Properties

Label 845.2.f.f.408.20
Level $845$
Weight $2$
Character 845.408
Analytic conductor $6.747$
Analytic rank $0$
Dimension $72$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(408,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([3, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.408");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(36\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 408.20
Character \(\chi\) \(=\) 845.408
Dual form 845.2.f.f.437.17

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.689692i q^{2} +(-0.0621871 - 0.0621871i) q^{3} +1.52433 q^{4} +(-0.454257 + 2.18944i) q^{5} +(0.0428900 - 0.0428900i) q^{6} -0.806945 q^{7} +2.43070i q^{8} -2.99227i q^{9} +(-1.51004 - 0.313297i) q^{10} +(0.314448 + 0.314448i) q^{11} +(-0.0947934 - 0.0947934i) q^{12} -0.556544i q^{14} +(0.164404 - 0.107906i) q^{15} +1.37222 q^{16} +(3.71523 + 3.71523i) q^{17} +2.06374 q^{18} +(4.78901 + 4.78901i) q^{19} +(-0.692436 + 3.33742i) q^{20} +(0.0501816 + 0.0501816i) q^{21} +(-0.216872 + 0.216872i) q^{22} +(-3.80361 + 3.80361i) q^{23} +(0.151158 - 0.151158i) q^{24} +(-4.58730 - 1.98914i) q^{25} +(-0.372642 + 0.372642i) q^{27} -1.23005 q^{28} +4.79138i q^{29} +(0.0744220 + 0.113388i) q^{30} +(-0.106205 + 0.106205i) q^{31} +5.80780i q^{32} -0.0391092i q^{33} +(-2.56236 + 2.56236i) q^{34} +(0.366561 - 1.76676i) q^{35} -4.56119i q^{36} -5.97196 q^{37} +(-3.30294 + 3.30294i) q^{38} +(-5.32187 - 1.10416i) q^{40} +(6.13599 - 6.13599i) q^{41} +(-0.0346098 + 0.0346098i) q^{42} +(6.82846 - 6.82846i) q^{43} +(0.479320 + 0.479320i) q^{44} +(6.55139 + 1.35926i) q^{45} +(-2.62332 - 2.62332i) q^{46} -9.32662 q^{47} +(-0.0853343 - 0.0853343i) q^{48} -6.34884 q^{49} +(1.37189 - 3.16382i) q^{50} -0.462079i q^{51} +(5.61903 + 5.61903i) q^{53} +(-0.257008 - 0.257008i) q^{54} +(-0.831304 + 0.545624i) q^{55} -1.96144i q^{56} -0.595630i q^{57} -3.30457 q^{58} +(-1.55637 + 1.55637i) q^{59} +(0.250605 - 0.164484i) q^{60} +3.03084 q^{61} +(-0.0732484 - 0.0732484i) q^{62} +2.41459i q^{63} -1.26116 q^{64} +0.0269733 q^{66} +11.6119i q^{67} +(5.66322 + 5.66322i) q^{68} +0.473071 q^{69} +(1.21852 + 0.252814i) q^{70} +(1.00931 - 1.00931i) q^{71} +7.27329 q^{72} +0.265877i q^{73} -4.11881i q^{74} +(0.161572 + 0.408970i) q^{75} +(7.30001 + 7.30001i) q^{76} +(-0.253742 - 0.253742i) q^{77} -8.98397i q^{79} +(-0.623340 + 3.00439i) q^{80} -8.93045 q^{81} +(4.23194 + 4.23194i) q^{82} +2.59025 q^{83} +(0.0764931 + 0.0764931i) q^{84} +(-9.82194 + 6.44660i) q^{85} +(4.70953 + 4.70953i) q^{86} +(0.297962 - 0.297962i) q^{87} +(-0.764327 + 0.764327i) q^{88} +(6.10204 - 6.10204i) q^{89} +(-0.937469 + 4.51844i) q^{90} +(-5.79794 + 5.79794i) q^{92} +0.0132091 q^{93} -6.43250i q^{94} +(-12.6607 + 8.30982i) q^{95} +(0.361171 - 0.361171i) q^{96} -14.4934i q^{97} -4.37874i q^{98} +(0.940911 - 0.940911i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q - 4 q^{3} - 80 q^{4} - 12 q^{10} + 64 q^{12} + 80 q^{16} + 8 q^{17} + 24 q^{22} + 36 q^{23} - 48 q^{25} - 64 q^{27} - 4 q^{30} + 80 q^{35} + 28 q^{38} - 24 q^{40} - 56 q^{42} + 76 q^{43} - 76 q^{48}+ \cdots - 92 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.689692i 0.487686i 0.969815 + 0.243843i \(0.0784081\pi\)
−0.969815 + 0.243843i \(0.921592\pi\)
\(3\) −0.0621871 0.0621871i −0.0359038 0.0359038i 0.688927 0.724831i \(-0.258082\pi\)
−0.724831 + 0.688927i \(0.758082\pi\)
\(4\) 1.52433 0.762163
\(5\) −0.454257 + 2.18944i −0.203150 + 0.979148i
\(6\) 0.0428900 0.0428900i 0.0175098 0.0175098i
\(7\) −0.806945 −0.304997 −0.152498 0.988304i \(-0.548732\pi\)
−0.152498 + 0.988304i \(0.548732\pi\)
\(8\) 2.43070i 0.859382i
\(9\) 2.99227i 0.997422i
\(10\) −1.51004 0.313297i −0.477516 0.0990733i
\(11\) 0.314448 + 0.314448i 0.0948095 + 0.0948095i 0.752921 0.658111i \(-0.228644\pi\)
−0.658111 + 0.752921i \(0.728644\pi\)
\(12\) −0.0947934 0.0947934i −0.0273645 0.0273645i
\(13\) 0 0
\(14\) 0.556544i 0.148743i
\(15\) 0.164404 0.107906i 0.0424489 0.0278612i
\(16\) 1.37222 0.343054
\(17\) 3.71523 + 3.71523i 0.901075 + 0.901075i 0.995529 0.0944538i \(-0.0301105\pi\)
−0.0944538 + 0.995529i \(0.530110\pi\)
\(18\) 2.06374 0.486428
\(19\) 4.78901 + 4.78901i 1.09867 + 1.09867i 0.994566 + 0.104109i \(0.0331991\pi\)
0.104109 + 0.994566i \(0.466801\pi\)
\(20\) −0.692436 + 3.33742i −0.154833 + 0.746270i
\(21\) 0.0501816 + 0.0501816i 0.0109505 + 0.0109505i
\(22\) −0.216872 + 0.216872i −0.0462372 + 0.0462372i
\(23\) −3.80361 + 3.80361i −0.793108 + 0.793108i −0.981998 0.188891i \(-0.939511\pi\)
0.188891 + 0.981998i \(0.439511\pi\)
\(24\) 0.151158 0.151158i 0.0308550 0.0308550i
\(25\) −4.58730 1.98914i −0.917460 0.397828i
\(26\) 0 0
\(27\) −0.372642 + 0.372642i −0.0717149 + 0.0717149i
\(28\) −1.23005 −0.232457
\(29\) 4.79138i 0.889736i 0.895596 + 0.444868i \(0.146749\pi\)
−0.895596 + 0.444868i \(0.853251\pi\)
\(30\) 0.0744220 + 0.113388i 0.0135875 + 0.0207017i
\(31\) −0.106205 + 0.106205i −0.0190749 + 0.0190749i −0.716580 0.697505i \(-0.754293\pi\)
0.697505 + 0.716580i \(0.254293\pi\)
\(32\) 5.80780i 1.02668i
\(33\) 0.0391092i 0.00680804i
\(34\) −2.56236 + 2.56236i −0.439442 + 0.439442i
\(35\) 0.366561 1.76676i 0.0619600 0.298637i
\(36\) 4.56119i 0.760198i
\(37\) −5.97196 −0.981784 −0.490892 0.871220i \(-0.663329\pi\)
−0.490892 + 0.871220i \(0.663329\pi\)
\(38\) −3.30294 + 3.30294i −0.535808 + 0.535808i
\(39\) 0 0
\(40\) −5.32187 1.10416i −0.841461 0.174583i
\(41\) 6.13599 6.13599i 0.958281 0.958281i −0.0408834 0.999164i \(-0.513017\pi\)
0.999164 + 0.0408834i \(0.0130172\pi\)
\(42\) −0.0346098 + 0.0346098i −0.00534041 + 0.00534041i
\(43\) 6.82846 6.82846i 1.04133 1.04133i 0.0422217 0.999108i \(-0.486556\pi\)
0.999108 0.0422217i \(-0.0134436\pi\)
\(44\) 0.479320 + 0.479320i 0.0722603 + 0.0722603i
\(45\) 6.55139 + 1.35926i 0.976623 + 0.202626i
\(46\) −2.62332 2.62332i −0.386787 0.386787i
\(47\) −9.32662 −1.36043 −0.680214 0.733014i \(-0.738113\pi\)
−0.680214 + 0.733014i \(0.738113\pi\)
\(48\) −0.0853343 0.0853343i −0.0123169 0.0123169i
\(49\) −6.34884 −0.906977
\(50\) 1.37189 3.16382i 0.194015 0.447432i
\(51\) 0.462079i 0.0647040i
\(52\) 0 0
\(53\) 5.61903 + 5.61903i 0.771833 + 0.771833i 0.978427 0.206594i \(-0.0662378\pi\)
−0.206594 + 0.978427i \(0.566238\pi\)
\(54\) −0.257008 0.257008i −0.0349744 0.0349744i
\(55\) −0.831304 + 0.545624i −0.112093 + 0.0735720i
\(56\) 1.96144i 0.262108i
\(57\) 0.595630i 0.0788931i
\(58\) −3.30457 −0.433912
\(59\) −1.55637 + 1.55637i −0.202622 + 0.202622i −0.801122 0.598500i \(-0.795763\pi\)
0.598500 + 0.801122i \(0.295763\pi\)
\(60\) 0.250605 0.164484i 0.0323530 0.0212348i
\(61\) 3.03084 0.388059 0.194029 0.980996i \(-0.437844\pi\)
0.194029 + 0.980996i \(0.437844\pi\)
\(62\) −0.0732484 0.0732484i −0.00930256 0.00930256i
\(63\) 2.41459i 0.304210i
\(64\) −1.26116 −0.157645
\(65\) 0 0
\(66\) 0.0269733 0.00332018
\(67\) 11.6119i 1.41862i 0.704899 + 0.709308i \(0.250992\pi\)
−0.704899 + 0.709308i \(0.749008\pi\)
\(68\) 5.66322 + 5.66322i 0.686766 + 0.686766i
\(69\) 0.473071 0.0569511
\(70\) 1.21852 + 0.252814i 0.145641 + 0.0302170i
\(71\) 1.00931 1.00931i 0.119783 0.119783i −0.644674 0.764457i \(-0.723007\pi\)
0.764457 + 0.644674i \(0.223007\pi\)
\(72\) 7.27329 0.857166
\(73\) 0.265877i 0.0311186i 0.999879 + 0.0155593i \(0.00495288\pi\)
−0.999879 + 0.0155593i \(0.995047\pi\)
\(74\) 4.11881i 0.478802i
\(75\) 0.161572 + 0.408970i 0.0186568 + 0.0472238i
\(76\) 7.30001 + 7.30001i 0.837369 + 0.837369i
\(77\) −0.253742 0.253742i −0.0289166 0.0289166i
\(78\) 0 0
\(79\) 8.98397i 1.01078i −0.862892 0.505388i \(-0.831350\pi\)
0.862892 0.505388i \(-0.168650\pi\)
\(80\) −0.623340 + 3.00439i −0.0696915 + 0.335901i
\(81\) −8.93045 −0.992272
\(82\) 4.23194 + 4.23194i 0.467340 + 0.467340i
\(83\) 2.59025 0.284317 0.142159 0.989844i \(-0.454596\pi\)
0.142159 + 0.989844i \(0.454596\pi\)
\(84\) 0.0764931 + 0.0764931i 0.00834608 + 0.00834608i
\(85\) −9.82194 + 6.44660i −1.06534 + 0.699232i
\(86\) 4.70953 + 4.70953i 0.507842 + 0.507842i
\(87\) 0.297962 0.297962i 0.0319449 0.0319449i
\(88\) −0.764327 + 0.764327i −0.0814776 + 0.0814776i
\(89\) 6.10204 6.10204i 0.646815 0.646815i −0.305407 0.952222i \(-0.598792\pi\)
0.952222 + 0.305407i \(0.0987925\pi\)
\(90\) −0.937469 + 4.51844i −0.0988179 + 0.476285i
\(91\) 0 0
\(92\) −5.79794 + 5.79794i −0.604477 + 0.604477i
\(93\) 0.0132091 0.00136972
\(94\) 6.43250i 0.663461i
\(95\) −12.6607 + 8.30982i −1.29896 + 0.852569i
\(96\) 0.361171 0.361171i 0.0368618 0.0368618i
\(97\) 14.4934i 1.47158i −0.677210 0.735789i \(-0.736811\pi\)
0.677210 0.735789i \(-0.263189\pi\)
\(98\) 4.37874i 0.442320i
\(99\) 0.940911 0.940911i 0.0945651 0.0945651i
\(100\) −6.99254 3.03209i −0.699254 0.303209i
\(101\) 3.93288i 0.391336i −0.980670 0.195668i \(-0.937312\pi\)
0.980670 0.195668i \(-0.0626875\pi\)
\(102\) 0.318692 0.0315552
\(103\) 12.2725 12.2725i 1.20924 1.20924i 0.237970 0.971272i \(-0.423518\pi\)
0.971272 0.237970i \(-0.0764820\pi\)
\(104\) 0 0
\(105\) −0.132665 + 0.0870743i −0.0129468 + 0.00849758i
\(106\) −3.87540 + 3.87540i −0.376412 + 0.376412i
\(107\) −3.47737 + 3.47737i −0.336170 + 0.336170i −0.854924 0.518754i \(-0.826396\pi\)
0.518754 + 0.854924i \(0.326396\pi\)
\(108\) −0.568027 + 0.568027i −0.0546585 + 0.0546585i
\(109\) −5.74206 5.74206i −0.549990 0.549990i 0.376448 0.926438i \(-0.377145\pi\)
−0.926438 + 0.376448i \(0.877145\pi\)
\(110\) −0.376313 0.573344i −0.0358800 0.0546662i
\(111\) 0.371379 + 0.371379i 0.0352497 + 0.0352497i
\(112\) −1.10730 −0.104630
\(113\) 3.36820 + 3.36820i 0.316853 + 0.316853i 0.847557 0.530704i \(-0.178072\pi\)
−0.530704 + 0.847557i \(0.678072\pi\)
\(114\) 0.410801 0.0384751
\(115\) −6.59996 10.0556i −0.615450 0.937689i
\(116\) 7.30362i 0.678124i
\(117\) 0 0
\(118\) −1.07342 1.07342i −0.0988159 0.0988159i
\(119\) −2.99799 2.99799i −0.274825 0.274825i
\(120\) 0.262287 + 0.399616i 0.0239434 + 0.0364798i
\(121\) 10.8022i 0.982022i
\(122\) 2.09034i 0.189251i
\(123\) −0.763159 −0.0688117
\(124\) −0.161890 + 0.161890i −0.0145382 + 0.0145382i
\(125\) 6.43891 9.14004i 0.575914 0.817510i
\(126\) −1.66533 −0.148359
\(127\) 10.3616 + 10.3616i 0.919445 + 0.919445i 0.996989 0.0775440i \(-0.0247078\pi\)
−0.0775440 + 0.996989i \(0.524708\pi\)
\(128\) 10.7458i 0.949803i
\(129\) −0.849284 −0.0747753
\(130\) 0 0
\(131\) 21.1674 1.84941 0.924704 0.380686i \(-0.124312\pi\)
0.924704 + 0.380686i \(0.124312\pi\)
\(132\) 0.0596151i 0.00518883i
\(133\) −3.86447 3.86447i −0.335092 0.335092i
\(134\) −8.00861 −0.691838
\(135\) −0.646602 0.985152i −0.0556506 0.0847884i
\(136\) −9.03060 + 9.03060i −0.774368 + 0.774368i
\(137\) 15.2364 1.30173 0.650867 0.759192i \(-0.274406\pi\)
0.650867 + 0.759192i \(0.274406\pi\)
\(138\) 0.326273i 0.0277742i
\(139\) 11.8714i 1.00692i 0.864019 + 0.503459i \(0.167939\pi\)
−0.864019 + 0.503459i \(0.832061\pi\)
\(140\) 0.558758 2.69311i 0.0472236 0.227610i
\(141\) 0.579996 + 0.579996i 0.0488445 + 0.0488445i
\(142\) 0.696114 + 0.696114i 0.0584166 + 0.0584166i
\(143\) 0 0
\(144\) 4.10604i 0.342170i
\(145\) −10.4904 2.17652i −0.871183 0.180750i
\(146\) −0.183373 −0.0151761
\(147\) 0.394816 + 0.394816i 0.0325639 + 0.0325639i
\(148\) −9.10321 −0.748279
\(149\) −9.54060 9.54060i −0.781597 0.781597i 0.198504 0.980100i \(-0.436392\pi\)
−0.980100 + 0.198504i \(0.936392\pi\)
\(150\) −0.282063 + 0.111435i −0.0230304 + 0.00909864i
\(151\) 3.86706 + 3.86706i 0.314697 + 0.314697i 0.846726 0.532029i \(-0.178570\pi\)
−0.532029 + 0.846726i \(0.678570\pi\)
\(152\) −11.6406 + 11.6406i −0.944181 + 0.944181i
\(153\) 11.1170 11.1170i 0.898752 0.898752i
\(154\) 0.175004 0.175004i 0.0141022 0.0141022i
\(155\) −0.184284 0.280773i −0.0148021 0.0225522i
\(156\) 0 0
\(157\) −12.0199 + 12.0199i −0.959293 + 0.959293i −0.999203 0.0399100i \(-0.987293\pi\)
0.0399100 + 0.999203i \(0.487293\pi\)
\(158\) 6.19617 0.492941
\(159\) 0.698863i 0.0554234i
\(160\) −12.7158 2.63824i −1.00528 0.208571i
\(161\) 3.06931 3.06931i 0.241895 0.241895i
\(162\) 6.15926i 0.483917i
\(163\) 20.9573i 1.64150i −0.571288 0.820750i \(-0.693556\pi\)
0.571288 0.820750i \(-0.306444\pi\)
\(164\) 9.35324 9.35324i 0.730366 0.730366i
\(165\) 0.0856272 + 0.0177656i 0.00666607 + 0.00138305i
\(166\) 1.78648i 0.138657i
\(167\) −17.8277 −1.37955 −0.689773 0.724026i \(-0.742289\pi\)
−0.689773 + 0.724026i \(0.742289\pi\)
\(168\) −0.121976 + 0.121976i −0.00941068 + 0.00941068i
\(169\) 0 0
\(170\) −4.44617 6.77411i −0.341006 0.519551i
\(171\) 14.3300 14.3300i 1.09584 1.09584i
\(172\) 10.4088 10.4088i 0.793663 0.793663i
\(173\) 4.52475 4.52475i 0.344010 0.344010i −0.513862 0.857873i \(-0.671786\pi\)
0.857873 + 0.513862i \(0.171786\pi\)
\(174\) 0.205502 + 0.205502i 0.0155791 + 0.0155791i
\(175\) 3.70170 + 1.60513i 0.279822 + 0.121336i
\(176\) 0.431490 + 0.431490i 0.0325248 + 0.0325248i
\(177\) 0.193572 0.0145498
\(178\) 4.20853 + 4.20853i 0.315442 + 0.315442i
\(179\) 5.20422 0.388982 0.194491 0.980904i \(-0.437695\pi\)
0.194491 + 0.980904i \(0.437695\pi\)
\(180\) 9.98645 + 2.07195i 0.744346 + 0.154434i
\(181\) 10.7283i 0.797430i −0.917075 0.398715i \(-0.869456\pi\)
0.917075 0.398715i \(-0.130544\pi\)
\(182\) 0 0
\(183\) −0.188479 0.188479i −0.0139328 0.0139328i
\(184\) −9.24543 9.24543i −0.681582 0.681582i
\(185\) 2.71281 13.0753i 0.199449 0.961312i
\(186\) 0.00911022i 0.000667993i
\(187\) 2.33649i 0.170861i
\(188\) −14.2168 −1.03687
\(189\) 0.300702 0.300702i 0.0218728 0.0218728i
\(190\) −5.73121 8.73198i −0.415786 0.633485i
\(191\) 16.1353 1.16751 0.583753 0.811931i \(-0.301584\pi\)
0.583753 + 0.811931i \(0.301584\pi\)
\(192\) 0.0784279 + 0.0784279i 0.00566005 + 0.00566005i
\(193\) 7.60539i 0.547448i −0.961808 0.273724i \(-0.911744\pi\)
0.961808 0.273724i \(-0.0882555\pi\)
\(194\) 9.99596 0.717668
\(195\) 0 0
\(196\) −9.67770 −0.691264
\(197\) 4.90103i 0.349184i −0.984641 0.174592i \(-0.944139\pi\)
0.984641 0.174592i \(-0.0558606\pi\)
\(198\) 0.648938 + 0.648938i 0.0461180 + 0.0461180i
\(199\) −19.9759 −1.41605 −0.708027 0.706186i \(-0.750414\pi\)
−0.708027 + 0.706186i \(0.750414\pi\)
\(200\) 4.83499 11.1503i 0.341886 0.788448i
\(201\) 0.722109 0.722109i 0.0509336 0.0509336i
\(202\) 2.71248 0.190849
\(203\) 3.86638i 0.271367i
\(204\) 0.704358i 0.0493150i
\(205\) 10.6471 + 16.2217i 0.743623 + 1.13297i
\(206\) 8.46422 + 8.46422i 0.589730 + 0.589730i
\(207\) 11.3814 + 11.3814i 0.791063 + 0.791063i
\(208\) 0 0
\(209\) 3.01179i 0.208330i
\(210\) −0.0600544 0.0914980i −0.00414415 0.00631396i
\(211\) 11.6968 0.805238 0.402619 0.915368i \(-0.368100\pi\)
0.402619 + 0.915368i \(0.368100\pi\)
\(212\) 8.56523 + 8.56523i 0.588262 + 0.588262i
\(213\) −0.125532 −0.00860134
\(214\) −2.39831 2.39831i −0.163945 0.163945i
\(215\) 11.8486 + 18.0524i 0.808070 + 1.23116i
\(216\) −0.905780 0.905780i −0.0616305 0.0616305i
\(217\) 0.0857012 0.0857012i 0.00581778 0.00581778i
\(218\) 3.96025 3.96025i 0.268222 0.268222i
\(219\) 0.0165342 0.0165342i 0.00111727 0.00111727i
\(220\) −1.26718 + 0.831709i −0.0854331 + 0.0560738i
\(221\) 0 0
\(222\) −0.256137 + 0.256137i −0.0171908 + 0.0171908i
\(223\) −2.83093 −0.189573 −0.0947864 0.995498i \(-0.530217\pi\)
−0.0947864 + 0.995498i \(0.530217\pi\)
\(224\) 4.68658i 0.313135i
\(225\) −5.95203 + 13.7264i −0.396802 + 0.915095i
\(226\) −2.32302 + 2.32302i −0.154525 + 0.154525i
\(227\) 15.4930i 1.02830i −0.857699 0.514152i \(-0.828107\pi\)
0.857699 0.514152i \(-0.171893\pi\)
\(228\) 0.907934i 0.0601294i
\(229\) 14.5346 14.5346i 0.960475 0.960475i −0.0387727 0.999248i \(-0.512345\pi\)
0.999248 + 0.0387727i \(0.0123448\pi\)
\(230\) 6.93526 4.55194i 0.457298 0.300146i
\(231\) 0.0315590i 0.00207643i
\(232\) −11.6464 −0.764623
\(233\) −4.84530 + 4.84530i −0.317426 + 0.317426i −0.847778 0.530352i \(-0.822060\pi\)
0.530352 + 0.847778i \(0.322060\pi\)
\(234\) 0 0
\(235\) 4.23668 20.4201i 0.276371 1.33206i
\(236\) −2.37241 + 2.37241i −0.154431 + 0.154431i
\(237\) −0.558687 + 0.558687i −0.0362906 + 0.0362906i
\(238\) 2.06769 2.06769i 0.134028 0.134028i
\(239\) 10.0017 + 10.0017i 0.646957 + 0.646957i 0.952257 0.305299i \(-0.0987564\pi\)
−0.305299 + 0.952257i \(0.598756\pi\)
\(240\) 0.225598 0.148071i 0.0145623 0.00955792i
\(241\) −17.2524 17.2524i −1.11132 1.11132i −0.992972 0.118350i \(-0.962239\pi\)
−0.118350 0.992972i \(-0.537761\pi\)
\(242\) 7.45022 0.478918
\(243\) 1.67328 + 1.67328i 0.107341 + 0.107341i
\(244\) 4.61998 0.295764
\(245\) 2.88401 13.9004i 0.184252 0.888064i
\(246\) 0.526345i 0.0335585i
\(247\) 0 0
\(248\) −0.258151 0.258151i −0.0163926 0.0163926i
\(249\) −0.161080 0.161080i −0.0102081 0.0102081i
\(250\) 6.30381 + 4.44087i 0.398688 + 0.280865i
\(251\) 5.39488i 0.340522i −0.985399 0.170261i \(-0.945539\pi\)
0.985399 0.170261i \(-0.0544611\pi\)
\(252\) 3.68063i 0.231858i
\(253\) −2.39207 −0.150388
\(254\) −7.14632 + 7.14632i −0.448400 + 0.448400i
\(255\) 1.01169 + 0.209903i 0.0633548 + 0.0131446i
\(256\) −9.93361 −0.620850
\(257\) −0.280852 0.280852i −0.0175191 0.0175191i 0.698293 0.715812i \(-0.253943\pi\)
−0.715812 + 0.698293i \(0.753943\pi\)
\(258\) 0.585744i 0.0364669i
\(259\) 4.81905 0.299441
\(260\) 0 0
\(261\) 14.3371 0.887442
\(262\) 14.5990i 0.901930i
\(263\) −19.1244 19.1244i −1.17926 1.17926i −0.979933 0.199327i \(-0.936124\pi\)
−0.199327 0.979933i \(-0.563876\pi\)
\(264\) 0.0950626 0.00585070
\(265\) −14.8550 + 9.75005i −0.912536 + 0.598941i
\(266\) 2.66529 2.66529i 0.163420 0.163420i
\(267\) −0.758937 −0.0464462
\(268\) 17.7003i 1.08122i
\(269\) 6.80280i 0.414774i −0.978259 0.207387i \(-0.933504\pi\)
0.978259 0.207387i \(-0.0664960\pi\)
\(270\) 0.679452 0.445956i 0.0413501 0.0271400i
\(271\) −1.19369 1.19369i −0.0725115 0.0725115i 0.669921 0.742432i \(-0.266328\pi\)
−0.742432 + 0.669921i \(0.766328\pi\)
\(272\) 5.09810 + 5.09810i 0.309118 + 0.309118i
\(273\) 0 0
\(274\) 10.5084i 0.634837i
\(275\) −0.816986 2.06795i −0.0492661 0.124702i
\(276\) 0.721114 0.0434060
\(277\) 7.48071 + 7.48071i 0.449472 + 0.449472i 0.895179 0.445707i \(-0.147048\pi\)
−0.445707 + 0.895179i \(0.647048\pi\)
\(278\) −8.18759 −0.491059
\(279\) 0.317792 + 0.317792i 0.0190257 + 0.0190257i
\(280\) 4.29446 + 0.890998i 0.256643 + 0.0532473i
\(281\) −0.943634 0.943634i −0.0562925 0.0562925i 0.678400 0.734693i \(-0.262674\pi\)
−0.734693 + 0.678400i \(0.762674\pi\)
\(282\) −0.400018 + 0.400018i −0.0238208 + 0.0238208i
\(283\) −3.00754 + 3.00754i −0.178779 + 0.178779i −0.790824 0.612044i \(-0.790347\pi\)
0.612044 + 0.790824i \(0.290347\pi\)
\(284\) 1.53852 1.53852i 0.0912944 0.0912944i
\(285\) 1.30410 + 0.270569i 0.0772480 + 0.0160271i
\(286\) 0 0
\(287\) −4.95141 + 4.95141i −0.292272 + 0.292272i
\(288\) 17.3785 1.02404
\(289\) 10.6059i 0.623874i
\(290\) 1.50113 7.23517i 0.0881491 0.424864i
\(291\) −0.901301 + 0.901301i −0.0528352 + 0.0528352i
\(292\) 0.405284i 0.0237174i
\(293\) 6.74295i 0.393927i −0.980411 0.196964i \(-0.936892\pi\)
0.980411 0.196964i \(-0.0631081\pi\)
\(294\) −0.272301 + 0.272301i −0.0158809 + 0.0158809i
\(295\) −2.70059 4.11457i −0.157234 0.239560i
\(296\) 14.5160i 0.843727i
\(297\) −0.234353 −0.0135985
\(298\) 6.58008 6.58008i 0.381174 0.381174i
\(299\) 0 0
\(300\) 0.246289 + 0.623403i 0.0142195 + 0.0359922i
\(301\) −5.51019 + 5.51019i −0.317602 + 0.317602i
\(302\) −2.66708 + 2.66708i −0.153473 + 0.153473i
\(303\) −0.244575 + 0.244575i −0.0140504 + 0.0140504i
\(304\) 6.57157 + 6.57157i 0.376905 + 0.376905i
\(305\) −1.37678 + 6.63583i −0.0788341 + 0.379967i
\(306\) 7.66727 + 7.66727i 0.438309 + 0.438309i
\(307\) −9.60697 −0.548298 −0.274149 0.961687i \(-0.588396\pi\)
−0.274149 + 0.961687i \(0.588396\pi\)
\(308\) −0.386785 0.386785i −0.0220391 0.0220391i
\(309\) −1.52638 −0.0868327
\(310\) 0.193647 0.127099i 0.0109984 0.00721876i
\(311\) 5.22449i 0.296254i 0.988968 + 0.148127i \(0.0473244\pi\)
−0.988968 + 0.148127i \(0.952676\pi\)
\(312\) 0 0
\(313\) 2.37979 + 2.37979i 0.134514 + 0.134514i 0.771158 0.636644i \(-0.219678\pi\)
−0.636644 + 0.771158i \(0.719678\pi\)
\(314\) −8.29003 8.29003i −0.467834 0.467834i
\(315\) −5.28661 1.09685i −0.297867 0.0618003i
\(316\) 13.6945i 0.770375i
\(317\) 14.8061i 0.831593i −0.909458 0.415796i \(-0.863503\pi\)
0.909458 0.415796i \(-0.136497\pi\)
\(318\) 0.482000 0.0270292
\(319\) −1.50664 + 1.50664i −0.0843555 + 0.0843555i
\(320\) 0.572891 2.76123i 0.0320256 0.154358i
\(321\) 0.432495 0.0241395
\(322\) 2.11687 + 2.11687i 0.117969 + 0.117969i
\(323\) 35.5846i 1.97998i
\(324\) −13.6129 −0.756273
\(325\) 0 0
\(326\) 14.4541 0.800536
\(327\) 0.714165i 0.0394934i
\(328\) 14.9147 + 14.9147i 0.823529 + 0.823529i
\(329\) 7.52607 0.414926
\(330\) −0.0122528 + 0.0590564i −0.000674495 + 0.00325095i
\(331\) −11.0229 + 11.0229i −0.605871 + 0.605871i −0.941864 0.335993i \(-0.890928\pi\)
0.335993 + 0.941864i \(0.390928\pi\)
\(332\) 3.94839 0.216696
\(333\) 17.8697i 0.979253i
\(334\) 12.2956i 0.672784i
\(335\) −25.4235 5.27477i −1.38903 0.288192i
\(336\) 0.0688601 + 0.0688601i 0.00375663 + 0.00375663i
\(337\) −18.1944 18.1944i −0.991112 0.991112i 0.00884867 0.999961i \(-0.497183\pi\)
−0.999961 + 0.00884867i \(0.997183\pi\)
\(338\) 0 0
\(339\) 0.418917i 0.0227525i
\(340\) −14.9718 + 9.82672i −0.811962 + 0.532929i
\(341\) −0.0667915 −0.00361696
\(342\) 9.88328 + 9.88328i 0.534427 + 0.534427i
\(343\) 10.7718 0.581622
\(344\) 16.5979 + 16.5979i 0.894900 + 0.894900i
\(345\) −0.214896 + 1.03576i −0.0115696 + 0.0557635i
\(346\) 3.12068 + 3.12068i 0.167769 + 0.167769i
\(347\) −16.9091 + 16.9091i −0.907730 + 0.907730i −0.996089 0.0883583i \(-0.971838\pi\)
0.0883583 + 0.996089i \(0.471838\pi\)
\(348\) 0.454191 0.454191i 0.0243472 0.0243472i
\(349\) 7.73307 7.73307i 0.413942 0.413942i −0.469167 0.883109i \(-0.655446\pi\)
0.883109 + 0.469167i \(0.155446\pi\)
\(350\) −1.10704 + 2.55303i −0.0591739 + 0.136465i
\(351\) 0 0
\(352\) −1.82625 + 1.82625i −0.0973394 + 0.0973394i
\(353\) 0.867256 0.0461594 0.0230797 0.999734i \(-0.492653\pi\)
0.0230797 + 0.999734i \(0.492653\pi\)
\(354\) 0.133505i 0.00709572i
\(355\) 1.75134 + 2.66832i 0.0929516 + 0.141620i
\(356\) 9.30149 9.30149i 0.492978 0.492978i
\(357\) 0.372872i 0.0197345i
\(358\) 3.58931i 0.189701i
\(359\) −19.2831 + 19.2831i −1.01773 + 1.01773i −0.0178852 + 0.999840i \(0.505693\pi\)
−0.999840 + 0.0178852i \(0.994307\pi\)
\(360\) −3.30395 + 15.9244i −0.174133 + 0.839292i
\(361\) 26.8693i 1.41417i
\(362\) 7.39924 0.388895
\(363\) −0.671761 + 0.671761i −0.0352583 + 0.0352583i
\(364\) 0 0
\(365\) −0.582123 0.120777i −0.0304697 0.00632174i
\(366\) 0.129992 0.129992i 0.00679481 0.00679481i
\(367\) −11.7243 + 11.7243i −0.612003 + 0.612003i −0.943468 0.331465i \(-0.892457\pi\)
0.331465 + 0.943468i \(0.392457\pi\)
\(368\) −5.21938 + 5.21938i −0.272079 + 0.272079i
\(369\) −18.3605 18.3605i −0.955810 0.955810i
\(370\) 9.01790 + 1.87100i 0.468818 + 0.0972687i
\(371\) −4.53425 4.53425i −0.235407 0.235407i
\(372\) 0.0201350 0.00104395
\(373\) −5.18869 5.18869i −0.268660 0.268660i 0.559900 0.828560i \(-0.310840\pi\)
−0.828560 + 0.559900i \(0.810840\pi\)
\(374\) −1.61146 −0.0833265
\(375\) −0.968811 + 0.167976i −0.0500292 + 0.00867422i
\(376\) 22.6702i 1.16913i
\(377\) 0 0
\(378\) 0.207391 + 0.207391i 0.0106671 + 0.0106671i
\(379\) 23.7312 + 23.7312i 1.21899 + 1.21899i 0.967986 + 0.251004i \(0.0807608\pi\)
0.251004 + 0.967986i \(0.419239\pi\)
\(380\) −19.2990 + 12.6669i −0.990019 + 0.649796i
\(381\) 1.28872i 0.0660231i
\(382\) 11.1284i 0.569376i
\(383\) 29.3750 1.50099 0.750497 0.660874i \(-0.229814\pi\)
0.750497 + 0.660874i \(0.229814\pi\)
\(384\) 0.668250 0.668250i 0.0341015 0.0341015i
\(385\) 0.670817 0.440289i 0.0341880 0.0224392i
\(386\) 5.24538 0.266983
\(387\) −20.4326 20.4326i −1.03865 1.03865i
\(388\) 22.0926i 1.12158i
\(389\) −28.8837 −1.46446 −0.732231 0.681056i \(-0.761521\pi\)
−0.732231 + 0.681056i \(0.761521\pi\)
\(390\) 0 0
\(391\) −28.2626 −1.42930
\(392\) 15.4321i 0.779439i
\(393\) −1.31634 1.31634i −0.0664007 0.0664007i
\(394\) 3.38020 0.170292
\(395\) 19.6699 + 4.08103i 0.989698 + 0.205339i
\(396\) 1.43425 1.43425i 0.0720740 0.0720740i
\(397\) 5.89089 0.295655 0.147828 0.989013i \(-0.452772\pi\)
0.147828 + 0.989013i \(0.452772\pi\)
\(398\) 13.7772i 0.690589i
\(399\) 0.480641i 0.0240621i
\(400\) −6.29477 2.72953i −0.314739 0.136476i
\(401\) −2.56134 2.56134i −0.127907 0.127907i 0.640255 0.768162i \(-0.278829\pi\)
−0.768162 + 0.640255i \(0.778829\pi\)
\(402\) 0.498032 + 0.498032i 0.0248396 + 0.0248396i
\(403\) 0 0
\(404\) 5.99499i 0.298262i
\(405\) 4.05672 19.5527i 0.201580 0.971581i
\(406\) 2.66661 0.132342
\(407\) −1.87787 1.87787i −0.0930825 0.0930825i
\(408\) 1.12317 0.0556054
\(409\) 8.48983 + 8.48983i 0.419795 + 0.419795i 0.885133 0.465338i \(-0.154067\pi\)
−0.465338 + 0.885133i \(0.654067\pi\)
\(410\) −11.1880 + 7.34320i −0.552535 + 0.362655i
\(411\) −0.947508 0.947508i −0.0467371 0.0467371i
\(412\) 18.7072 18.7072i 0.921639 0.921639i
\(413\) 1.25590 1.25590i 0.0617990 0.0617990i
\(414\) −7.84967 + 7.84967i −0.385790 + 0.385790i
\(415\) −1.17664 + 5.67120i −0.0577590 + 0.278388i
\(416\) 0 0
\(417\) 0.738247 0.738247i 0.0361521 0.0361521i
\(418\) −2.07720 −0.101599
\(419\) 12.6173i 0.616393i 0.951323 + 0.308197i \(0.0997255\pi\)
−0.951323 + 0.308197i \(0.900275\pi\)
\(420\) −0.202225 + 0.132730i −0.00986755 + 0.00647654i
\(421\) −2.72216 + 2.72216i −0.132670 + 0.132670i −0.770323 0.637653i \(-0.779905\pi\)
0.637653 + 0.770323i \(0.279905\pi\)
\(422\) 8.06716i 0.392703i
\(423\) 27.9077i 1.35692i
\(424\) −13.6582 + 13.6582i −0.663299 + 0.663299i
\(425\) −9.65277 24.4330i −0.468228 1.18517i
\(426\) 0.0865787i 0.00419475i
\(427\) −2.44572 −0.118357
\(428\) −5.30063 + 5.30063i −0.256216 + 0.256216i
\(429\) 0 0
\(430\) −12.4506 + 8.17190i −0.600420 + 0.394084i
\(431\) −9.87188 + 9.87188i −0.475512 + 0.475512i −0.903693 0.428181i \(-0.859155\pi\)
0.428181 + 0.903693i \(0.359155\pi\)
\(432\) −0.511346 + 0.511346i −0.0246021 + 0.0246021i
\(433\) 24.1128 24.1128i 1.15879 1.15879i 0.174050 0.984737i \(-0.444315\pi\)
0.984737 0.174050i \(-0.0556853\pi\)
\(434\) 0.0591074 + 0.0591074i 0.00283725 + 0.00283725i
\(435\) 0.517019 + 0.787721i 0.0247891 + 0.0377683i
\(436\) −8.75277 8.75277i −0.419182 0.419182i
\(437\) −36.4311 −1.74273
\(438\) 0.0114035 + 0.0114035i 0.000544879 + 0.000544879i
\(439\) −29.0839 −1.38810 −0.694049 0.719927i \(-0.744175\pi\)
−0.694049 + 0.719927i \(0.744175\pi\)
\(440\) −1.32625 2.02065i −0.0632264 0.0963307i
\(441\) 18.9974i 0.904639i
\(442\) 0 0
\(443\) 7.18973 + 7.18973i 0.341594 + 0.341594i 0.856966 0.515372i \(-0.172346\pi\)
−0.515372 + 0.856966i \(0.672346\pi\)
\(444\) 0.566103 + 0.566103i 0.0268660 + 0.0268660i
\(445\) 10.5882 + 16.1320i 0.501927 + 0.764728i
\(446\) 1.95247i 0.0924520i
\(447\) 1.18661i 0.0561245i
\(448\) 1.01769 0.0480812
\(449\) −11.2814 + 11.2814i −0.532401 + 0.532401i −0.921286 0.388885i \(-0.872860\pi\)
0.388885 + 0.921286i \(0.372860\pi\)
\(450\) −9.46700 4.10507i −0.446279 0.193515i
\(451\) 3.85889 0.181708
\(452\) 5.13423 + 5.13423i 0.241494 + 0.241494i
\(453\) 0.480963i 0.0225976i
\(454\) 10.6854 0.501490
\(455\) 0 0
\(456\) 1.44780 0.0677993
\(457\) 19.2290i 0.899495i 0.893156 + 0.449748i \(0.148486\pi\)
−0.893156 + 0.449748i \(0.851514\pi\)
\(458\) 10.0244 + 10.0244i 0.468410 + 0.468410i
\(459\) −2.76890 −0.129241
\(460\) −10.0605 15.3280i −0.469073 0.714672i
\(461\) −3.13390 + 3.13390i −0.145960 + 0.145960i −0.776311 0.630350i \(-0.782911\pi\)
0.630350 + 0.776311i \(0.282911\pi\)
\(462\) −0.0217660 −0.00101264
\(463\) 12.2584i 0.569696i −0.958573 0.284848i \(-0.908057\pi\)
0.958573 0.284848i \(-0.0919431\pi\)
\(464\) 6.57481i 0.305228i
\(465\) −0.00600033 + 0.0289206i −0.000278259 + 0.00134116i
\(466\) −3.34177 3.34177i −0.154804 0.154804i
\(467\) 10.5138 + 10.5138i 0.486522 + 0.486522i 0.907207 0.420685i \(-0.138210\pi\)
−0.420685 + 0.907207i \(0.638210\pi\)
\(468\) 0 0
\(469\) 9.37014i 0.432673i
\(470\) 14.0836 + 2.92201i 0.649627 + 0.134782i
\(471\) 1.49497 0.0688845
\(472\) −3.78306 3.78306i −0.174130 0.174130i
\(473\) 4.29438 0.197456
\(474\) −0.385322 0.385322i −0.0176984 0.0176984i
\(475\) −12.4426 31.4947i −0.570907 1.44507i
\(476\) −4.56991 4.56991i −0.209461 0.209461i
\(477\) 16.8136 16.8136i 0.769843 0.769843i
\(478\) −6.89810 + 6.89810i −0.315512 + 0.315512i
\(479\) 8.32128 8.32128i 0.380209 0.380209i −0.490968 0.871177i \(-0.663357\pi\)
0.871177 + 0.490968i \(0.163357\pi\)
\(480\) 0.626697 + 0.954826i 0.0286047 + 0.0435816i
\(481\) 0 0
\(482\) 11.8988 11.8988i 0.541976 0.541976i
\(483\) −0.381743 −0.0173699
\(484\) 16.4661i 0.748461i
\(485\) 31.7324 + 6.58372i 1.44089 + 0.298951i
\(486\) −1.15405 + 1.15405i −0.0523488 + 0.0523488i
\(487\) 26.4997i 1.20082i 0.799694 + 0.600408i \(0.204995\pi\)
−0.799694 + 0.600408i \(0.795005\pi\)
\(488\) 7.36705i 0.333491i
\(489\) −1.30327 + 1.30327i −0.0589360 + 0.0589360i
\(490\) 9.58700 + 1.98907i 0.433096 + 0.0898572i
\(491\) 14.2507i 0.643123i −0.946889 0.321562i \(-0.895792\pi\)
0.946889 0.321562i \(-0.104208\pi\)
\(492\) −1.16330 −0.0524457
\(493\) −17.8011 + 17.8011i −0.801719 + 0.801719i
\(494\) 0 0
\(495\) 1.63265 + 2.48748i 0.0733823 + 0.111804i
\(496\) −0.145736 + 0.145736i −0.00654373 + 0.00654373i
\(497\) −0.814460 + 0.814460i −0.0365335 + 0.0365335i
\(498\) 0.111096 0.111096i 0.00497832 0.00497832i
\(499\) 20.1666 + 20.1666i 0.902783 + 0.902783i 0.995676 0.0928929i \(-0.0296114\pi\)
−0.0928929 + 0.995676i \(0.529611\pi\)
\(500\) 9.81500 13.9324i 0.438940 0.623076i
\(501\) 1.10865 + 1.10865i 0.0495308 + 0.0495308i
\(502\) 3.72081 0.166068
\(503\) −6.41738 6.41738i −0.286137 0.286137i 0.549414 0.835551i \(-0.314851\pi\)
−0.835551 + 0.549414i \(0.814851\pi\)
\(504\) −5.86915 −0.261433
\(505\) 8.61081 + 1.78654i 0.383176 + 0.0794999i
\(506\) 1.64979i 0.0733422i
\(507\) 0 0
\(508\) 15.7945 + 15.7945i 0.700767 + 0.700767i
\(509\) 9.67201 + 9.67201i 0.428704 + 0.428704i 0.888187 0.459483i \(-0.151965\pi\)
−0.459483 + 0.888187i \(0.651965\pi\)
\(510\) −0.144768 + 0.697757i −0.00641044 + 0.0308972i
\(511\) 0.214548i 0.00949107i
\(512\) 14.6405i 0.647023i
\(513\) −3.56917 −0.157583
\(514\) 0.193701 0.193701i 0.00854380 0.00854380i
\(515\) 21.2950 + 32.4447i 0.938369 + 1.42968i
\(516\) −1.29459 −0.0569909
\(517\) −2.93273 2.93273i −0.128981 0.128981i
\(518\) 3.32366i 0.146033i
\(519\) −0.562762 −0.0247025
\(520\) 0 0
\(521\) −29.1893 −1.27881 −0.639403 0.768872i \(-0.720819\pi\)
−0.639403 + 0.768872i \(0.720819\pi\)
\(522\) 9.88816i 0.432793i
\(523\) 10.0289 + 10.0289i 0.438533 + 0.438533i 0.891518 0.452985i \(-0.149641\pi\)
−0.452985 + 0.891518i \(0.649641\pi\)
\(524\) 32.2661 1.40955
\(525\) −0.130380 0.330016i −0.00569025 0.0144031i
\(526\) 13.1899 13.1899i 0.575108 0.575108i
\(527\) −0.789148 −0.0343758
\(528\) 0.0536663i 0.00233553i
\(529\) 5.93490i 0.258039i
\(530\) −6.72453 10.2454i −0.292095 0.445031i
\(531\) 4.65707 + 4.65707i 0.202100 + 0.202100i
\(532\) −5.89071 5.89071i −0.255395 0.255395i
\(533\) 0 0
\(534\) 0.523432i 0.0226511i
\(535\) −6.03387 9.19310i −0.260867 0.397452i
\(536\) −28.2249 −1.21913
\(537\) −0.323635 0.323635i −0.0139659 0.0139659i
\(538\) 4.69184 0.202279
\(539\) −1.99638 1.99638i −0.0859901 0.0859901i
\(540\) −0.985632 1.50169i −0.0424148 0.0646226i
\(541\) 10.8210 + 10.8210i 0.465233 + 0.465233i 0.900366 0.435133i \(-0.143299\pi\)
−0.435133 + 0.900366i \(0.643299\pi\)
\(542\) 0.823278 0.823278i 0.0353628 0.0353628i
\(543\) −0.667164 + 0.667164i −0.0286307 + 0.0286307i
\(544\) −21.5773 + 21.5773i −0.925120 + 0.925120i
\(545\) 15.1803 9.96353i 0.650251 0.426791i
\(546\) 0 0
\(547\) 0.334432 0.334432i 0.0142993 0.0142993i −0.699921 0.714220i \(-0.746781\pi\)
0.714220 + 0.699921i \(0.246781\pi\)
\(548\) 23.2252 0.992133
\(549\) 9.06906i 0.387058i
\(550\) 1.42624 0.563469i 0.0608153 0.0240264i
\(551\) −22.9460 + 22.9460i −0.977531 + 0.977531i
\(552\) 1.14989i 0.0489427i
\(553\) 7.24957i 0.308283i
\(554\) −5.15938 + 5.15938i −0.219201 + 0.219201i
\(555\) −0.981814 + 0.644411i −0.0416757 + 0.0273537i
\(556\) 18.0958i 0.767435i
\(557\) 34.3584 1.45581 0.727906 0.685677i \(-0.240494\pi\)
0.727906 + 0.685677i \(0.240494\pi\)
\(558\) −0.219179 + 0.219179i −0.00927857 + 0.00927857i
\(559\) 0 0
\(560\) 0.503001 2.42438i 0.0212557 0.102449i
\(561\) 0.145300 0.145300i 0.00613455 0.00613455i
\(562\) 0.650816 0.650816i 0.0274530 0.0274530i
\(563\) −19.0692 + 19.0692i −0.803671 + 0.803671i −0.983667 0.179996i \(-0.942391\pi\)
0.179996 + 0.983667i \(0.442391\pi\)
\(564\) 0.884102 + 0.884102i 0.0372274 + 0.0372274i
\(565\) −8.90450 + 5.84444i −0.374615 + 0.245878i
\(566\) −2.07427 2.07427i −0.0871882 0.0871882i
\(567\) 7.20638 0.302640
\(568\) 2.45333 + 2.45333i 0.102940 + 0.102940i
\(569\) 36.5069 1.53045 0.765224 0.643765i \(-0.222628\pi\)
0.765224 + 0.643765i \(0.222628\pi\)
\(570\) −0.186609 + 0.899425i −0.00781620 + 0.0376728i
\(571\) 31.2687i 1.30855i −0.756255 0.654277i \(-0.772973\pi\)
0.756255 0.654277i \(-0.227027\pi\)
\(572\) 0 0
\(573\) −1.00341 1.00341i −0.0419178 0.0419178i
\(574\) −3.41495 3.41495i −0.142537 0.142537i
\(575\) 25.0142 9.88240i 1.04316 0.412125i
\(576\) 3.77373i 0.157239i
\(577\) 28.3409i 1.17985i −0.807460 0.589923i \(-0.799158\pi\)
0.807460 0.589923i \(-0.200842\pi\)
\(578\) −7.31477 −0.304254
\(579\) −0.472958 + 0.472958i −0.0196554 + 0.0196554i
\(580\) −15.9908 3.31772i −0.663983 0.137761i
\(581\) −2.09019 −0.0867158
\(582\) −0.621620 0.621620i −0.0257670 0.0257670i
\(583\) 3.53378i 0.146354i
\(584\) −0.646268 −0.0267427
\(585\) 0 0
\(586\) 4.65056 0.192113
\(587\) 21.1182i 0.871643i −0.900033 0.435822i \(-0.856458\pi\)
0.900033 0.435822i \(-0.143542\pi\)
\(588\) 0.601828 + 0.601828i 0.0248190 + 0.0248190i
\(589\) −1.01723 −0.0419142
\(590\) 2.83779 1.86257i 0.116830 0.0766809i
\(591\) −0.304781 + 0.304781i −0.0125370 + 0.0125370i
\(592\) −8.19483 −0.336805
\(593\) 12.8500i 0.527685i −0.964566 0.263843i \(-0.915010\pi\)
0.964566 0.263843i \(-0.0849899\pi\)
\(594\) 0.161631i 0.00663180i
\(595\) 7.92577 5.20206i 0.324925 0.213264i
\(596\) −14.5430 14.5430i −0.595704 0.595704i
\(597\) 1.24224 + 1.24224i 0.0508416 + 0.0508416i
\(598\) 0 0
\(599\) 3.15330i 0.128840i −0.997923 0.0644201i \(-0.979480\pi\)
0.997923 0.0644201i \(-0.0205198\pi\)
\(600\) −0.994082 + 0.392734i −0.0405832 + 0.0160333i
\(601\) 23.7424 0.968472 0.484236 0.874938i \(-0.339098\pi\)
0.484236 + 0.874938i \(0.339098\pi\)
\(602\) −3.80033 3.80033i −0.154890 0.154890i
\(603\) 34.7458 1.41496
\(604\) 5.89466 + 5.89466i 0.239850 + 0.239850i
\(605\) 23.6509 + 4.90700i 0.961545 + 0.199498i
\(606\) −0.168681 0.168681i −0.00685220 0.00685220i
\(607\) −3.00186 + 3.00186i −0.121842 + 0.121842i −0.765399 0.643557i \(-0.777458\pi\)
0.643557 + 0.765399i \(0.277458\pi\)
\(608\) −27.8136 + 27.8136i −1.12799 + 1.12799i
\(609\) −0.240439 + 0.240439i −0.00974308 + 0.00974308i
\(610\) −4.57668 0.949553i −0.185304 0.0384463i
\(611\) 0 0
\(612\) 16.9458 16.9458i 0.684995 0.684995i
\(613\) −43.6898 −1.76461 −0.882306 0.470676i \(-0.844010\pi\)
−0.882306 + 0.470676i \(0.844010\pi\)
\(614\) 6.62585i 0.267397i
\(615\) 0.346670 1.67089i 0.0139791 0.0673769i
\(616\) 0.616770 0.616770i 0.0248504 0.0248504i
\(617\) 14.4409i 0.581367i 0.956819 + 0.290684i \(0.0938827\pi\)
−0.956819 + 0.290684i \(0.906117\pi\)
\(618\) 1.05273i 0.0423471i
\(619\) 3.86804 3.86804i 0.155470 0.155470i −0.625086 0.780556i \(-0.714936\pi\)
0.780556 + 0.625086i \(0.214936\pi\)
\(620\) −0.280909 0.427989i −0.0112816 0.0171884i
\(621\) 2.83477i 0.113755i
\(622\) −3.60329 −0.144479
\(623\) −4.92401 + 4.92401i −0.197276 + 0.197276i
\(624\) 0 0
\(625\) 17.0867 + 18.2495i 0.683466 + 0.729982i
\(626\) −1.64132 + 1.64132i −0.0656004 + 0.0656004i
\(627\) 0.187294 0.187294i 0.00747982 0.00747982i
\(628\) −18.3223 + 18.3223i −0.731137 + 0.731137i
\(629\) −22.1872 22.1872i −0.884662 0.884662i
\(630\) 0.756486 3.64613i 0.0301391 0.145265i
\(631\) 19.3475 + 19.3475i 0.770211 + 0.770211i 0.978143 0.207932i \(-0.0666734\pi\)
−0.207932 + 0.978143i \(0.566673\pi\)
\(632\) 21.8373 0.868642
\(633\) −0.727388 0.727388i −0.0289111 0.0289111i
\(634\) 10.2116 0.405556
\(635\) −27.3930 + 17.9793i −1.08706 + 0.713487i
\(636\) 1.06529i 0.0422417i
\(637\) 0 0
\(638\) −1.03911 1.03911i −0.0411390 0.0411390i
\(639\) −3.02013 3.02013i −0.119475 0.119475i
\(640\) −23.5273 4.88135i −0.929998 0.192952i
\(641\) 35.8310i 1.41524i 0.706593 + 0.707620i \(0.250231\pi\)
−0.706593 + 0.707620i \(0.749769\pi\)
\(642\) 0.298288i 0.0117725i
\(643\) −5.93411 −0.234019 −0.117009 0.993131i \(-0.537331\pi\)
−0.117009 + 0.993131i \(0.537331\pi\)
\(644\) 4.67862 4.67862i 0.184363 0.184363i
\(645\) 0.385793 1.85946i 0.0151906 0.0732161i
\(646\) −24.5424 −0.965607
\(647\) 4.39835 + 4.39835i 0.172917 + 0.172917i 0.788260 0.615343i \(-0.210982\pi\)
−0.615343 + 0.788260i \(0.710982\pi\)
\(648\) 21.7072i 0.852740i
\(649\) −0.978793 −0.0384210
\(650\) 0 0
\(651\) −0.0106590 −0.000417760
\(652\) 31.9457i 1.25109i
\(653\) −21.8121 21.8121i −0.853575 0.853575i 0.136997 0.990571i \(-0.456255\pi\)
−0.990571 + 0.136997i \(0.956255\pi\)
\(654\) −0.492553 −0.0192604
\(655\) −9.61546 + 46.3449i −0.375707 + 1.81084i
\(656\) 8.41991 8.41991i 0.328742 0.328742i
\(657\) 0.795576 0.0310384
\(658\) 5.19067i 0.202353i
\(659\) 26.7893i 1.04356i 0.853079 + 0.521782i \(0.174733\pi\)
−0.853079 + 0.521782i \(0.825267\pi\)
\(660\) 0.130524 + 0.0270806i 0.00508063 + 0.00105411i
\(661\) −9.23307 9.23307i −0.359125 0.359125i 0.504365 0.863490i \(-0.331726\pi\)
−0.863490 + 0.504365i \(0.831726\pi\)
\(662\) −7.60238 7.60238i −0.295475 0.295475i
\(663\) 0 0
\(664\) 6.29612i 0.244337i
\(665\) 10.2165 6.70557i 0.396179 0.260031i
\(666\) −12.3246 −0.477568
\(667\) −18.2245 18.2245i −0.705657 0.705657i
\(668\) −27.1751 −1.05144
\(669\) 0.176047 + 0.176047i 0.00680638 + 0.00680638i
\(670\) 3.63797 17.5344i 0.140547 0.677412i
\(671\) 0.953039 + 0.953039i 0.0367917 + 0.0367917i
\(672\) −0.291445 + 0.291445i −0.0112427 + 0.0112427i
\(673\) 23.0361 23.0361i 0.887977 0.887977i −0.106351 0.994329i \(-0.533917\pi\)
0.994329 + 0.106351i \(0.0339168\pi\)
\(674\) 12.5485 12.5485i 0.483351 0.483351i
\(675\) 2.45066 0.968184i 0.0943258 0.0372654i
\(676\) 0 0
\(677\) 7.47403 7.47403i 0.287250 0.287250i −0.548742 0.835992i \(-0.684893\pi\)
0.835992 + 0.548742i \(0.184893\pi\)
\(678\) 0.288924 0.0110960
\(679\) 11.6954i 0.448827i
\(680\) −15.6698 23.8742i −0.600908 0.915533i
\(681\) −0.963464 + 0.963464i −0.0369200 + 0.0369200i
\(682\) 0.0460656i 0.00176394i
\(683\) 1.28980i 0.0493526i −0.999695 0.0246763i \(-0.992144\pi\)
0.999695 0.0246763i \(-0.00785551\pi\)
\(684\) 21.8436 21.8436i 0.835210 0.835210i
\(685\) −6.92124 + 33.3592i −0.264447 + 1.27459i
\(686\) 7.42921i 0.283649i
\(687\) −1.80773 −0.0689693
\(688\) 9.37013 9.37013i 0.357233 0.357233i
\(689\) 0 0
\(690\) −0.714356 0.148212i −0.0271951 0.00564233i
\(691\) −13.2988 + 13.2988i −0.505911 + 0.505911i −0.913269 0.407358i \(-0.866450\pi\)
0.407358 + 0.913269i \(0.366450\pi\)
\(692\) 6.89719 6.89719i 0.262192 0.262192i
\(693\) −0.759263 + 0.759263i −0.0288420 + 0.0288420i
\(694\) −11.6621 11.6621i −0.442687 0.442687i
\(695\) −25.9917 5.39266i −0.985921 0.204555i
\(696\) 0.724256 + 0.724256i 0.0274528 + 0.0274528i
\(697\) 45.5932 1.72697
\(698\) 5.33344 + 5.33344i 0.201874 + 0.201874i
\(699\) 0.602631 0.0227936
\(700\) 5.64260 + 2.44673i 0.213270 + 0.0924778i
\(701\) 21.8278i 0.824425i 0.911088 + 0.412212i \(0.135244\pi\)
−0.911088 + 0.412212i \(0.864756\pi\)
\(702\) 0 0
\(703\) −28.5998 28.5998i −1.07866 1.07866i
\(704\) −0.396569 0.396569i −0.0149462 0.0149462i
\(705\) −1.53333 + 1.00640i −0.0577487 + 0.0379032i
\(706\) 0.598139i 0.0225113i
\(707\) 3.17362i 0.119356i
\(708\) 0.295067 0.0110893
\(709\) 18.2874 18.2874i 0.686798 0.686798i −0.274725 0.961523i \(-0.588587\pi\)
0.961523 + 0.274725i \(0.0885867\pi\)
\(710\) −1.84032 + 1.20789i −0.0690658 + 0.0453312i
\(711\) −26.8824 −1.00817
\(712\) 14.8322 + 14.8322i 0.555861 + 0.555861i
\(713\) 0.807921i 0.0302569i
\(714\) −0.257167 −0.00962423
\(715\) 0 0
\(716\) 7.93292 0.296467
\(717\) 1.24396i 0.0464564i
\(718\) −13.2994 13.2994i −0.496330 0.496330i
\(719\) −17.7717 −0.662771 −0.331385 0.943495i \(-0.607516\pi\)
−0.331385 + 0.943495i \(0.607516\pi\)
\(720\) 8.98993 + 1.86520i 0.335035 + 0.0695118i
\(721\) −9.90321 + 9.90321i −0.368815 + 0.368815i
\(722\) −18.5315 −0.689672
\(723\) 2.14575i 0.0798013i
\(724\) 16.3535i 0.607772i
\(725\) 9.53071 21.9795i 0.353962 0.816298i
\(726\) −0.463308 0.463308i −0.0171950 0.0171950i
\(727\) 14.6033 + 14.6033i 0.541607 + 0.541607i 0.924000 0.382393i \(-0.124900\pi\)
−0.382393 + 0.924000i \(0.624900\pi\)
\(728\) 0 0
\(729\) 26.5832i 0.984564i
\(730\) 0.0832987 0.401485i 0.00308302 0.0148596i
\(731\) 50.7386 1.87663
\(732\) −0.287303 0.287303i −0.0106190 0.0106190i
\(733\) 5.44505 0.201118 0.100559 0.994931i \(-0.467937\pi\)
0.100559 + 0.994931i \(0.467937\pi\)
\(734\) −8.08614 8.08614i −0.298465 0.298465i
\(735\) −1.04377 + 0.685078i −0.0385002 + 0.0252695i
\(736\) −22.0906 22.0906i −0.814271 0.814271i
\(737\) −3.65132 + 3.65132i −0.134498 + 0.134498i
\(738\) 12.6631 12.6631i 0.466135 0.466135i
\(739\) −21.6891 + 21.6891i −0.797846 + 0.797846i −0.982756 0.184910i \(-0.940801\pi\)
0.184910 + 0.982756i \(0.440801\pi\)
\(740\) 4.13520 19.9309i 0.152013 0.732676i
\(741\) 0 0
\(742\) 3.12723 3.12723i 0.114804 0.114804i
\(743\) 0.675576 0.0247845 0.0123922 0.999923i \(-0.496055\pi\)
0.0123922 + 0.999923i \(0.496055\pi\)
\(744\) 0.0321074i 0.00117711i
\(745\) 25.2225 16.5547i 0.924080 0.606517i
\(746\) 3.57860 3.57860i 0.131022 0.131022i
\(747\) 7.75072i 0.283584i
\(748\) 3.56157i 0.130224i
\(749\) 2.80604 2.80604i 0.102531 0.102531i
\(750\) −0.115851 0.668181i −0.00423029 0.0243985i
\(751\) 5.64380i 0.205945i 0.994684 + 0.102973i \(0.0328354\pi\)
−0.994684 + 0.102973i \(0.967165\pi\)
\(752\) −12.7982 −0.466701
\(753\) −0.335492 + 0.335492i −0.0122260 + 0.0122260i
\(754\) 0 0
\(755\) −10.2233 + 6.71006i −0.372065 + 0.244204i
\(756\) 0.458367 0.458367i 0.0166706 0.0166706i
\(757\) 21.3676 21.3676i 0.776619 0.776619i −0.202635 0.979254i \(-0.564951\pi\)
0.979254 + 0.202635i \(0.0649506\pi\)
\(758\) −16.3672 + 16.3672i −0.594484 + 0.594484i
\(759\) 0.148756 + 0.148756i 0.00539950 + 0.00539950i
\(760\) −20.1987 30.7743i −0.732682 1.11630i
\(761\) 13.3384 + 13.3384i 0.483516 + 0.483516i 0.906253 0.422736i \(-0.138930\pi\)
−0.422736 + 0.906253i \(0.638930\pi\)
\(762\) 0.888819 0.0321985
\(763\) 4.63353 + 4.63353i 0.167745 + 0.167745i
\(764\) 24.5954 0.889829
\(765\) 19.2900 + 29.3899i 0.697430 + 1.06259i
\(766\) 20.2597i 0.732013i
\(767\) 0 0
\(768\) 0.617743 + 0.617743i 0.0222909 + 0.0222909i
\(769\) 8.21751 + 8.21751i 0.296331 + 0.296331i 0.839575 0.543244i \(-0.182804\pi\)
−0.543244 + 0.839575i \(0.682804\pi\)
\(770\) 0.303664 + 0.462657i 0.0109433 + 0.0166730i
\(771\) 0.0349307i 0.00125800i
\(772\) 11.5931i 0.417244i
\(773\) −8.29320 −0.298286 −0.149143 0.988816i \(-0.547651\pi\)
−0.149143 + 0.988816i \(0.547651\pi\)
\(774\) 14.0922 14.0922i 0.506533 0.506533i
\(775\) 0.698448 0.275937i 0.0250890 0.00991194i
\(776\) 35.2290 1.26465
\(777\) −0.299683 0.299683i −0.0107511 0.0107511i
\(778\) 19.9209i 0.714198i
\(779\) 58.7707 2.10568
\(780\) 0 0
\(781\) 0.634752 0.0227132
\(782\) 19.4925i 0.697049i
\(783\) −1.78547 1.78547i −0.0638074 0.0638074i
\(784\) −8.71199 −0.311142
\(785\) −20.8568 31.7770i −0.744409 1.13417i
\(786\) 0.907871 0.907871i 0.0323827 0.0323827i
\(787\) −48.6606 −1.73456 −0.867282 0.497817i \(-0.834135\pi\)
−0.867282 + 0.497817i \(0.834135\pi\)
\(788\) 7.47076i 0.266135i
\(789\) 2.37858i 0.0846797i
\(790\) −2.81465 + 13.5661i −0.100141 + 0.482662i
\(791\) −2.71795 2.71795i −0.0966392 0.0966392i
\(792\) 2.28707 + 2.28707i 0.0812675 + 0.0812675i
\(793\) 0 0
\(794\) 4.06290i 0.144187i
\(795\) 1.53012 + 0.317463i 0.0542677 + 0.0112593i
\(796\) −30.4498 −1.07926
\(797\) −36.6678 36.6678i −1.29884 1.29884i −0.929159 0.369679i \(-0.879468\pi\)
−0.369679 0.929159i \(-0.620532\pi\)
\(798\) −0.331494 −0.0117348
\(799\) −34.6505 34.6505i −1.22585 1.22585i
\(800\) 11.5525 26.6421i 0.408443 0.941942i
\(801\) −18.2589 18.2589i −0.645147 0.645147i
\(802\) 1.76653 1.76653i 0.0623785 0.0623785i
\(803\) −0.0836045 + 0.0836045i −0.00295034 + 0.00295034i
\(804\) 1.10073 1.10073i 0.0388197 0.0388197i
\(805\) 5.32581 + 8.11432i 0.187710 + 0.285992i
\(806\) 0 0
\(807\) −0.423047 + 0.423047i −0.0148920 + 0.0148920i
\(808\) 9.55965 0.336307
\(809\) 11.3889i 0.400413i 0.979754 + 0.200206i \(0.0641613\pi\)
−0.979754 + 0.200206i \(0.935839\pi\)
\(810\) 13.4853 + 2.79789i 0.473826 + 0.0983077i
\(811\) 23.0388 23.0388i 0.809003 0.809003i −0.175480 0.984483i \(-0.556148\pi\)
0.984483 + 0.175480i \(0.0561477\pi\)
\(812\) 5.89362i 0.206825i
\(813\) 0.148464i 0.00520687i
\(814\) 1.29515 1.29515i 0.0453950 0.0453950i
\(815\) 45.8847 + 9.51999i 1.60727 + 0.333471i
\(816\) 0.634073i 0.0221970i
\(817\) 65.4031 2.28817
\(818\) −5.85536 + 5.85536i −0.204728 + 0.204728i
\(819\) 0 0
\(820\) 16.2296 + 24.7271i 0.566762 + 0.863509i
\(821\) 7.31750 7.31750i 0.255383 0.255383i −0.567790 0.823173i \(-0.692202\pi\)
0.823173 + 0.567790i \(0.192202\pi\)
\(822\) 0.653489 0.653489i 0.0227930 0.0227930i
\(823\) −7.13667 + 7.13667i −0.248769 + 0.248769i −0.820465 0.571697i \(-0.806285\pi\)
0.571697 + 0.820465i \(0.306285\pi\)
\(824\) 29.8307 + 29.8307i 1.03920 + 1.03920i
\(825\) −0.0777936 + 0.179406i −0.00270842 + 0.00624610i
\(826\) 0.866187 + 0.866187i 0.0301385 + 0.0301385i
\(827\) 8.88196 0.308856 0.154428 0.988004i \(-0.450647\pi\)
0.154428 + 0.988004i \(0.450647\pi\)
\(828\) 17.3490 + 17.3490i 0.602918 + 0.602918i
\(829\) 10.4462 0.362812 0.181406 0.983408i \(-0.441935\pi\)
0.181406 + 0.983408i \(0.441935\pi\)
\(830\) −3.91138 0.811519i −0.135766 0.0281682i
\(831\) 0.930407i 0.0322755i
\(832\) 0 0
\(833\) −23.5874 23.5874i −0.817255 0.817255i
\(834\) 0.509163 + 0.509163i 0.0176309 + 0.0176309i
\(835\) 8.09834 39.0326i 0.280255 1.35078i
\(836\) 4.59094i 0.158781i
\(837\) 0.0791525i 0.00273591i
\(838\) −8.70202 −0.300606
\(839\) 18.5309 18.5309i 0.639759 0.639759i −0.310737 0.950496i \(-0.600576\pi\)
0.950496 + 0.310737i \(0.100576\pi\)
\(840\) −0.211651 0.322469i −0.00730267 0.0111262i
\(841\) 6.04271 0.208369
\(842\) −1.87745 1.87745i −0.0647012 0.0647012i
\(843\) 0.117364i 0.00404222i
\(844\) 17.8297 0.613723
\(845\) 0 0
\(846\) −19.2477 −0.661751
\(847\) 8.71682i 0.299513i
\(848\) 7.71053 + 7.71053i 0.264781 + 0.264781i
\(849\) 0.374060 0.0128377
\(850\) 16.8512 6.65744i 0.577992 0.228348i
\(851\) 22.7150 22.7150i 0.778661 0.778661i
\(852\) −0.191352 −0.00655562
\(853\) 30.8130i 1.05502i −0.849550 0.527509i \(-0.823126\pi\)
0.849550 0.527509i \(-0.176874\pi\)
\(854\) 1.68679i 0.0577208i
\(855\) 24.8652 + 37.8842i 0.850371 + 1.29561i
\(856\) −8.45243 8.45243i −0.288898 0.288898i
\(857\) −7.54399 7.54399i −0.257698 0.257698i 0.566419 0.824117i \(-0.308328\pi\)
−0.824117 + 0.566419i \(0.808328\pi\)
\(858\) 0 0
\(859\) 9.75562i 0.332857i −0.986053 0.166429i \(-0.946776\pi\)
0.986053 0.166429i \(-0.0532235\pi\)
\(860\) 18.0612 + 27.5177i 0.615880 + 0.938346i
\(861\) 0.615828 0.0209873
\(862\) −6.80856 6.80856i −0.231900 0.231900i
\(863\) −35.0410 −1.19281 −0.596405 0.802683i \(-0.703405\pi\)
−0.596405 + 0.802683i \(0.703405\pi\)
\(864\) −2.16423 2.16423i −0.0736286 0.0736286i
\(865\) 7.85127 + 11.9621i 0.266951 + 0.406723i
\(866\) 16.6304 + 16.6304i 0.565124 + 0.565124i
\(867\) 0.659548 0.659548i 0.0223994 0.0223994i
\(868\) 0.130637 0.130637i 0.00443409 0.00443409i
\(869\) 2.82499 2.82499i 0.0958311 0.0958311i
\(870\) −0.543285 + 0.356584i −0.0184191 + 0.0120893i
\(871\) 0 0
\(872\) 13.9572 13.9572i 0.472651 0.472651i
\(873\) −43.3680 −1.46778
\(874\) 25.1262i 0.849907i
\(875\) −5.19585 + 7.37551i −0.175652 + 0.249338i
\(876\) 0.0252034 0.0252034i 0.000851545 0.000851545i
\(877\) 37.9152i 1.28030i −0.768248 0.640152i \(-0.778871\pi\)
0.768248 0.640152i \(-0.221129\pi\)
\(878\) 20.0589i 0.676956i
\(879\) −0.419325 + 0.419325i −0.0141435 + 0.0141435i
\(880\) −1.14073 + 0.748715i −0.0384540 + 0.0252392i
\(881\) 18.6214i 0.627370i −0.949527 0.313685i \(-0.898436\pi\)
0.949527 0.313685i \(-0.101564\pi\)
\(882\) −13.1024 −0.441179
\(883\) 13.2901 13.2901i 0.447248 0.447248i −0.447191 0.894439i \(-0.647575\pi\)
0.894439 + 0.447191i \(0.147575\pi\)
\(884\) 0 0
\(885\) −0.0879316 + 0.423815i −0.00295579 + 0.0142464i
\(886\) −4.95870 + 4.95870i −0.166591 + 0.166591i
\(887\) −27.6979 + 27.6979i −0.930004 + 0.930004i −0.997706 0.0677017i \(-0.978433\pi\)
0.0677017 + 0.997706i \(0.478433\pi\)
\(888\) −0.902711 + 0.902711i −0.0302930 + 0.0302930i
\(889\) −8.36126 8.36126i −0.280428 0.280428i
\(890\) −11.1261 + 7.30257i −0.372947 + 0.244783i
\(891\) −2.80816 2.80816i −0.0940768 0.0940768i
\(892\) −4.31525 −0.144485
\(893\) −44.6653 44.6653i −1.49467 1.49467i
\(894\) −0.818392 −0.0273711
\(895\) −2.36405 + 11.3943i −0.0790216 + 0.380870i
\(896\) 8.67127i 0.289687i
\(897\) 0 0
\(898\) −7.78067 7.78067i −0.259644 0.259644i
\(899\) −0.508866 0.508866i −0.0169716 0.0169716i
\(900\) −9.07283 + 20.9235i −0.302428 + 0.697451i
\(901\) 41.7520i 1.39096i
\(902\) 2.66145i 0.0886165i
\(903\) 0.685326 0.0228062
\(904\) −8.18707 + 8.18707i −0.272298 + 0.272298i
\(905\) 23.4890 + 4.87342i 0.780802 + 0.161998i
\(906\) 0.331716 0.0110205
\(907\) −26.8910 26.8910i −0.892900 0.892900i 0.101895 0.994795i \(-0.467510\pi\)
−0.994795 + 0.101895i \(0.967510\pi\)
\(908\) 23.6163i 0.783735i
\(909\) −11.7682 −0.390327
\(910\) 0 0
\(911\) −30.2074 −1.00081 −0.500407 0.865790i \(-0.666816\pi\)
−0.500407 + 0.865790i \(0.666816\pi\)
\(912\) 0.817334i 0.0270646i
\(913\) 0.814499 + 0.814499i 0.0269560 + 0.0269560i
\(914\) −13.2621 −0.438671
\(915\) 0.498281 0.327046i 0.0164727 0.0108118i
\(916\) 22.1555 22.1555i 0.732038 0.732038i
\(917\) −17.0810 −0.564063
\(918\) 1.90969i 0.0630291i
\(919\) 39.1747i 1.29225i 0.763230 + 0.646127i \(0.223612\pi\)
−0.763230 + 0.646127i \(0.776388\pi\)
\(920\) 24.4421 16.0425i 0.805833 0.528906i
\(921\) 0.597430 + 0.597430i 0.0196860 + 0.0196860i
\(922\) −2.16143 2.16143i −0.0711828 0.0711828i
\(923\) 0 0
\(924\) 0.0481061i 0.00158258i
\(925\) 27.3952 + 11.8791i 0.900748 + 0.390581i
\(926\) 8.45451 0.277833
\(927\) −36.7225 36.7225i −1.20612 1.20612i
\(928\) −27.8274 −0.913478
\(929\) −24.2932 24.2932i −0.797034 0.797034i 0.185593 0.982627i \(-0.440579\pi\)
−0.982627 + 0.185593i \(0.940579\pi\)
\(930\) −0.0199463 0.00413838i −0.000654064 0.000135703i
\(931\) −30.4047 30.4047i −0.996473 0.996473i
\(932\) −7.38582 + 7.38582i −0.241930 + 0.241930i
\(933\) 0.324896 0.324896i 0.0106366 0.0106366i
\(934\) −7.25130 + 7.25130i −0.237270 + 0.237270i
\(935\) −5.11561 1.06137i −0.167298 0.0347104i
\(936\) 0 0
\(937\) 12.4007 12.4007i 0.405113 0.405113i −0.474917 0.880030i \(-0.657522\pi\)
0.880030 + 0.474917i \(0.157522\pi\)
\(938\) 6.46251 0.211008
\(939\) 0.295985i 0.00965910i
\(940\) 6.45809 31.1269i 0.210640 1.01525i
\(941\) 0.542863 0.542863i 0.0176968 0.0176968i −0.698203 0.715900i \(-0.746017\pi\)
0.715900 + 0.698203i \(0.246017\pi\)
\(942\) 1.03107i 0.0335940i
\(943\) 46.6778i 1.52004i
\(944\) −2.13568 + 2.13568i −0.0695104 + 0.0695104i
\(945\) 0.521772 + 0.794964i 0.0169733 + 0.0258602i
\(946\) 2.96180i 0.0962965i
\(947\) 27.7644 0.902222 0.451111 0.892468i \(-0.351028\pi\)
0.451111 + 0.892468i \(0.351028\pi\)
\(948\) −0.851621 + 0.851621i −0.0276594 + 0.0276594i
\(949\) 0 0
\(950\) 21.7216 8.58158i 0.704742 0.278423i
\(951\) −0.920748 + 0.920748i −0.0298573 + 0.0298573i
\(952\) 7.28720 7.28720i 0.236180 0.236180i
\(953\) −6.15610 + 6.15610i −0.199416 + 0.199416i −0.799750 0.600334i \(-0.795034\pi\)
0.600334 + 0.799750i \(0.295034\pi\)
\(954\) 11.5962 + 11.5962i 0.375442 + 0.375442i
\(955\) −7.32955 + 35.3272i −0.237179 + 1.14316i
\(956\) 15.2459 + 15.2459i 0.493087 + 0.493087i
\(957\) 0.187387 0.00605736
\(958\) 5.73912 + 5.73912i 0.185423 + 0.185423i
\(959\) −12.2949 −0.397024
\(960\) −0.207340 + 0.136087i −0.00669186 + 0.00439218i
\(961\) 30.9774i 0.999272i
\(962\) 0 0
\(963\) 10.4052 + 10.4052i 0.335303 + 0.335303i
\(964\) −26.2982 26.2982i −0.847008 0.847008i
\(965\) 16.6516 + 3.45480i 0.536033 + 0.111214i
\(966\) 0.263285i 0.00847105i
\(967\) 0.785304i 0.0252537i 0.999920 + 0.0126268i \(0.00401935\pi\)
−0.999920 + 0.0126268i \(0.995981\pi\)
\(968\) 26.2570 0.843932
\(969\) 2.21290 2.21290i 0.0710886 0.0710886i
\(970\) −4.54074 + 21.8856i −0.145794 + 0.702703i
\(971\) −47.2589 −1.51661 −0.758305 0.651900i \(-0.773972\pi\)
−0.758305 + 0.651900i \(0.773972\pi\)
\(972\) 2.55063 + 2.55063i 0.0818115 + 0.0818115i
\(973\) 9.57955i 0.307106i
\(974\) −18.2766 −0.585621
\(975\) 0 0
\(976\) 4.15897 0.133125
\(977\) 4.40336i 0.140876i 0.997516 + 0.0704380i \(0.0224397\pi\)
−0.997516 + 0.0704380i \(0.977560\pi\)
\(978\) −0.898856 0.898856i −0.0287423 0.0287423i
\(979\) 3.83754 0.122648
\(980\) 4.39616 21.1887i 0.140430 0.676849i
\(981\) −17.1818 + 17.1818i −0.548572 + 0.548572i
\(982\) 9.82856 0.313642
\(983\) 33.3973i 1.06521i −0.846364 0.532604i \(-0.821213\pi\)
0.846364 0.532604i \(-0.178787\pi\)
\(984\) 1.85501i 0.0591355i
\(985\) 10.7305 + 2.22633i 0.341902 + 0.0709366i
\(986\) −12.2772 12.2772i −0.390987 0.390987i
\(987\) −0.468025 0.468025i −0.0148974 0.0148974i
\(988\) 0 0
\(989\) 51.9456i 1.65177i
\(990\) −1.71560 + 1.12603i −0.0545252 + 0.0357875i
\(991\) −46.0539 −1.46295 −0.731475 0.681868i \(-0.761168\pi\)
−0.731475 + 0.681868i \(0.761168\pi\)
\(992\) −0.616815 0.616815i −0.0195839 0.0195839i
\(993\) 1.37096 0.0435061
\(994\) −0.561726 0.561726i −0.0178169 0.0178169i
\(995\) 9.07419 43.7360i 0.287671 1.38653i
\(996\) −0.245539 0.245539i −0.00778020 0.00778020i
\(997\) 9.23126 9.23126i 0.292357 0.292357i −0.545654 0.838011i \(-0.683719\pi\)
0.838011 + 0.545654i \(0.183719\pi\)
\(998\) −13.9088 + 13.9088i −0.440275 + 0.440275i
\(999\) 2.22540 2.22540i 0.0704086 0.0704086i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.f.f.408.20 yes 72
5.2 odd 4 845.2.k.f.577.17 yes 72
13.2 odd 12 845.2.o.i.488.17 144
13.3 even 3 845.2.t.i.188.17 144
13.4 even 6 845.2.t.i.418.17 144
13.5 odd 4 845.2.k.f.268.20 yes 72
13.6 odd 12 845.2.o.i.258.17 144
13.7 odd 12 845.2.o.i.258.20 144
13.8 odd 4 845.2.k.f.268.17 yes 72
13.9 even 3 845.2.t.i.418.20 144
13.10 even 6 845.2.t.i.188.20 144
13.11 odd 12 845.2.o.i.488.20 144
13.12 even 2 inner 845.2.f.f.408.17 72
65.2 even 12 845.2.t.i.657.17 144
65.7 even 12 845.2.t.i.427.17 144
65.12 odd 4 845.2.k.f.577.20 yes 72
65.17 odd 12 845.2.o.i.587.17 144
65.22 odd 12 845.2.o.i.587.20 144
65.32 even 12 845.2.t.i.427.20 144
65.37 even 12 845.2.t.i.657.20 144
65.42 odd 12 845.2.o.i.357.20 144
65.47 even 4 inner 845.2.f.f.437.17 yes 72
65.57 even 4 inner 845.2.f.f.437.20 yes 72
65.62 odd 12 845.2.o.i.357.17 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
845.2.f.f.408.17 72 13.12 even 2 inner
845.2.f.f.408.20 yes 72 1.1 even 1 trivial
845.2.f.f.437.17 yes 72 65.47 even 4 inner
845.2.f.f.437.20 yes 72 65.57 even 4 inner
845.2.k.f.268.17 yes 72 13.8 odd 4
845.2.k.f.268.20 yes 72 13.5 odd 4
845.2.k.f.577.17 yes 72 5.2 odd 4
845.2.k.f.577.20 yes 72 65.12 odd 4
845.2.o.i.258.17 144 13.6 odd 12
845.2.o.i.258.20 144 13.7 odd 12
845.2.o.i.357.17 144 65.62 odd 12
845.2.o.i.357.20 144 65.42 odd 12
845.2.o.i.488.17 144 13.2 odd 12
845.2.o.i.488.20 144 13.11 odd 12
845.2.o.i.587.17 144 65.17 odd 12
845.2.o.i.587.20 144 65.22 odd 12
845.2.t.i.188.17 144 13.3 even 3
845.2.t.i.188.20 144 13.10 even 6
845.2.t.i.418.17 144 13.4 even 6
845.2.t.i.418.20 144 13.9 even 3
845.2.t.i.427.17 144 65.7 even 12
845.2.t.i.427.20 144 65.32 even 12
845.2.t.i.657.17 144 65.2 even 12
845.2.t.i.657.20 144 65.37 even 12