 + 0.206276i \(0.0661346\pi\)
−0.310606 + 0.950539i \(0.600532\pi\)
\(150\) −0.0433679 0.0751154i −0.00354098 0.00613315i
\(151\) −8.75415 −0.712402 −0.356201 0.934409i \(-0.615928\pi\)
−0.356201 + 0.934409i \(0.615928\pi\)
\(152\) −3.79994 6.58168i −0.308216 0.533845i
\(153\) 2.83147 4.90424i 0.228911 0.396485i
\(154\) 0.803886 1.39237i 0.0647790 0.112200i
\(155\) −4.86923 −0.391106
\(156\) 0 0
\(157\) 6.48821 0.517816 0.258908 0.965902i \(-0.416637\pi\)
0.258908 + 0.965902i \(0.416637\pi\)
\(158\) 0.556232 0.963423i 0.0442515 0.0766458i
\(159\) 1.91205 3.31177i 0.151636 0.262641i
\(160\) 1.54904 + 2.68301i 0.122462 + 0.212111i
\(161\) −25.7475 −2.02919
\(162\) 1.09785 + 1.90153i 0.0862551 + 0.149398i
\(163\) −1.92467 3.33362i −0.150751 0.261109i 0.780752 0.624840i \(-0.214836\pi\)
−0.931504 + 0.363731i \(0.881503\pi\)
\(164\) 1.75512 0.137052
\(165\) −0.279992 0.484961i −0.0217974 0.0377541i
\(166\) 1.59748 2.76692i 0.123989 0.214755i
\(167\) −3.42947 + 5.94001i −0.265380 + 0.459652i −0.967663 0.252246i \(-0.918831\pi\)
0.702283 + 0.711898i \(0.252164\pi\)
\(168\) 1.15159 0.0888474
\(169\) 0 0
\(170\) −0.530316 −0.0406733
\(171\) 10.3346 17.9001i 0.790307 1.36885i
\(172\) 4.41668 7.64991i 0.336769 0.583300i
\(173\) −8.01021 13.8741i −0.609005 1.05483i −0.991405 0.130831i \(-0.958235\pi\)
0.382399 0.923997i \(-0.375098\pi\)
\(174\) 0.345538 0.0261952
\(175\) 1.69076 + 2.92848i 0.127809 + 0.221372i
\(176\) 3.12176 + 5.40704i 0.235311 + 0.407571i
\(177\) 1.22189 0.0918428
\(178\) 0.523741 + 0.907146i 0.0392560 + 0.0679935i
\(179\) 4.04154 7.00016i 0.302079 0.523216i −0.674528 0.738250i \(-0.735653\pi\)
0.976607 + 0.215033i \(0.0689860\pi\)
\(180\) −2.79114 + 4.83440i −0.208039 + 0.360335i
\(181\) 11.0898 0.824298 0.412149 0.911117i \(-0.364778\pi\)
0.412149 + 0.911117i \(0.364778\pi\)
\(182\) 0 0
\(183\) −2.55207 −0.188654
\(184\) −4.05650 + 7.02607i −0.299049 + 0.517969i
\(185\) 5.25050 9.09413i 0.386024 0.668613i
\(186\) 0.211168 + 0.365754i 0.0154836 + 0.0268184i
\(187\) −3.42382 −0.250375
\(188\) 8.26879 + 14.3220i 0.603064 + 1.04454i
\(189\) 3.18717 + 5.52034i 0.231832 + 0.401546i
\(190\) −1.93560 −0.140424
\(191\) −10.8766 18.8388i −0.787003 1.36313i −0.927795 0.373090i \(-0.878298\pi\)
0.140792 0.990039i \(-0.455035\pi\)
\(192\) −1.00462 + 1.74005i −0.0725022 + 0.125577i
\(193\) −11.2643 + 19.5103i −0.810820 + 1.40438i 0.101472 + 0.994838i \(0.467645\pi\)
−0.912291 + 0.409542i \(0.865688\pi\)
\(194\) −1.88815 −0.135561
\(195\) 0 0
\(196\) −8.54270 −0.610193
\(197\) 8.63744 14.9605i 0.615392 1.06589i −0.374923 0.927056i \(-0.622331\pi\)
0.990316 0.138835i \(-0.0443357\pi\)
\(198\) 0.688903 1.19322i 0.0489582 0.0847981i
\(199\) −8.74503 15.1468i −0.619919 1.07373i −0.989500 0.144532i \(-0.953832\pi\)
0.369581 0.929198i \(-0.379501\pi\)
\(200\) 1.06551 0.0753430
\(201\) −0.0755494 0.130855i −0.00532884 0.00922982i
\(202\) −2.42775 4.20499i −0.170816 0.295862i
\(203\) −13.4713 −0.945498
\(204\) −0.601594 1.04199i −0.0421200 0.0729540i
\(205\) 0.455555 0.789045i 0.0318174 0.0551093i
\(206\) 1.39162 2.41035i 0.0969585 0.167937i
\(207\) −22.0648 −1.53361
\(208\) 0 0
\(209\) −12.4967 −0.864412
\(210\) 0.146649 0.254004i 0.0101198 0.0175279i
\(211\) −3.16782 + 5.48682i −0.218081 + 0.377728i −0.954221 0.299101i \(-0.903313\pi\)
0.736140 + 0.676829i \(0.236647\pi\)
\(212\) 11.5241 + 19.9603i 0.791476 + 1.37088i
\(213\) −1.75889 −0.120517
\(214\) 1.75017 + 3.03139i 0.119639 + 0.207221i
\(215\) −2.29276 3.97118i −0.156365 0.270832i
\(216\) 2.00855 0.136664
\(217\) −8.23269 14.2594i −0.558871 0.967993i
\(218\) −1.41760 + 2.45535i −0.0960118 + 0.166297i
\(219\) −0.469610 + 0.813388i −0.0317333 + 0.0549637i
\(220\) 3.37506 0.227547
\(221\) 0 0
\(222\) −0.910812 −0.0611297
\(223\) −11.7474 + 20.3471i −0.786664 + 1.36254i 0.141335 + 0.989962i \(0.454860\pi\)
−0.928000 + 0.372581i \(0.878473\pi\)
\(224\) −5.23810 + 9.07265i −0.349985 + 0.606192i
\(225\) 1.44892 + 2.50961i 0.0965948 + 0.167307i
\(226\) 5.14974 0.342556
\(227\) −4.79699 8.30862i −0.318387 0.551463i 0.661765 0.749712i \(-0.269808\pi\)
−0.980152 + 0.198249i \(0.936475\pi\)
\(228\) −2.19577 3.80318i −0.145418 0.251872i
\(229\) −7.23000 −0.477772 −0.238886 0.971048i \(-0.576782\pi\)
−0.238886 + 0.971048i \(0.576782\pi\)
\(230\) 1.03315 + 1.78946i 0.0681237 + 0.117994i
\(231\) 0.946797 1.63990i 0.0622947 0.107898i
\(232\) −2.12239 + 3.67609i −0.139342 + 0.241347i
\(233\) −0.429924 −0.0281652 −0.0140826 0.999901i \(-0.504483\pi\)
−0.0140826 + 0.999901i \(0.504483\pi\)
\(234\) 0 0
\(235\) 8.58491 0.560017
\(236\) −3.68220 + 6.37776i −0.239691 + 0.415157i
\(237\) 0.655117 1.13470i 0.0425544 0.0737064i
\(238\) −0.896635 1.55302i −0.0581202 0.100667i
\(239\) −12.7450 −0.824405 −0.412203 0.911092i \(-0.635240\pi\)
−0.412203 + 0.911092i \(0.635240\pi\)
\(240\) 0.569488 + 0.986383i 0.0367603 + 0.0636707i
\(241\) −9.56689 16.5703i −0.616258 1.06739i −0.990162 0.139922i \(-0.955315\pi\)
0.373905 0.927467i \(-0.378019\pi\)
\(242\) 2.15209 0.138341
\(243\) 4.12060 + 7.13709i 0.264337 + 0.457845i
\(244\) 7.69074 13.3208i 0.492349 0.852774i
\(245\) −2.21732 + 3.84051i −0.141659 + 0.245361i
\(246\) −0.0790259 −0.00503851
\(247\) 0 0
\(248\) −5.18821 −0.329452
\(249\) 1.88148 3.25881i 0.119234 0.206519i
\(250\) 0.135687 0.235017i 0.00858159 0.0148638i
\(251\) −0.205908 0.356642i −0.0129968 0.0225111i 0.859454 0.511213i \(-0.170804\pi\)
−0.872451 + 0.488702i \(0.837470\pi\)
\(252\) −18.8766 −1.18911
\(253\) 6.67021 + 11.5531i 0.419352 + 0.726340i
\(254\) −1.34125 2.32311i −0.0841575 0.145765i
\(255\) −0.624593 −0.0391135
\(256\) −5.21417 9.03121i −0.325886 0.564451i
\(257\) 1.23778 2.14390i 0.0772105 0.133733i −0.824835 0.565374i \(-0.808732\pi\)
0.902045 + 0.431641i \(0.142065\pi\)
\(258\) −0.198865 + 0.344444i −0.0123808 + 0.0214441i
\(259\) 35.5093 2.20644
\(260\) 0 0
\(261\) −11.5444 −0.714582
\(262\) −1.55639 + 2.69575i −0.0961542 + 0.166544i
\(263\) 5.67953 9.83724i 0.350215 0.606590i −0.636072 0.771630i \(-0.719442\pi\)
0.986287 + 0.165039i \(0.0527752\pi\)
\(264\) −0.298334 0.516730i −0.0183612 0.0318026i
\(265\) 11.9646 0.734981
\(266\) −3.27264 5.66837i −0.200658 0.347550i
\(267\) 0.616850 + 1.06841i 0.0377506 + 0.0653859i
\(268\) 0.910682 0.0556288
\(269\) 14.8444 + 25.7112i 0.905078 + 1.56764i 0.820812 + 0.571199i \(0.193521\pi\)
0.0842665 + 0.996443i \(0.473145\pi\)
\(270\) 0.255777 0.443019i 0.0155661 0.0269613i
\(271\) 7.38804 12.7965i 0.448792 0.777330i −0.549516 0.835483i \(-0.685188\pi\)
0.998308 + 0.0581532i \(0.0185212\pi\)
\(272\) 6.96387 0.422247
\(273\) 0 0
\(274\) −3.55028 −0.214480
\(275\) 0.876022 1.51732i 0.0528261 0.0914975i
\(276\) −2.34402 + 4.05996i −0.141093 + 0.244381i
\(277\) 0.973258 + 1.68573i 0.0584774 + 0.101286i 0.893782 0.448501i \(-0.148042\pi\)
−0.835305 + 0.549787i \(0.814709\pi\)
\(278\) −3.25002 −0.194924
\(279\) −7.05514 12.2199i −0.422380 0.731584i
\(280\) 1.80152 + 3.12032i 0.107661 + 0.186475i
\(281\) 18.5256 1.10515 0.552573 0.833464i \(-0.313646\pi\)
0.552573 + 0.833464i \(0.313646\pi\)
\(282\) −0.372309 0.644859i −0.0221707 0.0384008i
\(283\) −6.54758 + 11.3407i −0.389214 + 0.674138i −0.992344 0.123505i \(-0.960587\pi\)
0.603130 + 0.797643i \(0.293920\pi\)
\(284\) 5.30049 9.18072i 0.314526 0.544775i
\(285\) −2.27971 −0.135038
\(286\) 0 0
\(287\) 3.08093 0.181862
\(288\) −4.48887 + 7.77496i −0.264509 + 0.458144i
\(289\) 6.59057 11.4152i 0.387681 0.671483i
\(290\) 0.540549 + 0.936259i 0.0317421 + 0.0549790i
\(291\) −2.22382 −0.130363
\(292\) −2.83037 4.90234i −0.165635 0.286888i
\(293\) 0.603763 + 1.04575i 0.0352722 + 0.0610933i 0.883123 0.469142i \(-0.155437\pi\)
−0.847850 + 0.530236i \(0.822104\pi\)
\(294\) 0.384642 0.0224328
\(295\) 1.91149 + 3.31079i 0.111291 + 0.192762i
\(296\) 5.59446 9.68988i 0.325171 0.563213i
\(297\) 1.65135 2.86022i 0.0958210 0.165967i
\(298\) 4.42481 0.256322
\(299\) 0 0
\(300\) 0.615697 0.0355473
\(301\) 7.75301 13.4286i 0.446876 0.774012i
\(302\) −1.18782 + 2.05737i −0.0683515 + 0.118388i
\(303\) −2.85934 4.95253i −0.164265 0.284515i
\(304\) 25.4175 1.45779
\(305\) −3.99238 6.91500i −0.228603 0.395952i
\(306\) −0.768386 1.33088i −0.0439257 0.0760815i
\(307\) −21.9275 −1.25147 −0.625733 0.780037i \(-0.715200\pi\)
−0.625733 + 0.780037i \(0.715200\pi\)
\(308\) 5.70641 + 9.88379i 0.325153 + 0.563181i
\(309\) 1.63901 2.83885i 0.0932401 0.161497i
\(310\) −0.660691 + 1.14435i −0.0375247 + 0.0649947i
\(311\) −12.5966 −0.714288 −0.357144 0.934049i \(-0.616249\pi\)
−0.357144 + 0.934049i \(0.616249\pi\)
\(312\) 0 0
\(313\) 26.8268 1.51634 0.758169 0.652058i \(-0.226094\pi\)
0.758169 + 0.652058i \(0.226094\pi\)
\(314\) 0.880366 1.52484i 0.0496819 0.0860516i
\(315\) −4.89955 + 8.48627i −0.276058 + 0.478147i
\(316\) 3.94843 + 6.83889i 0.222117 + 0.384718i
\(317\) 17.1279 0.961999 0.481000 0.876721i \(-0.340274\pi\)
0.481000 + 0.876721i \(0.340274\pi\)
\(318\) −0.518881 0.898728i −0.0290974 0.0503982i
\(319\) 3.48990 + 6.04468i 0.195397 + 0.338437i
\(320\) −6.28638 −0.351420
\(321\) 2.06131 + 3.57030i 0.115051 + 0.199274i
\(322\) −3.49360 + 6.05110i −0.194691 + 0.337214i
\(323\) −6.96924 + 12.0711i −0.387779 + 0.671652i
\(324\) −15.5862 −0.865901
\(325\) 0 0
\(326\) −1.04461 −0.0578555
\(327\) −1.66961 + 2.89185i −0.0923298 + 0.159920i
\(328\) 0.485399 0.840735i 0.0268017 0.0464218i
\(329\) 14.5150 + 25.1407i 0.800237 + 1.38605i
\(330\) −0.151965 −0.00836540
\(331\) 0.715309 + 1.23895i 0.0393169 + 0.0680989i 0.885014 0.465564i \(-0.154148\pi\)
−0.845697 + 0.533663i \(0.820815\pi\)
\(332\) 11.3398 + 19.6411i 0.622352 + 1.07794i
\(333\) 30.4302 1.66757
\(334\) 0.930668 + 1.61196i 0.0509239 + 0.0882028i
\(335\) 0.236374 0.409412i 0.0129145 0.0223686i
\(336\) −1.92573 + 3.33547i −0.105057 + 0.181965i
\(337\) −7.48872 −0.407937 −0.203968 0.978977i \(-0.565384\pi\)
−0.203968 + 0.978977i \(0.565384\pi\)
\(338\) 0 0
\(339\) 6.06524 0.329419
\(340\) 1.88223 3.26012i 0.102078 0.176805i
\(341\) −4.26555 + 7.38816i −0.230993 + 0.400091i
\(342\) −2.80454 4.85761i −0.151652 0.262669i
\(343\) 8.67480 0.468395
\(344\) −2.44296 4.23134i −0.131716 0.228138i
\(345\) 1.21682 + 2.10759i 0.0655112 + 0.113469i
\(346\) −4.34752 −0.233724
\(347\) −3.48406 6.03457i −0.187034 0.323953i 0.757226 0.653153i \(-0.226554\pi\)
−0.944260 + 0.329200i \(0.893221\pi\)
\(348\) −1.22641 + 2.12420i −0.0657423 + 0.113869i
\(349\) 10.9869 19.0299i 0.588116 1.01865i −0.406363 0.913712i \(-0.633203\pi\)
0.994479 0.104935i \(-0.0334635\pi\)
\(350\) 0.917654 0.0490507
\(351\) 0 0
\(352\) 5.42797 0.289312
\(353\) 6.50920 11.2743i 0.346450 0.600069i −0.639166 0.769069i \(-0.720720\pi\)
0.985616 + 0.169000i \(0.0540538\pi\)
\(354\) 0.165794 0.287164i 0.00881187 0.0152626i
\(355\) −2.75156 4.76584i −0.146038 0.252945i
\(356\) −7.43559 −0.394085
\(357\) −1.05603 1.82911i −0.0558913 0.0968066i
\(358\) −1.09677 1.89966i −0.0579660 0.100400i
\(359\) −9.99211 −0.527363 −0.263682 0.964610i \(-0.584937\pi\)
−0.263682 + 0.964610i \(0.584937\pi\)
\(360\) 1.54384 + 2.67401i 0.0813676 + 0.140933i
\(361\) −15.9371 + 27.6038i −0.838794 + 1.45283i
\(362\) 1.50474 2.60628i 0.0790873 0.136983i
\(363\) 2.53468 0.133036
\(364\) 0 0
\(365\) −2.93857 −0.153812
\(366\) −0.346282 + 0.599778i −0.0181005 + 0.0313509i
\(367\) −12.6441 + 21.9003i −0.660018 + 1.14318i 0.320593 + 0.947217i \(0.396118\pi\)
−0.980610 + 0.195967i \(0.937215\pi\)
\(368\) −13.5668 23.4984i −0.707220 1.22494i
\(369\) 2.64026 0.137446
\(370\) −1.42485 2.46791i −0.0740743 0.128300i
\(371\) 20.2293 + 35.0381i 1.05025 + 1.81909i
\(372\) −2.99797 −0.155438
\(373\) −7.13514 12.3584i −0.369444 0.639895i 0.620035 0.784574i \(-0.287118\pi\)
−0.989479 + 0.144679i \(0.953785\pi\)
\(374\) −0.464568 + 0.804656i −0.0240222 + 0.0416078i
\(375\) 0.159809 0.276797i 0.00825249 0.0142937i
\(376\) 9.14730 0.471736
\(377\) 0 0
\(378\) 1.72983 0.0889728
\(379\) 3.50670 6.07379i 0.180127 0.311990i −0.761796 0.647816i \(-0.775682\pi\)
0.941924 + 0.335827i \(0.109016\pi\)
\(380\) 6.86998 11.8992i 0.352422 0.610414i
\(381\) −1.57969 2.73611i −0.0809301 0.140175i
\(382\) −5.90325 −0.302036
\(383\) 2.34668 + 4.06457i 0.119910 + 0.207690i 0.919732 0.392547i \(-0.128406\pi\)
−0.799822 + 0.600237i \(0.795073\pi\)
\(384\) 1.26283 + 2.18728i 0.0644434 + 0.111619i
\(385\) 5.92456 0.301944
\(386\) 3.05683 + 5.29458i 0.155588 + 0.269487i
\(387\) 6.64407 11.5079i 0.337737 0.584978i
\(388\) 6.70156 11.6074i 0.340220 0.589278i
\(389\) −9.34682 −0.473902 −0.236951 0.971522i \(-0.576148\pi\)
−0.236951 + 0.971522i \(0.576148\pi\)
\(390\) 0 0
\(391\) 14.8796 0.752493
\(392\) −2.36258 + 4.09210i −0.119328 + 0.206682i
\(393\) −1.83308 + 3.17499i −0.0924667 + 0.160157i
\(394\) −2.34398 4.05989i −0.118088 0.204534i
\(395\) 4.09938 0.206262
\(396\) 4.89020 + 8.47008i 0.245742 + 0.425637i
\(397\) −10.6067 18.3713i −0.532334 0.922029i −0.999287 0.0377472i \(-0.987982\pi\)
0.466954 0.884282i \(-0.345352\pi\)
\(398\) −4.74634 −0.237913
\(399\) −3.85443 6.67608i −0.192963 0.334222i
\(400\) −1.78178 + 3.08613i −0.0890890 + 0.154307i
\(401\) 9.10862 15.7766i 0.454863 0.787845i −0.543818 0.839203i \(-0.683022\pi\)
0.998680 + 0.0513581i \(0.0163550\pi\)
\(402\) −0.0410042 −0.00204511
\(403\) 0 0
\(404\) 34.4669 1.71479
\(405\) −4.04552 + 7.00704i −0.201023 + 0.348183i
\(406\) −1.82787 + 3.16597i −0.0907159 + 0.157125i
\(407\) −9.19910 15.9333i −0.455983 0.789785i
\(408\) −0.665510 −0.0329477
\(409\) −2.18068 3.77705i −0.107828 0.186763i 0.807062 0.590466i \(-0.201056\pi\)
−0.914890 + 0.403703i \(0.867723\pi\)
\(410\) −0.123626 0.214126i −0.00610544 0.0105749i
\(411\) −4.18143 −0.206255
\(412\) 9.87843 + 17.1099i 0.486675 + 0.842946i
\(413\) −6.46372 + 11.1955i −0.318059 + 0.550894i
\(414\) −2.99390 + 5.18559i −0.147142 + 0.254858i
\(415\) 11.7733 0.577929
\(416\) 0 0
\(417\) −3.82780 −0.187448
\(418\) −1.69563 + 2.93692i −0.0829361 + 0.143650i
\(419\) −8.52773 + 14.7705i −0.416607 + 0.721584i −0.995596 0.0937512i \(-0.970114\pi\)
0.578989 + 0.815336i \(0.303448\pi\)
\(420\) 1.04099 + 1.80306i 0.0507953 + 0.0879801i
\(421\) −1.27996 −0.0623816 −0.0311908 0.999513i \(-0.509930\pi\)
−0.0311908 + 0.999513i \(0.509930\pi\)
\(422\) 0.859662 + 1.48898i 0.0418477 + 0.0724824i
\(423\) 12.4389 + 21.5447i 0.604798 + 1.04754i
\(424\) 12.7484 0.619119
\(425\) −0.977094 1.69238i −0.0473960 0.0820923i
\(426\) −0.238659 + 0.413370i −0.0115631 + 0.0200278i
\(427\) 13.5003 23.3832i 0.653325 1.13159i
\(428\) −24.8473 −1.20104
\(429\) 0 0
\(430\) −1.24439 −0.0600099
\(431\) −16.4366 + 28.4691i −0.791725 + 1.37131i 0.133173 + 0.991093i \(0.457483\pi\)
−0.924898 + 0.380215i \(0.875850\pi\)
\(432\) −3.35875 + 5.81753i −0.161598 + 0.279896i
\(433\) 14.1311 + 24.4758i 0.679097 + 1.17623i 0.975253 + 0.221091i \(0.0709618\pi\)
−0.296156 + 0.955140i \(0.595705\pi\)
\(434\) −4.46827 −0.214484
\(435\) 0.636646 + 1.10270i 0.0305248 + 0.0528706i
\(436\) −10.0629 17.4294i −0.481924 0.834717i
\(437\) 54.3091 2.59796
\(438\) 0.127440 + 0.220732i 0.00608931 + 0.0105470i
\(439\) −13.1310 + 22.7436i −0.626711 + 1.08549i 0.361497 + 0.932373i \(0.382266\pi\)
−0.988207 + 0.153121i \(0.951067\pi\)
\(440\) 0.933411 1.61671i 0.0444986 0.0770739i
\(441\) −12.8509 −0.611948
\(442\) 0 0
\(443\) −14.0477 −0.667427 −0.333714 0.942674i \(-0.608302\pi\)
−0.333714 + 0.942674i \(0.608302\pi\)
\(444\) 3.23272 5.59923i 0.153418 0.265728i
\(445\) −1.92996 + 3.34279i −0.0914890 + 0.158464i
\(446\) 3.18794 + 5.52167i 0.150953 + 0.261459i
\(447\) 5.21143 0.246492
\(448\) −10.6288 18.4095i −0.502161 0.869769i
\(449\) 2.22952 + 3.86164i 0.105218 + 0.182242i 0.913827 0.406104i \(-0.133113\pi\)
−0.808609 + 0.588346i \(0.799779\pi\)
\(450\) 0.786399 0.0370712
\(451\) −0.798153 1.38244i −0.0375836 0.0650966i
\(452\) −18.2778 + 31.6581i −0.859716 + 1.48907i
\(453\) −1.39899 + 2.42312i −0.0657303 + 0.113848i
\(454\) −2.60355 −0.122191
\(455\) 0 0
\(456\) −2.42905 −0.113751
\(457\) −8.20743 + 14.2157i −0.383927 + 0.664982i −0.991620 0.129191i \(-0.958762\pi\)
0.607692 + 0.794172i \(0.292095\pi\)
\(458\) −0.981017 + 1.69917i −0.0458399 + 0.0793971i
\(459\) −1.84188 3.19022i −0.0859714 0.148907i
\(460\) −14.6677 −0.683883
\(461\) −10.2727 17.7929i −0.478449 0.828699i 0.521245 0.853407i \(-0.325468\pi\)
−0.999695 + 0.0247082i \(0.992134\pi\)
\(462\) −0.256936 0.445026i −0.0119537 0.0207045i
\(463\) 1.58359 0.0735958 0.0367979 0.999323i \(-0.488284\pi\)
0.0367979 + 0.999323i \(0.488284\pi\)
\(464\) −7.09825 12.2945i −0.329528 0.570759i
\(465\) −0.778146 + 1.34779i −0.0360856 + 0.0625022i
\(466\) −0.0583350 + 0.101039i −0.00270232 + 0.00468055i
\(467\) 5.14277 0.237979 0.118990 0.992896i \(-0.462034\pi\)
0.118990 + 0.992896i \(0.462034\pi\)
\(468\) 0 0
\(469\) 1.59861 0.0738168
\(470\) 1.16486 2.01760i 0.0537310 0.0930647i
\(471\) 1.03687 1.79592i 0.0477766 0.0827515i
\(472\) 2.03671 + 3.52768i 0.0937471 + 0.162375i
\(473\) −8.03405 −0.369406
\(474\) −0.177782 0.307927i −0.00816578 0.0141435i
\(475\) −3.56631 6.17702i −0.163633 0.283421i
\(476\) 12.7296 0.583460
\(477\) 17.3358 + 30.0265i 0.793753 + 1.37482i
\(478\) −1.72933 + 2.99529i −0.0790977 + 0.137001i
\(479\) −11.1457 + 19.3049i −0.509260 + 0.882064i 0.490682 + 0.871338i \(0.336748\pi\)
−0.999942 + 0.0107258i \(0.996586\pi\)
\(480\) 0.990200 0.0451962
\(481\) 0 0
\(482\) −5.19241 −0.236508
\(483\) −4.11468 + 7.12684i −0.187224 + 0.324282i
\(484\) −7.63833 + 13.2300i −0.347197 + 0.601363i
\(485\) −3.47888 6.02559i −0.157968 0.273608i
\(486\) 2.23645 0.101447
\(487\) 11.7093 + 20.2810i 0.530597 + 0.919021i 0.999363 + 0.0356985i \(0.0113656\pi\)
−0.468765 + 0.883323i \(0.655301\pi\)
\(488\) −4.25392 7.36801i −0.192566 0.333534i
\(489\) −1.23031 −0.0556367
\(490\) 0.601723 + 1.04221i 0.0271831 + 0.0470824i
\(491\) −1.69895 + 2.94267i −0.0766727 + 0.132801i −0.901812 0.432128i \(-0.857763\pi\)
0.825140 + 0.564929i \(0.191096\pi\)
\(492\) 0.280484 0.485813i 0.0126452 0.0219021i
\(493\) 7.78509 0.350623
\(494\) 0 0
\(495\) 5.07715 0.228201
\(496\) 8.67590 15.0271i 0.389559 0.674737i
\(497\) 9.30445 16.1158i 0.417361 0.722891i
\(498\) −0.510584 0.884357i −0.0228798 0.0396290i
\(499\) −4.87712 −0.218330 −0.109165 0.994024i \(-0.534818\pi\)
−0.109165 + 0.994024i \(0.534818\pi\)
\(500\) 0.963178 + 1.66827i 0.0430746 + 0.0746075i
\(501\) 1.09612 + 1.89853i 0.0489710 + 0.0848202i
\(502\) −0.111756 −0.00498791
\(503\) 6.99264 + 12.1116i 0.311786 + 0.540030i 0.978749 0.205061i \(-0.0657394\pi\)
−0.666963 + 0.745091i \(0.732406\pi\)
\(504\) −5.22052 + 9.04221i −0.232541 + 0.402772i
\(505\) 8.94614 15.4952i 0.398098 0.689526i
\(506\) 3.62024 0.160939
\(507\) 0 0
\(508\) 19.0418 0.844844
\(509\) −18.5079 + 32.0566i −0.820347 + 1.42088i 0.0850772 + 0.996374i \(0.472886\pi\)
−0.905424 + 0.424508i \(0.860447\pi\)
\(510\) −0.0847491 + 0.146790i −0.00375275 + 0.00649996i
\(511\) −4.96841 8.60555i −0.219790 0.380687i
\(512\) −18.6342 −0.823524
\(513\) −6.72268 11.6440i −0.296814 0.514096i
\(514\) −0.335901 0.581797i −0.0148159 0.0256620i
\(515\) 10.2561 0.451937
\(516\) −1.41165 2.44505i −0.0621443 0.107637i
\(517\) 7.52057 13.0260i 0.330754 0.572883i
\(518\) 4.81814 8.34527i 0.211697 0.366670i
\(519\) −5.12041 −0.224761
\(520\) 0 0
\(521\) 21.5328 0.943370 0.471685 0.881767i \(-0.343646\pi\)
0.471685 + 0.881767i \(0.343646\pi\)
\(522\) −1.56643 + 2.71313i −0.0685607 + 0.118751i
\(523\) −18.0027 + 31.1816i −0.787204 + 1.36348i 0.140469 + 0.990085i \(0.455139\pi\)
−0.927673 + 0.373393i \(0.878194\pi\)
\(524\) −11.0481 19.1359i −0.482638 0.835954i
\(525\) 1.08079 0.0471696
\(526\) −1.54128 2.66957i −0.0672029 0.116399i
\(527\) 4.75770 + 8.24057i 0.207248 + 0.358965i
\(528\) 1.99554 0.0868446
\(529\) −17.4880 30.2901i −0.760349 1.31696i
\(530\) 1.62344 2.81189i 0.0705179 0.122141i
\(531\) −5.53919 + 9.59416i −0.240380 + 0.416351i
\(532\) 46.4619 2.01438
\(533\) 0 0
\(534\) 0.334794 0.0144879
\(535\) −6.44930 + 11.1705i −0.278828 + 0.482944i
\(536\) 0.251859 0.436233i 0.0108787 0.0188424i
\(537\) −1.29175 2.23737i −0.0557430 0.0965498i
\(538\) 8.05676 0.347351
\(539\) 3.88484 + 6.72875i 0.167332 + 0.289828i
\(540\) 1.81564 + 3.14479i 0.0781329 + 0.135330i
\(541\) 0.123280 0.00530020 0.00265010 0.999996i \(-0.499156\pi\)
0.00265010 + 0.999996i \(0.499156\pi\)
\(542\) −2.00492 3.47263i −0.0861188 0.149162i
\(543\) 1.77225 3.06962i 0.0760543 0.131730i
\(544\) 3.02711 5.24311i 0.129786 0.224797i
\(545\) −10.4476 −0.447525
\(546\) 0 0
\(547\) 2.52166 0.107818 0.0539092 0.998546i \(-0.482832\pi\)
0.0539092 + 0.998546i \(0.482832\pi\)
\(548\) 12.6009 21.8254i 0.538283 0.932333i
\(549\) 11.5693 20.0386i 0.493765 0.855227i
\(550\) −0.237729 0.411760i −0.0101368 0.0175575i
\(551\) 28.4149 1.21052
\(552\) 1.29653 + 2.24566i 0.0551840 + 0.0955815i
\(553\) 6.93106 + 12.0049i 0.294739 + 0.510502i
\(554\) 0.528233 0.0224425
\(555\) −1.67815 2.90664i −0.0712335 0.123380i
\(556\) 11.5352 19.9796i 0.489202 0.847322i
\(557\) 0.487480 0.844340i 0.0206552 0.0357758i −0.855513 0.517781i \(-0.826758\pi\)
0.876168 + 0.482005i \(0.160091\pi\)
\(558\) −3.82916 −0.162101
\(559\) 0 0
\(560\) −12.0502 −0.509215
\(561\) −0.547157 + 0.947704i −0.0231010 + 0.0400121i
\(562\) 2.51369 4.35383i 0.106033 0.183655i
\(563\) 15.7688 + 27.3124i 0.664576 + 1.15108i 0.979400 + 0.201930i \(0.0647213\pi\)
−0.314824 + 0.949150i \(0.601945\pi\)
\(564\) 5.28570 0.222568
\(565\) 9.48828 + 16.4342i 0.399175 + 0.691391i
\(566\) 1.77684 + 3.07758i 0.0746863 + 0.129360i
\(567\) −27.3600 −1.14901
\(568\) −2.93182 5.07806i −0.123016 0.213071i
\(569\) −12.4381 + 21.5434i −0.521433 + 0.903148i 0.478256 + 0.878220i \(0.341269\pi\)
−0.999689 + 0.0249279i \(0.992064\pi\)
\(570\) −0.309327 + 0.535769i −0.0129563 + 0.0224409i
\(571\) −7.92958 −0.331843 −0.165921 0.986139i \(-0.553060\pi\)
−0.165921 + 0.986139i \(0.553060\pi\)
\(572\) 0 0
\(573\) −6.95271 −0.290453
\(574\) 0.418042 0.724070i 0.0174487 0.0302221i
\(575\) −3.80710 + 6.59409i −0.158767 + 0.274993i
\(576\) −9.10848 15.7764i −0.379520 0.657348i
\(577\) 19.0769 0.794180 0.397090 0.917780i \(-0.370020\pi\)
0.397090 + 0.917780i \(0.370020\pi\)
\(578\) −1.78851 3.09779i −0.0743922 0.128851i
\(579\) 3.60026 + 6.23583i 0.149622 + 0.259152i
\(580\) −7.67421 −0.318654
\(581\) 19.9058 + 34.4779i 0.825832 + 1.43038i
\(582\) −0.301743 + 0.522635i −0.0125077 + 0.0216639i
\(583\) 10.4813 18.1541i 0.434090 0.751866i
\(584\) −3.13108 −0.129565
\(585\) 0 0
\(586\) 0.327691 0.0135368
\(587\) 9.55978 16.5580i 0.394574 0.683423i −0.598472 0.801143i \(-0.704225\pi\)
0.993047 + 0.117721i \(0.0375587\pi\)
\(588\) −1.36520 + 2.36459i −0.0562998 + 0.0975141i
\(589\) 17.3652 + 30.0774i 0.715519 + 1.23932i
\(590\) 1.03745 0.0427113
\(591\) −2.76068 4.78164i −0.113559 0.196690i
\(592\) 18.7105 + 32.4075i 0.768995 + 1.33194i
\(593\) −36.9354 −1.51676 −0.758379 0.651814i \(-0.774008\pi\)
−0.758379 + 0.651814i \(0.774008\pi\)
\(594\) −0.448133 0.776189i −0.0183871 0.0318474i
\(595\) 3.30406 5.72280i 0.135453 0.234612i
\(596\) −15.7048 + 27.2015i −0.643295 + 1.11422i
\(597\) −5.59013 −0.228789
\(598\) 0 0
\(599\) −5.19953 −0.212447 −0.106224 0.994342i \(-0.533876\pi\)
−0.106224 + 0.994342i \(0.533876\pi\)
\(600\) 0.170278 0.294930i 0.00695157 0.0120405i
\(601\) 14.1603 24.5264i 0.577613 1.00045i −0.418140 0.908383i \(-0.637318\pi\)
0.995752 0.0920718i \(-0.0293489\pi\)
\(602\) −2.10396 3.64417i −0.0857512 0.148525i
\(603\) 1.36995 0.0557887
\(604\) −8.43180 14.6043i −0.343085 0.594241i
\(605\) 3.96517 + 6.86788i 0.161207 + 0.279219i
\(606\) −1.55190 −0.0630417
\(607\) −10.0808 17.4604i −0.409166 0.708696i 0.585631 0.810578i \(-0.300847\pi\)
−0.994796 + 0.101882i \(0.967514\pi\)
\(608\) 11.0487 19.1369i 0.448084 0.776104i
\(609\) −2.15283 + 3.72881i −0.0872370 + 0.151099i
\(610\) −2.16685 −0.0877333
\(611\) 0 0
\(612\) 10.9088 0.440963
\(613\) 9.40952 16.2978i 0.380047 0.658260i −0.611022 0.791614i \(-0.709241\pi\)
0.991069 + 0.133353i \(0.0425746\pi\)
\(614\) −2.97527 + 5.15332i −0.120072 + 0.207971i
\(615\) −0.145603 0.252193i −0.00587130 0.0101694i
\(616\) 6.31268 0.254345
\(617\) −1.41246 2.44645i −0.0568634 0.0984903i 0.836192 0.548436i \(-0.184777\pi\)
−0.893056 + 0.449946i \(0.851443\pi\)
\(618\) −0.444785 0.770390i −0.0178919 0.0309896i
\(619\) −15.6686 −0.629773 −0.314886 0.949129i \(-0.601966\pi\)
−0.314886 + 0.949129i \(0.601966\pi\)
\(620\) −4.68994 8.12321i −0.188352 0.326236i
\(621\) −7.17659 + 12.4302i −0.287987 + 0.498808i
\(622\) −1.70919 + 2.96041i −0.0685324 + 0.118702i
\(623\) −13.0524 −0.522933
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 3.64004 6.30474i 0.145485 0.251988i
\(627\) −1.99708 + 3.45904i −0.0797555 + 0.138141i
\(628\) 6.24931 + 10.8241i 0.249374 + 0.431929i
\(629\) −20.5209 −0.818223
\(630\) 1.32961 + 2.30295i 0.0529729 + 0.0917518i
\(631\) 5.05744 + 8.75974i 0.201333 + 0.348720i 0.948958 0.315402i \(-0.102139\pi\)
−0.747625 + 0.664121i \(0.768806\pi\)
\(632\) 4.36793 0.173747
\(633\) 1.01249 + 1.75368i 0.0402429 + 0.0697027i
\(634\) 2.32403 4.02534i 0.0922992 0.159867i
\(635\) 4.94244 8.56056i 0.196135 0.339716i
\(636\) 7.36659 0.292104
\(637\) 0 0
\(638\) 1.89413 0.0749894
\(639\) 7.97360 13.8107i 0.315431 0.546342i
\(640\) −3.95106 + 6.84343i −0.156179 + 0.270510i
\(641\) 8.80867 + 15.2571i 0.347922 + 0.602618i 0.985880 0.167453i \(-0.0535542\pi\)
−0.637958 + 0.770071i \(0.720221\pi\)
\(642\) 1.11877 0.0441544
\(643\) −9.51562 16.4815i −0.375260 0.649969i 0.615106 0.788444i \(-0.289113\pi\)
−0.990366 + 0.138476i \(0.955780\pi\)
\(644\) −24.7995 42.9539i −0.977235 1.69262i
\(645\) −1.46561 −0.0577085
\(646\) 1.89127 + 3.27577i 0.0744109 + 0.128884i
\(647\) 13.3486 23.1204i 0.524787 0.908958i −0.474796 0.880096i \(-0.657478\pi\)
0.999583 0.0288625i \(-0.00918849\pi\)
\(648\) −4.31054 + 7.46608i −0.169334 + 0.293295i
\(649\) 6.69802 0.262920
\(650\) 0 0
\(651\) −5.26262 −0.206258
\(652\) 3.70759 6.42174i 0.145201 0.251495i
\(653\) 1.58038 2.73730i 0.0618451 0.107119i −0.833445 0.552602i \(-0.813635\pi\)
0.895290 + 0.445483i \(0.146968\pi\)
\(654\) 0.453089 + 0.784773i 0.0177172 + 0.0306871i
\(655\) −11.4705 −0.448188
\(656\) 1.62340 + 2.81181i 0.0633831 + 0.109783i
\(657\) −4.25776 7.37466i −0.166111 0.287713i
\(658\) 7.87798 0.307116
\(659\) 9.00298 + 15.5936i 0.350706 + 0.607441i 0.986373 0.164522i \(-0.0526082\pi\)
−0.635667 + 0.771963i \(0.719275\pi\)
\(660\) 0.539365 0.934207i 0.0209947 0.0363639i
\(661\) −1.75893 + 3.04656i −0.0684145 + 0.118497i −0.898204 0.439580i \(-0.855127\pi\)
0.829789 + 0.558077i \(0.188461\pi\)
\(662\) 0.388232 0.0150891
\(663\) 0 0
\(664\) 12.5446 0.486824
\(665\) 12.0595 20.8877i 0.467648 0.809990i
\(666\) 4.12899 7.15161i 0.159995 0.277119i
\(667\) −15.1667 26.2695i −0.587258 1.01716i
\(668\) −13.2128 −0.511217
\(669\) 3.75468 + 6.50329i 0.145164 + 0.251432i
\(670\) −0.0641458 0.111104i −0.00247817 0.00429231i
\(671\) −13.9896 −0.540064
\(672\) 1.67419 + 2.89978i 0.0645832 + 0.111861i
\(673\) 13.0016 22.5194i 0.501175 0.868060i −0.498824 0.866703i \(-0.666235\pi\)
0.999999 0.00135704i \(-0.000431960\pi\)
\(674\) −1.01612 + 1.75997i −0.0391395 + 0.0677917i
\(675\) 1.88505 0.0725558
\(676\) 0 0
\(677\) −28.5157 −1.09595 −0.547975 0.836495i \(-0.684601\pi\)
−0.547975 + 0.836495i \(0.684601\pi\)
\(678\) 0.822974 1.42543i 0.0316061 0.0547434i
\(679\) 11.7639 20.3756i 0.451456 0.781945i
\(680\) −1.04110 1.80324i −0.0399245 0.0691513i
\(681\) −3.06640 −0.117505
\(682\) 1.15756 + 2.00495i 0.0443252 + 0.0767736i
\(683\) −14.4746 25.0708i −0.553857 0.959308i −0.997991 0.0633481i \(-0.979822\pi\)
0.444135 0.895960i \(-0.353511\pi\)
\(684\) 39.8163 1.52241
\(685\) −6.54130 11.3299i −0.249930 0.432892i
\(686\) 1.17706 2.03872i 0.0449402 0.0778388i
\(687\) −1.15542 + 2.00124i −0.0440820 + 0.0763522i
\(688\) 16.3408 0.622987
\(689\) 0 0
\(690\) 0.660424 0.0251419
\(691\) −10.8283 + 18.7551i −0.411927 + 0.713478i −0.995100 0.0988692i \(-0.968477\pi\)
0.583173 + 0.812348i \(0.301811\pi\)
\(692\) 15.4305 26.7265i 0.586581 1.01599i
\(693\) 8.58423 + 14.8683i 0.326088 + 0.564801i
\(694\) −1.89097 −0.0717801
\(695\) −5.98810 10.3717i −0.227141 0.393420i
\(696\) 0.678353 + 1.17494i 0.0257129 + 0.0445360i
\(697\) −1.78048 −0.0674405
\(698\) −2.98156 5.16421i −0.112854 0.195468i
\(699\) −0.0687056 + 0.119002i −0.00259868 + 0.00450105i
\(700\) −3.25700 + 5.64129i −0.123103 + 0.213221i
\(701\) 25.0376 0.945656 0.472828 0.881155i \(-0.343233\pi\)
0.472828 + 0.881155i \(0.343233\pi\)
\(702\) 0 0
\(703\) −74.8995 −2.82489
\(704\) −5.50701 + 9.53843i −0.207553 + 0.359493i
\(705\) 1.37194 2.37628i 0.0516704 0.0894957i
\(706\) −1.76643 3.05954i −0.0664803 0.115147i
\(707\) 60.5030 2.27545
\(708\) 1.17690 + 2.03844i 0.0442305 + 0.0766094i
\(709\) −12.8123 22.1916i −0.481178 0.833424i 0.518589 0.855024i \(-0.326457\pi\)
−0.999767 + 0.0215996i \(0.993124\pi\)
\(710\) −1.49340 −0.0560464
\(711\) 5.93968 + 10.2878i 0.222756 + 0.385824i
\(712\) −2.05639 + 3.56178i −0.0770666 + 0.133483i
\(713\) 18.5376 32.1081i 0.694240 1.20246i
\(714\) −0.573160 −0.0214500
\(715\) 0 0
\(716\) 15.5709 0.581912
\(717\) −2.03676 + 3.52778i −0.0760643 + 0.131747i
\(718\) −1.35580 + 2.34831i −0.0505980 + 0.0876382i
\(719\) −7.40320 12.8227i −0.276093 0.478207i 0.694317 0.719669i \(-0.255706\pi\)
−0.970410 + 0.241462i \(0.922373\pi\)
\(720\) −10.3266 −0.384851
\(721\) 17.3405 + 30.0347i 0.645795 + 1.11855i
\(722\) 4.32491 + 7.49096i 0.160956 + 0.278785i
\(723\) −6.11549 −0.227438
\(724\) 10.6814 + 18.5008i 0.396973 + 0.687577i
\(725\) −1.99190 + 3.45007i −0.0739773 + 0.128132i
\(726\) 0.343922 0.595691i 0.0127642 0.0221082i
\(727\) −30.1688 −1.11890 −0.559449 0.828865i \(-0.688987\pi\)
−0.559449 + 0.828865i \(0.688987\pi\)
\(728\) 0 0
\(729\) −21.6391 −0.801447
\(730\) −0.398726 + 0.690614i −0.0147575 + 0.0255608i
\(731\) −4.48049 + 7.76044i −0.165717 + 0.287030i
\(732\) −2.45810 4.25755i −0.0908539 0.157363i
\(733\) −49.8997 −1.84309 −0.921544 0.388275i \(-0.873071\pi\)
−0.921544 + 0.388275i \(0.873071\pi\)
\(734\) 3.43128 + 5.94316i 0.126651 + 0.219366i
\(735\) 0.708694 + 1.22749i 0.0261406 + 0.0452768i
\(736\) −23.5894 −0.869516
\(737\) −0.414138 0.717308i −0.0152550 0.0264224i
\(738\) 0.358248 0.620504i 0.0131873 0.0228411i
\(739\) −15.7898 + 27.3487i −0.580836 + 1.00604i 0.414544 + 0.910029i \(0.363941\pi\)
−0.995380 + 0.0960090i \(0.969392\pi\)
\(740\) 20.2287 0.743620
\(741\) 0 0
\(742\) 10.9794 0.403066
\(743\) 0.802238 1.38952i 0.0294312 0.0509764i −0.850935 0.525272i \(-0.823964\pi\)
0.880366 + 0.474295i \(0.157297\pi\)
\(744\) −0.829122 + 1.43608i −0.0303971 + 0.0526493i
\(745\) 8.15261 + 14.1207i 0.298688 + 0.517343i
\(746\) −3.87258 −0.141785
\(747\) 17.0586 + 29.5464i 0.624142 + 1.08105i
\(748\) −3.29775 5.71188i −0.120578 0.208847i
\(749\) −43.6168 −1.59372
\(750\) −0.0433679 0.0751154i −0.00158357 0.00274283i
\(751\) −5.39364 + 9.34206i −0.196817 + 0.340897i −0.947495 0.319772i \(-0.896394\pi\)
0.750678 + 0.660668i \(0.229727\pi\)
\(752\) −15.2964 + 26.4942i −0.557803 + 0.966143i
\(753\) −0.131623 −0.00479662
\(754\) 0 0
\(755\) −8.75415 −0.318596
\(756\) −6.13962 + 10.6341i −0.223296 + 0.386760i
\(757\) 3.20195 5.54593i 0.116377 0.201570i −0.801953 0.597388i \(-0.796205\pi\)
0.918329 + 0.395817i \(0.129539\pi\)
\(758\) −0.951628 1.64827i −0.0345647 0.0598678i
\(759\) 4.26383 0.154767
\(760\) −3.79994 6.58168i −0.137838 0.238743i
\(761\) −25.1328 43.5312i −0.911062 1.57801i −0.812567 0.582868i \(-0.801930\pi\)
−0.0984952 0.995138i \(-0.531403\pi\)
\(762\) −0.857374 −0.0310594
\(763\) −17.6643 30.5955i −0.639490 1.10763i
\(764\) 20.9522 36.2903i 0.758024 1.31294i
\(765\) 2.83147 4.90424i 0.102372 0.177313i
\(766\) 1.27366 0.0460191
\(767\) 0 0
\(768\) −3.33308 −0.120272
\(769\) −2.05229 + 3.55467i −0.0740074 + 0.128185i −0.900654 0.434537i \(-0.856912\pi\)
0.826647 + 0.562721i \(0.190246\pi\)
\(770\) 0.803886 1.39237i 0.0289700 0.0501776i
\(771\) −0.395616 0.685227i −0.0142478 0.0246778i
\(772\) −43.3980 −1.56193
\(773\) 0.589257 + 1.02062i 0.0211941 + 0.0367093i 0.876428 0.481533i \(-0.159920\pi\)
−0.855234 + 0.518242i \(0.826587\pi\)
\(774\) −1.80303 3.12293i −0.0648085 0.112252i
\(775\) −4.86923 −0.174908
\(776\) −3.70678 6.42033i −0.133066 0.230476i
\(777\) 5.67469 9.82885i 0.203578 0.352608i
\(778\) −1.26824 + 2.19666i −0.0454686 + 0.0787540i
\(779\) −6.49860 −0.232836
\(780\) 0 0
\(781\) −9.64172 −0.345008
\(782\) 2.01896 3.49695i 0.0721980 0.125051i
\(783\) −3.75484 + 6.50357i −0.134187 + 0.232419i
\(784\) −7.90156 13.6859i −0.282198 0.488782i
\(785\) 6.48821 0.231574
\(786\) 0.497450 + 0.861609i 0.0177435 + 0.0307326i
\(787\) −16.7458 29.0046i −0.596923 1.03390i −0.993272 0.115801i \(-0.963056\pi\)
0.396349 0.918100i \(-0.370277\pi\)
\(788\) 33.2776 1.18546
\(789\) −1.81528 3.14416i −0.0646256 0.111935i
\(790\) 0.556232 0.963423i 0.0197899 0.0342770i
\(791\) −32.0848 + 55.5724i −1.14080 + 1.97593i
\(792\) 5.40976 0.192227
\(793\) 0 0
\(794\) −5.75675 −0.204299
\(795\) 1.91205 3.31177i 0.0678135 0.117456i
\(796\) 16.8460 29.1782i 0.597092 1.03419i
\(797\) 12.4697 + 21.5982i 0.441700 + 0.765046i 0.997816 0.0660582i \(-0.0210423\pi\)
−0.556116 + 0.831105i \(0.687709\pi\)
\(798\) −2.09198 −0.0740555
\(799\) −8.38826 14.5289i −0.296755 0.513995i
\(800\) 1.54904 + 2.68301i 0.0547668 + 0.0948589i
\(801\) −11.1855 −0.395219
\(802\) −2.47184 4.28135i −0.0872837 0.151180i
\(803\) −2.57426 + 4.45874i −0.0908435 + 0.157346i
\(804\) 0.145535 0.252074i 0.00513262 0.00888996i
\(805\) −25.7475 −0.907481
\(806\) 0 0
\(807\) 9.48906 0.334031
\(808\) 9.53221 16.5103i 0.335342 0.580829i
\(809\) −6.41107 + 11.1043i −0.225401 + 0.390406i −0.956440 0.291930i \(-0.905703\pi\)
0.731039 + 0.682336i \(0.239036\pi\)
\(810\) 1.09785 + 1.90153i 0.0385744 + 0.0668129i
\(811\) 29.8424 1.04791 0.523954 0.851746i \(-0.324456\pi\)
0.523954 + 0.851746i \(0.324456\pi\)
\(812\) −12.9752 22.4738i −0.455341 0.788674i
\(813\) −2.36135 4.08998i −0.0828161 0.143442i
\(814\) −4.99279 −0.174997
\(815\) −1.92467 3.33362i −0.0674181 0.116772i
\(816\) 1.11289 1.92758i 0.0389589 0.0674787i
\(817\) −16.3534 + 28.3249i −0.572133 + 0.990963i
\(818\) −1.18356 −0.0413822
\(819\) 0 0
\(820\) 1.75512 0.0612916
\(821\) −9.84590 + 17.0536i −0.343624 + 0.595175i −0.985103 0.171966i \(-0.944988\pi\)
0.641479 + 0.767141i \(0.278321\pi\)
\(822\) −0.567365 + 0.982705i −0.0197891 + 0.0342758i
\(823\) −20.9534 36.2924i −0.730390 1.26507i −0.956716 0.291022i \(-0.906005\pi\)
0.226326 0.974052i \(-0.427329\pi\)
\(824\) 10.9280 0.380693
\(825\) −0.279992 0.484961i −0.00974807 0.0168842i
\(826\) 1.75408 + 3.03816i 0.0610324 + 0.105711i
\(827\) 21.7734 0.757134 0.378567 0.925574i \(-0.376417\pi\)
0.378567 + 0.925574i \(0.376417\pi\)
\(828\) −21.2523 36.8101i −0.738569 1.27924i
\(829\) 2.93841 5.08948i 0.102055 0.176765i −0.810476 0.585772i \(-0.800791\pi\)
0.912531 + 0.409007i \(0.134125\pi\)
\(830\) 1.59748 2.76692i 0.0554495 0.0960413i
\(831\) 0.622141 0.0215818
\(832\) 0 0
\(833\) 8.66612 0.300263
\(834\) −0.519382 + 0.899597i −0.0179847 + 0.0311505i
\(835\) −3.42947 + 5.94001i −0.118682 + 0.205563i
\(836\) −12.0365 20.8478i −0.416291 0.721038i
\(837\) −9.17876 −0.317265
\(838\) 2.31420 + 4.00832i 0.0799428 + 0.138465i
\(839\) 27.0558 + 46.8620i 0.934069 + 1.61786i 0.776285 + 0.630381i \(0.217102\pi\)
0.157784 + 0.987474i \(0.449565\pi\)
\(840\) 1.15159 0.0397338
\(841\) 6.56468 + 11.3704i 0.226368 + 0.392081i
\(842\) −0.173674 + 0.300813i −0.00598521 + 0.0103667i
\(843\) 2.96056 5.12784i 0.101967 0.176612i
\(844\) −12.2047 −0.420103
\(845\) 0 0
\(846\) 6.75116 0.232110
\(847\) −13.4083 + 23.2238i −0.460714 + 0.797980i
\(848\) −21.3183 + 36.9244i −0.732075 + 1.26799i
\(849\) 2.09272 + 3.62470i 0.0718221 + 0.124399i
\(850\) −0.530316 −0.0181897
\(851\) 39.9783 + 69.2445i 1.37044 + 2.37367i
\(852\) −1.69413 2.93432i −0.0580399 0.100528i
\(853\) 10.8001 0.369787 0.184893 0.982759i \(-0.440806\pi\)
0.184893 + 0.982759i \(0.440806\pi\)
\(854\) −3.66362 6.34558i −0.125367 0.217141i
\(855\) 10.3346 17.9001i 0.353436 0.612169i
\(856\) −6.87180 + 11.9023i −0.234873 + 0.406812i
\(857\) −12.0558 −0.411817 −0.205908 0.978571i \(-0.566015\pi\)
−0.205908 + 0.978571i \(0.566015\pi\)
\(858\) 0 0
\(859\) −47.6819 −1.62688 −0.813442 0.581646i \(-0.802409\pi\)
−0.813442 + 0.581646i \(0.802409\pi\)
\(860\) 4.41668 7.64991i 0.150608 0.260860i
\(861\) 0.492360 0.852793i 0.0167796 0.0290631i
\(862\) 4.46047 + 7.72577i 0.151924 + 0.263141i
\(863\) −46.2292 −1.57366 −0.786831 0.617169i \(-0.788279\pi\)
−0.786831 + 0.617169i \(0.788279\pi\)
\(864\) 2.92002 + 5.05763i 0.0993412 + 0.172064i
\(865\) −8.01021 13.8741i −0.272355 0.471733i
\(866\) 7.66962 0.260624
\(867\) −2.10646 3.64850i −0.0715392 0.123910i
\(868\) 15.8591 27.4687i 0.538292 0.932350i
\(869\) 3.59115 6.22005i 0.121821 0.211001i
\(870\) 0.345538 0.0117148
\(871\) 0 0
\(872\) −11.1320 −0.376977
\(873\) 10.0812 17.4612i 0.341198 0.590973i
\(874\) 7.36904 12.7636i 0.249261 0.431734i
\(875\) 1.69076 + 2.92848i 0.0571580 + 0.0990006i
\(876\) −1.80927 −0.0611296
\(877\) 12.6141 + 21.8482i 0.425947 + 0.737761i 0.996508 0.0834935i \(-0.0266078\pi\)
−0.570562 + 0.821255i \(0.693274\pi\)
\(878\) 3.56342 + 6.17203i 0.120260 + 0.208296i
\(879\) 0.385947 0.0130177
\(880\) 3.12176 + 5.40704i 0.105234 + 0.182271i
\(881\) 6.25429 10.8327i 0.210712 0.364964i −0.741225 0.671256i \(-0.765755\pi\)
0.951938 + 0.306292i \(0.0990883\pi\)
\(882\) −1.74370 + 3.02017i −0.0587134 + 0.101695i
\(883\) −11.2289 −0.377881 −0.188941 0.981989i \(-0.560505\pi\)
−0.188941 + 0.981989i \(0.560505\pi\)
\(884\) 0 0
\(885\) 1.22189 0.0410733
\(886\) −1.90609 + 3.30145i −0.0640364 + 0.110914i
\(887\) 27.2692 47.2316i 0.915609 1.58588i 0.109602 0.993976i \(-0.465042\pi\)
0.806007 0.591906i \(-0.201624\pi\)
\(888\) −1.78809 3.09706i −0.0600043 0.103930i
\(889\) 33.4259 1.12107
\(890\) 0.523741 + 0.907146i 0.0175558 + 0.0304076i
\(891\) 7.08793 + 12.2767i 0.237455 + 0.411283i
\(892\) −45.2594 −1.51540
\(893\) −30.6164 53.0292i −1.02454 1.77455i
\(894\) 0.707123 1.22477i 0.0236497 0.0409625i
\(895\) 4.04154 7.00016i 0.135094 0.233989i
\(896\) −26.7211 −0.892690
\(897\) 0 0
\(898\) 1.21007 0.0403805
\(899\) 9.69901 16.7992i 0.323480 0.560284i
\(900\) −2.79114 + 4.83440i −0.0930380 + 0.161147i
\(901\) −11.6906 20.2487i −0.389469 0.674581i
\(902\) −0.433196 −0.0144238
\(903\) −2.47800 4.29202i −0.0824626 0.142829i
\(904\) 10.1099 + 17.5108i 0.336249 + 0.582400i
\(905\) 11.0898 0.368637
\(906\) 0.379649 + 0.657572i 0.0126130 + 0.0218464i
\(907\) −14.4541 + 25.0353i −0.479942 + 0.831283i −0.999735 0.0230085i \(-0.992676\pi\)
0.519794 + 0.854292i \(0.326009\pi\)
\(908\) 9.24070 16.0054i 0.306664 0.531157i
\(909\) 51.8491 1.71973
\(910\) 0 0
\(911\) −7.04371 −0.233369 −0.116684 0.993169i \(-0.537227\pi\)
−0.116684 + 0.993169i \(0.537227\pi\)
\(912\) 4.06194 7.03549i 0.134504 0.232968i
\(913\) 10.3137 17.8638i 0.341333 0.591206i
\(914\) 2.22728 + 3.85776i 0.0736719 + 0.127604i
\(915\) −2.55207 −0.0843688
\(916\) −6.96378 12.0616i −0.230090 0.398527i
\(917\) −19.3938 33.5910i −0.640439 1.10927i
\(918\) −0.999674 −0.0329942
\(919\) 8.68191 + 15.0375i 0.286390 + 0.496042i 0.972945 0.231036i \(-0.0742114\pi\)
−0.686555 + 0.727077i \(0.740878\pi\)
\(920\) −4.05650 + 7.02607i −0.133739 + 0.231643i
\(921\) −3.50420 + 6.06945i −0.115467 + 0.199995i
\(922\) −5.57551 −0.183620
\(923\) 0 0
\(924\) 3.64774 0.120002
\(925\) 5.25050 9.09413i 0.172635 0.299013i
\(926\) 0.214873 0.372170i 0.00706115 0.0122303i
\(927\) 14.8603 + 25.7387i 0.488075 + 0.845371i
\(928\) −12.3421 −0.405150
\(929\) 15.4690 + 26.7931i 0.507522 + 0.879055i 0.999962 + 0.00870800i \(0.00277188\pi\)
−0.492440 + 0.870347i \(0.663895\pi\)
\(930\) 0.211168 + 0.365754i 0.00692448 + 0.0119936i
\(931\) 31.6306 1.03665
\(932\) −0.414093 0.717230i −0.0135641 0.0234937i
\(933\) −2.01305 + 3.48670i −0.0659042 + 0.114149i
\(934\) 0.697807 1.20864i 0.0228329 0.0395478i
\(935\) −3.42382 −0.111971
\(936\) 0 0
\(937\) 30.5009 0.996422 0.498211 0.867056i \(-0.333990\pi\)
0.498211 + 0.867056i \(0.333990\pi\)
\(938\) 0.216910 0.375699i 0.00708236 0.0122670i
\(939\) 4.28715 7.42557i 0.139906 0.242324i
\(940\) 8.26879 + 14.3220i 0.269698 + 0.467131i
\(941\) 32.0423 1.04455 0.522275 0.852777i \(-0.325083\pi\)
0.522275 + 0.852777i \(0.325083\pi\)
\(942\) −0.281380 0.487365i −0.00916787 0.0158792i
\(943\) 3.46869 + 6.00794i 0.112956 + 0.195646i
\(944\) −13.6234 −0.443404
\(945\) 3.18717 + 5.52034i 0.103679 + 0.179577i
\(946\) −1.09011 + 1.88813i −0.0354427 + 0.0613885i
\(947\) −4.31698 + 7.47722i −0.140283 + 0.242977i −0.927603 0.373567i \(-0.878135\pi\)
0.787320 + 0.616544i \(0.211468\pi\)
\(948\) 2.52398 0.0819750
\(949\) 0 0
\(950\) −1.93560 −0.0627993
\(951\) 2.73719 4.74095i 0.0887595 0.153736i
\(952\) 3.52051 6.09770i 0.114100 0.197628i
\(953\) 16.2130 + 28.0818i 0.525191 + 0.909657i 0.999570 + 0.0293364i \(0.00933941\pi\)
−0.474379 + 0.880321i \(0.657327\pi\)
\(954\) 9.40897 0.304627
\(955\) −10.8766 18.8388i −0.351959 0.609610i
\(956\) −12.2757 21.2621i −0.397025 0.687667i
\(957\) 2.23086 0.0721136
\(958\) 3.02465 + 5.23885i 0.0977220 + 0.169260i
\(959\) 22.1195 38.3121i 0.714276 1.23716i
\(960\) −1.00462 + 1.74005i −0.0324240 + 0.0561599i
\(961\) −7.29060 −0.235181
\(962\) 0 0
\(963\) −37.3782 −1.20449
\(964\) 18.4292 31.9204i 0.593566 1.02809i
\(965\) −11.2643 + 19.5103i −0.362610 + 0.628058i
\(966\) 1.11662 + 1.93404i 0.0359265 + 0.0622266i
\(967\) 27.0744 0.870656 0.435328 0.900272i \(-0.356632\pi\)
0.435328 + 0.900272i \(0.356632\pi\)
\(968\) 4.22493 + 7.31779i 0.135794 + 0.235203i
\(969\) 2.22749 + 3.85813i 0.0715573 + 0.123941i
\(970\) −1.88815 −0.0606249
\(971\) −15.9019 27.5430i −0.510317 0.883896i −0.999929 0.0119548i \(-0.996195\pi\)
0.489611 0.871941i \(-0.337139\pi\)
\(972\) −7.93775 + 13.7486i −0.254603 + 0.440986i
\(973\) 20.2488 35.0720i 0.649148 1.12436i
\(974\) 6.35517 0.203633
\(975\) 0 0
\(976\) 28.4542 0.910796
\(977\) −15.6836 + 27.1648i −0.501763 + 0.869079i 0.498235 + 0.867042i \(0.333982\pi\)
−0.999998 + 0.00203688i \(0.999352\pi\)
\(978\) −0.166937 + 0.289144i −0.00533807 + 0.00924581i
\(979\) 3.38138 + 5.85672i 0.108069 + 0.187182i
\(980\) −8.54270 −0.272886
\(981\) −15.1377 26.2193i −0.483310 0.837117i
\(982\) 0.461051 + 0.798564i 0.0147127 + 0.0254832i
\(983\) −35.5044 −1.13241 −0.566207 0.824263i \(-0.691590\pi\)
−0.566207 + 0.824263i \(0.691590\pi\)
\(984\) −0.155142 0.268714i −0.00494575 0.00856628i
\(985\) 8.63744 14.9605i 0.275212 0.476681i
\(986\) 1.05633 1.82963i 0.0336406 0.0582672i
\(987\) 9.27849 0.295338
\(988\) 0 0
\(989\) 34.9151 1.11024
\(990\) 0.688903 1.19322i 0.0218948 0.0379229i
\(991\) 20.5319 35.5623i 0.652217 1.12967i −0.330367 0.943853i \(-0.607172\pi\)
0.982584 0.185820i \(-0.0594943\pi\)
\(992\) −7.54263 13.0642i −0.239479 0.414789i
\(993\) 0.457250 0.0145104
\(994\) −2.52498 4.37340i −0.0800876 0.138716i
\(995\) −8.74503 15.1468i −0.277236 0.480187i
\(996\) 7.24879 0.229687
\(997\) 22.3952 + 38.7897i 0.709264 + 1.22848i 0.965131 + 0.261769i \(0.0843058\pi\)
−0.255867 + 0.966712i \(0.582361\pi\)
\(998\) −0.661761 + 1.14620i −0.0209477 + 0.0362825i
\(999\) 9.89747 17.1429i 0.313142 0.542378i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.e.o.191.6 18
13.2 odd 12 845.2.m.j.361.11 36
13.3 even 3 inner 845.2.e.o.146.6 18
13.4 even 6 845.2.a.n.1.6 9
13.5 odd 4 845.2.m.j.316.8 36
13.6 odd 12 845.2.c.h.506.11 18
13.7 odd 12 845.2.c.h.506.8 18
13.8 odd 4 845.2.m.j.316.11 36
13.9 even 3 845.2.a.o.1.4 yes 9
13.10 even 6 845.2.e.p.146.4 18
13.11 odd 12 845.2.m.j.361.8 36
13.12 even 2 845.2.e.p.191.4 18
39.17 odd 6 7605.2.a.cs.1.4 9
39.35 odd 6 7605.2.a.cp.1.6 9
65.4 even 6 4225.2.a.bt.1.4 9
65.9 even 6 4225.2.a.bs.1.6 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
845.2.a.n.1.6 9 13.4 even 6
845.2.a.o.1.4 yes 9 13.9 even 3
845.2.c.h.506.8 18 13.7 odd 12
845.2.c.h.506.11 18 13.6 odd 12
845.2.e.o.146.6 18 13.3 even 3 inner
845.2.e.o.191.6 18 1.1 even 1 trivial
845.2.e.p.146.4 18 13.10 even 6
845.2.e.p.191.4 18 13.12 even 2
845.2.m.j.316.8 36 13.5 odd 4
845.2.m.j.316.11 36 13.8 odd 4
845.2.m.j.361.8 36 13.11 odd 12
845.2.m.j.361.11 36 13.2 odd 12
4225.2.a.bs.1.6 9 65.9 even 6
4225.2.a.bt.1.4 9 65.4 even 6
7605.2.a.cp.1.6 9 39.35 odd 6
7605.2.a.cs.1.4 9 39.17 odd 6