Properties

Label 845.2.f.f.408.5
Level $845$
Weight $2$
Character 845.408
Analytic conductor $6.747$
Analytic rank $0$
Dimension $72$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(408,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([3, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.408");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(36\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 408.5
Character \(\chi\) \(=\) 845.408
Dual form 845.2.f.f.437.32

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.37242i q^{2} +(1.65235 + 1.65235i) q^{3} -3.62837 q^{4} +(-0.598181 + 2.15457i) q^{5} +(3.92008 - 3.92008i) q^{6} -3.73834 q^{7} +3.86318i q^{8} +2.46055i q^{9} +(5.11155 + 1.41914i) q^{10} +(-1.27726 - 1.27726i) q^{11} +(-5.99536 - 5.99536i) q^{12} +8.86890i q^{14} +(-4.54852 + 2.57171i) q^{15} +1.90834 q^{16} +(-0.272435 - 0.272435i) q^{17} +5.83745 q^{18} +(-3.87278 - 3.87278i) q^{19} +(2.17042 - 7.81759i) q^{20} +(-6.17706 - 6.17706i) q^{21} +(-3.03020 + 3.03020i) q^{22} +(-6.53419 + 6.53419i) q^{23} +(-6.38334 + 6.38334i) q^{24} +(-4.28436 - 2.57765i) q^{25} +(0.891365 - 0.891365i) q^{27} +13.5641 q^{28} -0.764574i q^{29} +(6.10117 + 10.7910i) q^{30} +(-3.27268 + 3.27268i) q^{31} +3.19898i q^{32} -4.22098i q^{33} +(-0.646330 + 0.646330i) q^{34} +(2.23620 - 8.05452i) q^{35} -8.92778i q^{36} +1.15622 q^{37} +(-9.18786 + 9.18786i) q^{38} +(-8.32350 - 2.31088i) q^{40} +(2.15688 - 2.15688i) q^{41} +(-14.6546 + 14.6546i) q^{42} +(-1.33870 + 1.33870i) q^{43} +(4.63438 + 4.63438i) q^{44} +(-5.30143 - 1.47185i) q^{45} +(15.5018 + 15.5018i) q^{46} +1.94248 q^{47} +(3.15325 + 3.15325i) q^{48} +6.97517 q^{49} +(-6.11526 + 10.1643i) q^{50} -0.900318i q^{51} +(-1.18715 - 1.18715i) q^{53} +(-2.11469 - 2.11469i) q^{54} +(3.51599 - 1.98792i) q^{55} -14.4419i q^{56} -12.7984i q^{57} -1.81389 q^{58} +(-4.50612 + 4.50612i) q^{59} +(16.5037 - 9.33112i) q^{60} -3.71664 q^{61} +(7.76418 + 7.76418i) q^{62} -9.19836i q^{63} +11.4060 q^{64} -10.0139 q^{66} +11.0561i q^{67} +(0.988496 + 0.988496i) q^{68} -21.5936 q^{69} +(-19.1087 - 5.30521i) q^{70} +(-7.84488 + 7.84488i) q^{71} -9.50554 q^{72} -4.49691i q^{73} -2.74303i q^{74} +(-2.82009 - 11.3385i) q^{75} +(14.0519 + 14.0519i) q^{76} +(4.77484 + 4.77484i) q^{77} +7.15052i q^{79} +(-1.14153 + 4.11165i) q^{80} +10.3273 q^{81} +(-5.11702 - 5.11702i) q^{82} +11.4388 q^{83} +(22.4127 + 22.4127i) q^{84} +(0.749946 - 0.424015i) q^{85} +(3.17596 + 3.17596i) q^{86} +(1.26335 - 1.26335i) q^{87} +(4.93430 - 4.93430i) q^{88} +(-1.63827 + 1.63827i) q^{89} +(-3.49185 + 12.5772i) q^{90} +(23.7085 - 23.7085i) q^{92} -10.8153 q^{93} -4.60838i q^{94} +(10.6608 - 6.02756i) q^{95} +(-5.28585 + 5.28585i) q^{96} -0.882970i q^{97} -16.5480i q^{98} +(3.14277 - 3.14277i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q - 4 q^{3} - 80 q^{4} - 12 q^{10} + 64 q^{12} + 80 q^{16} + 8 q^{17} + 24 q^{22} + 36 q^{23} - 48 q^{25} - 64 q^{27} - 4 q^{30} + 80 q^{35} + 28 q^{38} - 24 q^{40} - 56 q^{42} + 76 q^{43} - 76 q^{48}+ \cdots - 92 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.37242i 1.67755i −0.544475 0.838777i \(-0.683271\pi\)
0.544475 0.838777i \(-0.316729\pi\)
\(3\) 1.65235 + 1.65235i 0.953987 + 0.953987i 0.998987 0.0449999i \(-0.0143287\pi\)
−0.0449999 + 0.998987i \(0.514329\pi\)
\(4\) −3.62837 −1.81419
\(5\) −0.598181 + 2.15457i −0.267515 + 0.963554i
\(6\) 3.92008 3.92008i 1.60036 1.60036i
\(7\) −3.73834 −1.41296 −0.706479 0.707734i \(-0.749718\pi\)
−0.706479 + 0.707734i \(0.749718\pi\)
\(8\) 3.86318i 1.36584i
\(9\) 2.46055i 0.820183i
\(10\) 5.11155 + 1.41914i 1.61641 + 0.448770i
\(11\) −1.27726 1.27726i −0.385109 0.385109i 0.487830 0.872939i \(-0.337789\pi\)
−0.872939 + 0.487830i \(0.837789\pi\)
\(12\) −5.99536 5.99536i −1.73071 1.73071i
\(13\) 0 0
\(14\) 8.86890i 2.37031i
\(15\) −4.54852 + 2.57171i −1.17442 + 0.664012i
\(16\) 1.90834 0.477085
\(17\) −0.272435 0.272435i −0.0660752 0.0660752i 0.673297 0.739372i \(-0.264878\pi\)
−0.739372 + 0.673297i \(0.764878\pi\)
\(18\) 5.83745 1.37590
\(19\) −3.87278 3.87278i −0.888477 0.888477i 0.105900 0.994377i \(-0.466228\pi\)
−0.994377 + 0.105900i \(0.966228\pi\)
\(20\) 2.17042 7.81759i 0.485321 1.74807i
\(21\) −6.17706 6.17706i −1.34794 1.34794i
\(22\) −3.03020 + 3.03020i −0.646041 + 0.646041i
\(23\) −6.53419 + 6.53419i −1.36247 + 1.36247i −0.491718 + 0.870755i \(0.663631\pi\)
−0.870755 + 0.491718i \(0.836369\pi\)
\(24\) −6.38334 + 6.38334i −1.30299 + 1.30299i
\(25\) −4.28436 2.57765i −0.856872 0.515529i
\(26\) 0 0
\(27\) 0.891365 0.891365i 0.171543 0.171543i
\(28\) 13.5641 2.56337
\(29\) 0.764574i 0.141978i −0.997477 0.0709889i \(-0.977385\pi\)
0.997477 0.0709889i \(-0.0226155\pi\)
\(30\) 6.10117 + 10.7910i 1.11392 + 1.97016i
\(31\) −3.27268 + 3.27268i −0.587792 + 0.587792i −0.937033 0.349241i \(-0.886439\pi\)
0.349241 + 0.937033i \(0.386439\pi\)
\(32\) 3.19898i 0.565506i
\(33\) 4.22098i 0.734779i
\(34\) −0.646330 + 0.646330i −0.110845 + 0.110845i
\(35\) 2.23620 8.05452i 0.377987 1.36146i
\(36\) 8.92778i 1.48796i
\(37\) 1.15622 0.190081 0.0950403 0.995473i \(-0.469702\pi\)
0.0950403 + 0.995473i \(0.469702\pi\)
\(38\) −9.18786 + 9.18786i −1.49047 + 1.49047i
\(39\) 0 0
\(40\) −8.32350 2.31088i −1.31606 0.365382i
\(41\) 2.15688 2.15688i 0.336848 0.336848i −0.518332 0.855180i \(-0.673447\pi\)
0.855180 + 0.518332i \(0.173447\pi\)
\(42\) −14.6546 + 14.6546i −2.26125 + 2.26125i
\(43\) −1.33870 + 1.33870i −0.204150 + 0.204150i −0.801775 0.597626i \(-0.796111\pi\)
0.597626 + 0.801775i \(0.296111\pi\)
\(44\) 4.63438 + 4.63438i 0.698660 + 0.698660i
\(45\) −5.30143 1.47185i −0.790290 0.219411i
\(46\) 15.5018 + 15.5018i 2.28562 + 2.28562i
\(47\) 1.94248 0.283340 0.141670 0.989914i \(-0.454753\pi\)
0.141670 + 0.989914i \(0.454753\pi\)
\(48\) 3.15325 + 3.15325i 0.455133 + 0.455133i
\(49\) 6.97517 0.996453
\(50\) −6.11526 + 10.1643i −0.864828 + 1.43745i
\(51\) 0.900318i 0.126070i
\(52\) 0 0
\(53\) −1.18715 1.18715i −0.163068 0.163068i 0.620856 0.783924i \(-0.286785\pi\)
−0.783924 + 0.620856i \(0.786785\pi\)
\(54\) −2.11469 2.11469i −0.287773 0.287773i
\(55\) 3.51599 1.98792i 0.474096 0.268051i
\(56\) 14.4419i 1.92988i
\(57\) 12.7984i 1.69519i
\(58\) −1.81389 −0.238175
\(59\) −4.50612 + 4.50612i −0.586647 + 0.586647i −0.936722 0.350075i \(-0.886156\pi\)
0.350075 + 0.936722i \(0.386156\pi\)
\(60\) 16.5037 9.33112i 2.13062 1.20464i
\(61\) −3.71664 −0.475867 −0.237933 0.971281i \(-0.576470\pi\)
−0.237933 + 0.971281i \(0.576470\pi\)
\(62\) 7.76418 + 7.76418i 0.986052 + 0.986052i
\(63\) 9.19836i 1.15888i
\(64\) 11.4060 1.42575
\(65\) 0 0
\(66\) −10.0139 −1.23263
\(67\) 11.0561i 1.35072i 0.737487 + 0.675361i \(0.236012\pi\)
−0.737487 + 0.675361i \(0.763988\pi\)
\(68\) 0.988496 + 0.988496i 0.119873 + 0.119873i
\(69\) −21.5936 −2.59956
\(70\) −19.1087 5.30521i −2.28393 0.634094i
\(71\) −7.84488 + 7.84488i −0.931016 + 0.931016i −0.997770 0.0667534i \(-0.978736\pi\)
0.0667534 + 0.997770i \(0.478736\pi\)
\(72\) −9.50554 −1.12024
\(73\) 4.49691i 0.526323i −0.964752 0.263161i \(-0.915235\pi\)
0.964752 0.263161i \(-0.0847652\pi\)
\(74\) 2.74303i 0.318870i
\(75\) −2.82009 11.3385i −0.325636 1.30925i
\(76\) 14.0519 + 14.0519i 1.61186 + 1.61186i
\(77\) 4.77484 + 4.77484i 0.544144 + 0.544144i
\(78\) 0 0
\(79\) 7.15052i 0.804496i 0.915531 + 0.402248i \(0.131771\pi\)
−0.915531 + 0.402248i \(0.868229\pi\)
\(80\) −1.14153 + 4.11165i −0.127627 + 0.459697i
\(81\) 10.3273 1.14748
\(82\) −5.11702 5.11702i −0.565080 0.565080i
\(83\) 11.4388 1.25557 0.627783 0.778388i \(-0.283962\pi\)
0.627783 + 0.778388i \(0.283962\pi\)
\(84\) 22.4127 + 22.4127i 2.44542 + 2.44542i
\(85\) 0.749946 0.424015i 0.0813431 0.0459909i
\(86\) 3.17596 + 3.17596i 0.342472 + 0.342472i
\(87\) 1.26335 1.26335i 0.135445 0.135445i
\(88\) 4.93430 4.93430i 0.525998 0.525998i
\(89\) −1.63827 + 1.63827i −0.173656 + 0.173656i −0.788584 0.614927i \(-0.789185\pi\)
0.614927 + 0.788584i \(0.289185\pi\)
\(90\) −3.49185 + 12.5772i −0.368074 + 1.32575i
\(91\) 0 0
\(92\) 23.7085 23.7085i 2.47178 2.47178i
\(93\) −10.8153 −1.12149
\(94\) 4.60838i 0.475318i
\(95\) 10.6608 6.02756i 1.09378 0.618415i
\(96\) −5.28585 + 5.28585i −0.539485 + 0.539485i
\(97\) 0.882970i 0.0896520i −0.998995 0.0448260i \(-0.985727\pi\)
0.998995 0.0448260i \(-0.0142733\pi\)
\(98\) 16.5480i 1.67160i
\(99\) 3.14277 3.14277i 0.315860 0.315860i
\(100\) 15.5452 + 9.35266i 1.55452 + 0.935266i
\(101\) 7.94189i 0.790248i −0.918628 0.395124i \(-0.870702\pi\)
0.918628 0.395124i \(-0.129298\pi\)
\(102\) −2.13593 −0.211489
\(103\) 10.7428 10.7428i 1.05852 1.05852i 0.0603388 0.998178i \(-0.480782\pi\)
0.998178 0.0603388i \(-0.0192181\pi\)
\(104\) 0 0
\(105\) 17.0039 9.61392i 1.65941 0.938222i
\(106\) −2.81643 + 2.81643i −0.273556 + 0.273556i
\(107\) 7.38827 7.38827i 0.714251 0.714251i −0.253170 0.967422i \(-0.581473\pi\)
0.967422 + 0.253170i \(0.0814733\pi\)
\(108\) −3.23420 + 3.23420i −0.311211 + 0.311211i
\(109\) 4.13475 + 4.13475i 0.396037 + 0.396037i 0.876833 0.480796i \(-0.159652\pi\)
−0.480796 + 0.876833i \(0.659652\pi\)
\(110\) −4.71618 8.34140i −0.449670 0.795321i
\(111\) 1.91048 + 1.91048i 0.181334 + 0.181334i
\(112\) −7.13401 −0.674101
\(113\) −10.3692 10.3692i −0.975452 0.975452i 0.0242536 0.999706i \(-0.492279\pi\)
−0.999706 + 0.0242536i \(0.992279\pi\)
\(114\) −30.3632 −2.84377
\(115\) −10.1698 17.9870i −0.948334 1.67730i
\(116\) 2.77416i 0.257574i
\(117\) 0 0
\(118\) 10.6904 + 10.6904i 0.984132 + 0.984132i
\(119\) 1.01845 + 1.01845i 0.0933616 + 0.0933616i
\(120\) −9.93497 17.5718i −0.906935 1.60407i
\(121\) 7.73720i 0.703382i
\(122\) 8.81743i 0.798292i
\(123\) 7.12785 0.642697
\(124\) 11.8745 11.8745i 1.06636 1.06636i
\(125\) 8.11655 7.68906i 0.725966 0.687730i
\(126\) −21.8224 −1.94409
\(127\) 4.97319 + 4.97319i 0.441300 + 0.441300i 0.892449 0.451149i \(-0.148986\pi\)
−0.451149 + 0.892449i \(0.648986\pi\)
\(128\) 20.6619i 1.82627i
\(129\) −4.42401 −0.389513
\(130\) 0 0
\(131\) −9.34748 −0.816693 −0.408347 0.912827i \(-0.633895\pi\)
−0.408347 + 0.912827i \(0.633895\pi\)
\(132\) 15.3153i 1.33302i
\(133\) 14.4778 + 14.4778i 1.25538 + 1.25538i
\(134\) 26.2298 2.26591
\(135\) 1.38731 + 2.45371i 0.119401 + 0.211181i
\(136\) 1.05247 1.05247i 0.0902482 0.0902482i
\(137\) 13.6982 1.17032 0.585158 0.810919i \(-0.301032\pi\)
0.585158 + 0.810919i \(0.301032\pi\)
\(138\) 51.2290i 4.36090i
\(139\) 8.98600i 0.762182i 0.924537 + 0.381091i \(0.124452\pi\)
−0.924537 + 0.381091i \(0.875548\pi\)
\(140\) −8.11377 + 29.2248i −0.685739 + 2.46994i
\(141\) 3.20967 + 3.20967i 0.270303 + 0.270303i
\(142\) 18.6113 + 18.6113i 1.56183 + 1.56183i
\(143\) 0 0
\(144\) 4.69556i 0.391297i
\(145\) 1.64733 + 0.457353i 0.136803 + 0.0379811i
\(146\) −10.6685 −0.882935
\(147\) 11.5255 + 11.5255i 0.950603 + 0.950603i
\(148\) −4.19518 −0.344842
\(149\) −8.98770 8.98770i −0.736301 0.736301i 0.235559 0.971860i \(-0.424308\pi\)
−0.971860 + 0.235559i \(0.924308\pi\)
\(150\) −26.8996 + 6.69044i −2.19634 + 0.546272i
\(151\) −2.96123 2.96123i −0.240981 0.240981i 0.576275 0.817256i \(-0.304506\pi\)
−0.817256 + 0.576275i \(0.804506\pi\)
\(152\) 14.9612 14.9612i 1.21352 1.21352i
\(153\) 0.670340 0.670340i 0.0541938 0.0541938i
\(154\) 11.3279 11.3279i 0.912830 0.912830i
\(155\) −5.09358 9.00889i −0.409126 0.723612i
\(156\) 0 0
\(157\) −13.0366 + 13.0366i −1.04044 + 1.04044i −0.0412907 + 0.999147i \(0.513147\pi\)
−0.999147 + 0.0412907i \(0.986853\pi\)
\(158\) 16.9640 1.34959
\(159\) 3.92320i 0.311130i
\(160\) −6.89244 1.91357i −0.544895 0.151281i
\(161\) 24.4270 24.4270i 1.92512 1.92512i
\(162\) 24.5008i 1.92496i
\(163\) 15.8438i 1.24098i 0.784213 + 0.620492i \(0.213067\pi\)
−0.784213 + 0.620492i \(0.786933\pi\)
\(164\) −7.82595 + 7.82595i −0.611104 + 0.611104i
\(165\) 9.09441 + 2.52491i 0.707999 + 0.196564i
\(166\) 27.1375i 2.10628i
\(167\) 12.4834 0.965991 0.482996 0.875623i \(-0.339549\pi\)
0.482996 + 0.875623i \(0.339549\pi\)
\(168\) 23.8631 23.8631i 1.84108 1.84108i
\(169\) 0 0
\(170\) −1.00594 1.77919i −0.0771523 0.136457i
\(171\) 9.52916 9.52916i 0.728713 0.728713i
\(172\) 4.85730 4.85730i 0.370366 0.370366i
\(173\) −11.4282 + 11.4282i −0.868870 + 0.868870i −0.992347 0.123477i \(-0.960595\pi\)
0.123477 + 0.992347i \(0.460595\pi\)
\(174\) −2.99719 2.99719i −0.227216 0.227216i
\(175\) 16.0164 + 9.63612i 1.21072 + 0.728422i
\(176\) −2.43745 2.43745i −0.183730 0.183730i
\(177\) −14.8914 −1.11931
\(178\) 3.88666 + 3.88666i 0.291318 + 0.291318i
\(179\) −18.4481 −1.37888 −0.689438 0.724345i \(-0.742142\pi\)
−0.689438 + 0.724345i \(0.742142\pi\)
\(180\) 19.2356 + 5.34043i 1.43373 + 0.398052i
\(181\) 2.18983i 0.162769i −0.996683 0.0813844i \(-0.974066\pi\)
0.996683 0.0813844i \(-0.0259342\pi\)
\(182\) 0 0
\(183\) −6.14120 6.14120i −0.453971 0.453971i
\(184\) −25.2427 25.2427i −1.86092 1.86092i
\(185\) −0.691626 + 2.49115i −0.0508493 + 0.183153i
\(186\) 25.6583i 1.88136i
\(187\) 0.695942i 0.0508923i
\(188\) −7.04805 −0.514032
\(189\) −3.33222 + 3.33222i −0.242384 + 0.242384i
\(190\) −14.2999 25.2919i −1.03742 1.83487i
\(191\) 8.14632 0.589447 0.294724 0.955583i \(-0.404772\pi\)
0.294724 + 0.955583i \(0.404772\pi\)
\(192\) 18.8468 + 18.8468i 1.36015 + 1.36015i
\(193\) 23.2471i 1.67336i 0.547691 + 0.836681i \(0.315507\pi\)
−0.547691 + 0.836681i \(0.684493\pi\)
\(194\) −2.09477 −0.150396
\(195\) 0 0
\(196\) −25.3085 −1.80775
\(197\) 22.0689i 1.57234i −0.618008 0.786172i \(-0.712060\pi\)
0.618008 0.786172i \(-0.287940\pi\)
\(198\) −7.45596 7.45596i −0.529872 0.529872i
\(199\) 8.13701 0.576817 0.288409 0.957507i \(-0.406874\pi\)
0.288409 + 0.957507i \(0.406874\pi\)
\(200\) 9.95792 16.5513i 0.704131 1.17035i
\(201\) −18.2687 + 18.2687i −1.28857 + 1.28857i
\(202\) −18.8415 −1.32568
\(203\) 2.85823i 0.200609i
\(204\) 3.26669i 0.228714i
\(205\) 3.35694 + 5.93735i 0.234459 + 0.414683i
\(206\) −25.4864 25.4864i −1.77572 1.77572i
\(207\) −16.0777 16.0777i −1.11748 1.11748i
\(208\) 0 0
\(209\) 9.89312i 0.684321i
\(210\) −22.8082 40.3404i −1.57392 2.78375i
\(211\) −24.7734 −1.70547 −0.852737 0.522340i \(-0.825059\pi\)
−0.852737 + 0.522340i \(0.825059\pi\)
\(212\) 4.30744 + 4.30744i 0.295836 + 0.295836i
\(213\) −25.9250 −1.77635
\(214\) −17.5281 17.5281i −1.19819 1.19819i
\(215\) −2.08354 3.68511i −0.142096 0.251322i
\(216\) 3.44350 + 3.44350i 0.234301 + 0.234301i
\(217\) 12.2344 12.2344i 0.830525 0.830525i
\(218\) 9.80935 9.80935i 0.664373 0.664373i
\(219\) 7.43048 7.43048i 0.502105 0.502105i
\(220\) −12.7573 + 7.21291i −0.860098 + 0.486295i
\(221\) 0 0
\(222\) 4.53245 4.53245i 0.304198 0.304198i
\(223\) −29.5220 −1.97694 −0.988469 0.151425i \(-0.951614\pi\)
−0.988469 + 0.151425i \(0.951614\pi\)
\(224\) 11.9589i 0.799036i
\(225\) 6.34243 10.5419i 0.422828 0.702792i
\(226\) −24.6001 + 24.6001i −1.63637 + 1.63637i
\(227\) 7.86679i 0.522137i 0.965320 + 0.261068i \(0.0840748\pi\)
−0.965320 + 0.261068i \(0.915925\pi\)
\(228\) 46.4374i 3.07539i
\(229\) −12.4410 + 12.4410i −0.822125 + 0.822125i −0.986412 0.164288i \(-0.947467\pi\)
0.164288 + 0.986412i \(0.447467\pi\)
\(230\) −42.6727 + 24.1269i −2.81376 + 1.59088i
\(231\) 15.7795i 1.03821i
\(232\) 2.95369 0.193919
\(233\) −1.52992 + 1.52992i −0.100228 + 0.100228i −0.755443 0.655214i \(-0.772578\pi\)
0.655214 + 0.755443i \(0.272578\pi\)
\(234\) 0 0
\(235\) −1.16196 + 4.18522i −0.0757976 + 0.273013i
\(236\) 16.3499 16.3499i 1.06429 1.06429i
\(237\) −11.8152 + 11.8152i −0.767479 + 0.767479i
\(238\) 2.41620 2.41620i 0.156619 0.156619i
\(239\) −7.05936 7.05936i −0.456632 0.456632i 0.440916 0.897548i \(-0.354654\pi\)
−0.897548 + 0.440916i \(0.854654\pi\)
\(240\) −8.68012 + 4.90769i −0.560299 + 0.316790i
\(241\) −10.2476 10.2476i −0.660104 0.660104i 0.295300 0.955405i \(-0.404580\pi\)
−0.955405 + 0.295300i \(0.904580\pi\)
\(242\) −18.3559 −1.17996
\(243\) 14.3903 + 14.3903i 0.923141 + 0.923141i
\(244\) 13.4854 0.863311
\(245\) −4.17241 + 15.0285i −0.266566 + 0.960136i
\(246\) 16.9102i 1.07816i
\(247\) 0 0
\(248\) −12.6430 12.6430i −0.802829 0.802829i
\(249\) 18.9009 + 18.9009i 1.19779 + 1.19779i
\(250\) −18.2417 19.2559i −1.15370 1.21785i
\(251\) 17.7643i 1.12127i −0.828062 0.560636i \(-0.810557\pi\)
0.828062 0.560636i \(-0.189443\pi\)
\(252\) 33.3751i 2.10243i
\(253\) 16.6918 1.04940
\(254\) 11.7985 11.7985i 0.740304 0.740304i
\(255\) 1.93980 + 0.538553i 0.121475 + 0.0337255i
\(256\) −26.2066 −1.63791
\(257\) 6.37449 + 6.37449i 0.397630 + 0.397630i 0.877396 0.479767i \(-0.159279\pi\)
−0.479767 + 0.877396i \(0.659279\pi\)
\(258\) 10.4956i 0.653428i
\(259\) −4.32232 −0.268576
\(260\) 0 0
\(261\) 1.88127 0.116448
\(262\) 22.1761i 1.37005i
\(263\) −3.01414 3.01414i −0.185860 0.185860i 0.608044 0.793904i \(-0.291955\pi\)
−0.793904 + 0.608044i \(0.791955\pi\)
\(264\) 16.3064 1.00359
\(265\) 3.26794 1.84768i 0.200748 0.113502i
\(266\) 34.3473 34.3473i 2.10597 2.10597i
\(267\) −5.41401 −0.331332
\(268\) 40.1158i 2.45046i
\(269\) 1.79761i 0.109602i 0.998497 + 0.0548011i \(0.0174525\pi\)
−0.998497 + 0.0548011i \(0.982548\pi\)
\(270\) 5.82122 3.29129i 0.354268 0.200301i
\(271\) 2.08531 + 2.08531i 0.126674 + 0.126674i 0.767601 0.640928i \(-0.221450\pi\)
−0.640928 + 0.767601i \(0.721450\pi\)
\(272\) −0.519898 0.519898i −0.0315235 0.0315235i
\(273\) 0 0
\(274\) 32.4979i 1.96327i
\(275\) 2.17992 + 8.76459i 0.131454 + 0.528524i
\(276\) 78.3496 4.71609
\(277\) 20.1491 + 20.1491i 1.21064 + 1.21064i 0.970815 + 0.239829i \(0.0770914\pi\)
0.239829 + 0.970815i \(0.422909\pi\)
\(278\) 21.3186 1.27860
\(279\) −8.05260 8.05260i −0.482097 0.482097i
\(280\) 31.1161 + 8.63885i 1.85954 + 0.516270i
\(281\) 2.57874 + 2.57874i 0.153835 + 0.153835i 0.779828 0.625993i \(-0.215306\pi\)
−0.625993 + 0.779828i \(0.715306\pi\)
\(282\) 7.61468 7.61468i 0.453447 0.453447i
\(283\) 5.52077 5.52077i 0.328176 0.328176i −0.523717 0.851892i \(-0.675455\pi\)
0.851892 + 0.523717i \(0.175455\pi\)
\(284\) 28.4641 28.4641i 1.68904 1.68904i
\(285\) 27.5751 + 7.65576i 1.63341 + 0.453488i
\(286\) 0 0
\(287\) −8.06314 + 8.06314i −0.475952 + 0.475952i
\(288\) −7.87125 −0.463818
\(289\) 16.8516i 0.991268i
\(290\) 1.08503 3.90815i 0.0637154 0.229495i
\(291\) 1.45898 1.45898i 0.0855269 0.0855269i
\(292\) 16.3164i 0.954848i
\(293\) 22.5598i 1.31796i −0.752161 0.658979i \(-0.770988\pi\)
0.752161 0.658979i \(-0.229012\pi\)
\(294\) 27.3432 27.3432i 1.59469 1.59469i
\(295\) −7.01329 12.4042i −0.408329 0.722203i
\(296\) 4.46667i 0.259620i
\(297\) −2.27701 −0.132126
\(298\) −21.3226 + 21.3226i −1.23518 + 1.23518i
\(299\) 0 0
\(300\) 10.2323 + 41.1402i 0.590765 + 2.37523i
\(301\) 5.00451 5.00451i 0.288455 0.288455i
\(302\) −7.02528 + 7.02528i −0.404259 + 0.404259i
\(303\) 13.1228 13.1228i 0.753886 0.753886i
\(304\) −7.39057 7.39057i −0.423878 0.423878i
\(305\) 2.22322 8.00777i 0.127301 0.458523i
\(306\) −1.59033 1.59033i −0.0909129 0.0909129i
\(307\) −20.4085 −1.16477 −0.582387 0.812912i \(-0.697881\pi\)
−0.582387 + 0.812912i \(0.697881\pi\)
\(308\) −17.3249 17.3249i −0.987177 0.987177i
\(309\) 35.5017 2.01962
\(310\) −21.3729 + 12.0841i −1.21390 + 0.686331i
\(311\) 21.3762i 1.21213i 0.795413 + 0.606067i \(0.207254\pi\)
−0.795413 + 0.606067i \(0.792746\pi\)
\(312\) 0 0
\(313\) −5.22723 5.22723i −0.295461 0.295461i 0.543772 0.839233i \(-0.316996\pi\)
−0.839233 + 0.543772i \(0.816996\pi\)
\(314\) 30.9284 + 30.9284i 1.74539 + 1.74539i
\(315\) 19.8185 + 5.50228i 1.11665 + 0.310019i
\(316\) 25.9447i 1.45951i
\(317\) 25.8830i 1.45373i 0.686779 + 0.726867i \(0.259024\pi\)
−0.686779 + 0.726867i \(0.740976\pi\)
\(318\) −9.30747 −0.521937
\(319\) −0.976562 + 0.976562i −0.0546770 + 0.0546770i
\(320\) −6.82285 + 24.5751i −0.381409 + 1.37379i
\(321\) 24.4161 1.36277
\(322\) −57.9511 57.9511i −3.22949 3.22949i
\(323\) 2.11016i 0.117413i
\(324\) −37.4715 −2.08175
\(325\) 0 0
\(326\) 37.5882 2.08182
\(327\) 13.6641i 0.755628i
\(328\) 8.33241 + 8.33241i 0.460080 + 0.460080i
\(329\) −7.26165 −0.400348
\(330\) 5.99015 21.5757i 0.329747 1.18771i
\(331\) −7.44156 + 7.44156i −0.409025 + 0.409025i −0.881398 0.472374i \(-0.843397\pi\)
0.472374 + 0.881398i \(0.343397\pi\)
\(332\) −41.5041 −2.27783
\(333\) 2.84492i 0.155901i
\(334\) 29.6158i 1.62050i
\(335\) −23.8212 6.61357i −1.30149 0.361338i
\(336\) −11.7879 11.7879i −0.643084 0.643084i
\(337\) −6.67935 6.67935i −0.363847 0.363847i 0.501380 0.865227i \(-0.332826\pi\)
−0.865227 + 0.501380i \(0.832826\pi\)
\(338\) 0 0
\(339\) 34.2672i 1.86114i
\(340\) −2.72108 + 1.53849i −0.147572 + 0.0834361i
\(341\) 8.36016 0.452728
\(342\) −22.6072 22.6072i −1.22246 1.22246i
\(343\) 0.0928245 0.00501205
\(344\) −5.17164 5.17164i −0.278836 0.278836i
\(345\) 12.9169 46.5249i 0.695421 2.50482i
\(346\) 27.1125 + 27.1125i 1.45758 + 1.45758i
\(347\) −5.03872 + 5.03872i −0.270492 + 0.270492i −0.829298 0.558806i \(-0.811260\pi\)
0.558806 + 0.829298i \(0.311260\pi\)
\(348\) −4.58389 + 4.58389i −0.245722 + 0.245722i
\(349\) −23.0603 + 23.0603i −1.23439 + 1.23439i −0.272125 + 0.962262i \(0.587726\pi\)
−0.962262 + 0.272125i \(0.912274\pi\)
\(350\) 22.8609 37.9976i 1.22197 2.03106i
\(351\) 0 0
\(352\) 4.08594 4.08594i 0.217781 0.217781i
\(353\) 12.9205 0.687688 0.343844 0.939027i \(-0.388271\pi\)
0.343844 + 0.939027i \(0.388271\pi\)
\(354\) 35.3287i 1.87770i
\(355\) −12.2097 21.5950i −0.648024 1.14614i
\(356\) 5.94425 5.94425i 0.315045 0.315045i
\(357\) 3.36569i 0.178131i
\(358\) 43.7666i 2.31314i
\(359\) 12.5304 12.5304i 0.661330 0.661330i −0.294364 0.955693i \(-0.595108\pi\)
0.955693 + 0.294364i \(0.0951077\pi\)
\(360\) 5.68603 20.4804i 0.299680 1.07941i
\(361\) 10.9968i 0.578781i
\(362\) −5.19520 −0.273053
\(363\) 12.7846 12.7846i 0.671017 0.671017i
\(364\) 0 0
\(365\) 9.68891 + 2.68996i 0.507140 + 0.140799i
\(366\) −14.5695 + 14.5695i −0.761561 + 0.761561i
\(367\) −24.6452 + 24.6452i −1.28647 + 1.28647i −0.349552 + 0.936917i \(0.613666\pi\)
−0.936917 + 0.349552i \(0.886334\pi\)
\(368\) −12.4694 + 12.4694i −0.650015 + 0.650015i
\(369\) 5.30710 + 5.30710i 0.276277 + 0.276277i
\(370\) 5.91005 + 1.64083i 0.307249 + 0.0853025i
\(371\) 4.43799 + 4.43799i 0.230409 + 0.230409i
\(372\) 39.2418 2.03459
\(373\) 10.5600 + 10.5600i 0.546778 + 0.546778i 0.925507 0.378730i \(-0.123639\pi\)
−0.378730 + 0.925507i \(0.623639\pi\)
\(374\) 1.65107 0.0853746
\(375\) 26.1165 + 0.706362i 1.34865 + 0.0364764i
\(376\) 7.50416i 0.386997i
\(377\) 0 0
\(378\) 7.90543 + 7.90543i 0.406611 + 0.406611i
\(379\) −22.9029 22.9029i −1.17644 1.17644i −0.980645 0.195796i \(-0.937271\pi\)
−0.195796 0.980645i \(-0.562729\pi\)
\(380\) −38.6814 + 21.8702i −1.98431 + 1.12192i
\(381\) 16.4350i 0.841988i
\(382\) 19.3265i 0.988829i
\(383\) 32.2292 1.64684 0.823418 0.567435i \(-0.192064\pi\)
0.823418 + 0.567435i \(0.192064\pi\)
\(384\) 34.1407 34.1407i 1.74224 1.74224i
\(385\) −13.1440 + 7.43152i −0.669878 + 0.378745i
\(386\) 55.1518 2.80715
\(387\) −3.29394 3.29394i −0.167440 0.167440i
\(388\) 3.20374i 0.162645i
\(389\) 11.7818 0.597359 0.298679 0.954354i \(-0.403454\pi\)
0.298679 + 0.954354i \(0.403454\pi\)
\(390\) 0 0
\(391\) 3.56028 0.180051
\(392\) 26.9463i 1.36100i
\(393\) −15.4454 15.4454i −0.779115 0.779115i
\(394\) −52.3567 −2.63769
\(395\) −15.4063 4.27730i −0.775175 0.215214i
\(396\) −11.4031 + 11.4031i −0.573029 + 0.573029i
\(397\) 8.14777 0.408925 0.204462 0.978874i \(-0.434455\pi\)
0.204462 + 0.978874i \(0.434455\pi\)
\(398\) 19.3044i 0.967642i
\(399\) 47.8448i 2.39523i
\(400\) −8.17601 4.91902i −0.408800 0.245951i
\(401\) −11.6766 11.6766i −0.583101 0.583101i 0.352653 0.935754i \(-0.385280\pi\)
−0.935754 + 0.352653i \(0.885280\pi\)
\(402\) 43.3409 + 43.3409i 2.16165 + 2.16165i
\(403\) 0 0
\(404\) 28.8161i 1.43366i
\(405\) −6.17762 + 22.2510i −0.306968 + 1.10566i
\(406\) 6.78093 0.336532
\(407\) −1.47679 1.47679i −0.0732018 0.0732018i
\(408\) 3.47809 0.172191
\(409\) 2.98672 + 2.98672i 0.147684 + 0.147684i 0.777082 0.629399i \(-0.216699\pi\)
−0.629399 + 0.777082i \(0.716699\pi\)
\(410\) 14.0859 7.96408i 0.695652 0.393318i
\(411\) 22.6343 + 22.6343i 1.11647 + 1.11647i
\(412\) −38.9788 + 38.9788i −1.92035 + 1.92035i
\(413\) 16.8454 16.8454i 0.828908 0.828908i
\(414\) −38.1430 + 38.1430i −1.87463 + 1.87463i
\(415\) −6.84245 + 24.6456i −0.335882 + 1.20981i
\(416\) 0 0
\(417\) −14.8481 + 14.8481i −0.727112 + 0.727112i
\(418\) 23.4706 1.14799
\(419\) 17.0792i 0.834371i −0.908821 0.417186i \(-0.863017\pi\)
0.908821 0.417186i \(-0.136983\pi\)
\(420\) −61.6965 + 34.8829i −3.01048 + 1.70211i
\(421\) 9.26544 9.26544i 0.451570 0.451570i −0.444305 0.895875i \(-0.646549\pi\)
0.895875 + 0.444305i \(0.146549\pi\)
\(422\) 58.7730i 2.86102i
\(423\) 4.77957i 0.232391i
\(424\) 4.58619 4.58619i 0.222725 0.222725i
\(425\) 0.464968 + 1.86945i 0.0225543 + 0.0906817i
\(426\) 61.5051i 2.97993i
\(427\) 13.8941 0.672380
\(428\) −26.8074 + 26.8074i −1.29578 + 1.29578i
\(429\) 0 0
\(430\) −8.74262 + 4.94303i −0.421607 + 0.238374i
\(431\) −7.57641 + 7.57641i −0.364943 + 0.364943i −0.865629 0.500686i \(-0.833081\pi\)
0.500686 + 0.865629i \(0.333081\pi\)
\(432\) 1.70103 1.70103i 0.0818406 0.0818406i
\(433\) −3.61077 + 3.61077i −0.173522 + 0.173522i −0.788525 0.615003i \(-0.789155\pi\)
0.615003 + 0.788525i \(0.289155\pi\)
\(434\) −29.0251 29.0251i −1.39325 1.39325i
\(435\) 1.96626 + 3.47768i 0.0942750 + 0.166742i
\(436\) −15.0024 15.0024i −0.718485 0.718485i
\(437\) 50.6109 2.42105
\(438\) −17.6282 17.6282i −0.842309 0.842309i
\(439\) −20.2393 −0.965969 −0.482985 0.875629i \(-0.660447\pi\)
−0.482985 + 0.875629i \(0.660447\pi\)
\(440\) 7.67969 + 13.5829i 0.366115 + 0.647539i
\(441\) 17.1627i 0.817273i
\(442\) 0 0
\(443\) 2.66083 + 2.66083i 0.126420 + 0.126420i 0.767486 0.641066i \(-0.221508\pi\)
−0.641066 + 0.767486i \(0.721508\pi\)
\(444\) −6.93192 6.93192i −0.328974 0.328974i
\(445\) −2.54979 4.50975i −0.120872 0.213783i
\(446\) 70.0385i 3.31642i
\(447\) 29.7017i 1.40484i
\(448\) −42.6395 −2.01453
\(449\) −21.7913 + 21.7913i −1.02839 + 1.02839i −0.0288081 + 0.999585i \(0.509171\pi\)
−0.999585 + 0.0288081i \(0.990829\pi\)
\(450\) −25.0097 15.0469i −1.17897 0.709317i
\(451\) −5.50980 −0.259446
\(452\) 37.6233 + 37.6233i 1.76965 + 1.76965i
\(453\) 9.78600i 0.459786i
\(454\) 18.6633 0.875913
\(455\) 0 0
\(456\) 49.4426 2.31536
\(457\) 10.1798i 0.476191i −0.971242 0.238096i \(-0.923477\pi\)
0.971242 0.238096i \(-0.0765232\pi\)
\(458\) 29.5153 + 29.5153i 1.37916 + 1.37916i
\(459\) −0.485678 −0.0226695
\(460\) 36.8996 + 65.2635i 1.72045 + 3.04293i
\(461\) 13.6308 13.6308i 0.634848 0.634848i −0.314432 0.949280i \(-0.601814\pi\)
0.949280 + 0.314432i \(0.101814\pi\)
\(462\) 37.4355 1.74166
\(463\) 16.7929i 0.780432i −0.920723 0.390216i \(-0.872400\pi\)
0.920723 0.390216i \(-0.127600\pi\)
\(464\) 1.45907i 0.0677354i
\(465\) 6.46949 23.3023i 0.300015 1.08062i
\(466\) 3.62961 + 3.62961i 0.168139 + 0.168139i
\(467\) −9.75781 9.75781i −0.451538 0.451538i 0.444327 0.895865i \(-0.353443\pi\)
−0.895865 + 0.444327i \(0.853443\pi\)
\(468\) 0 0
\(469\) 41.3316i 1.90851i
\(470\) 9.92909 + 2.75665i 0.457995 + 0.127155i
\(471\) −43.0823 −1.98513
\(472\) −17.4080 17.4080i −0.801266 0.801266i
\(473\) 3.41974 0.157240
\(474\) 28.0306 + 28.0306i 1.28749 + 1.28749i
\(475\) 6.60972 + 26.5750i 0.303275 + 1.21935i
\(476\) −3.69533 3.69533i −0.169375 0.169375i
\(477\) 2.92105 2.92105i 0.133746 0.133746i
\(478\) −16.7478 + 16.7478i −0.766025 + 0.766025i
\(479\) −9.77217 + 9.77217i −0.446502 + 0.446502i −0.894190 0.447688i \(-0.852248\pi\)
0.447688 + 0.894190i \(0.352248\pi\)
\(480\) −8.22685 14.5506i −0.375503 0.664143i
\(481\) 0 0
\(482\) −24.3115 + 24.3115i −1.10736 + 1.10736i
\(483\) 80.7241 3.67307
\(484\) 28.0734i 1.27607i
\(485\) 1.90242 + 0.528176i 0.0863846 + 0.0239832i
\(486\) 34.1399 34.1399i 1.54862 1.54862i
\(487\) 20.4592i 0.927095i 0.886072 + 0.463547i \(0.153424\pi\)
−0.886072 + 0.463547i \(0.846576\pi\)
\(488\) 14.3580i 0.649958i
\(489\) −26.1796 + 26.1796i −1.18388 + 1.18388i
\(490\) 35.6539 + 9.89871i 1.61068 + 0.447178i
\(491\) 10.1889i 0.459817i −0.973212 0.229908i \(-0.926157\pi\)
0.973212 0.229908i \(-0.0738427\pi\)
\(492\) −25.8625 −1.16597
\(493\) −0.208297 + 0.208297i −0.00938121 + 0.00938121i
\(494\) 0 0
\(495\) 4.89137 + 8.65126i 0.219851 + 0.388845i
\(496\) −6.24539 + 6.24539i −0.280426 + 0.280426i
\(497\) 29.3268 29.3268i 1.31549 1.31549i
\(498\) 44.8408 44.8408i 2.00936 2.00936i
\(499\) 7.90149 + 7.90149i 0.353719 + 0.353719i 0.861491 0.507772i \(-0.169531\pi\)
−0.507772 + 0.861491i \(0.669531\pi\)
\(500\) −29.4499 + 27.8988i −1.31704 + 1.24767i
\(501\) 20.6269 + 20.6269i 0.921543 + 0.921543i
\(502\) −42.1443 −1.88099
\(503\) 10.0106 + 10.0106i 0.446349 + 0.446349i 0.894139 0.447790i \(-0.147789\pi\)
−0.447790 + 0.894139i \(0.647789\pi\)
\(504\) 35.5349 1.58285
\(505\) 17.1114 + 4.75069i 0.761446 + 0.211403i
\(506\) 39.5998i 1.76043i
\(507\) 0 0
\(508\) −18.0446 18.0446i −0.800600 0.800600i
\(509\) −16.3943 16.3943i −0.726665 0.726665i 0.243289 0.969954i \(-0.421774\pi\)
−0.969954 + 0.243289i \(0.921774\pi\)
\(510\) 1.27767 4.60202i 0.0565764 0.203781i
\(511\) 16.8110i 0.743673i
\(512\) 20.8492i 0.921415i
\(513\) −6.90412 −0.304824
\(514\) 15.1230 15.1230i 0.667045 0.667045i
\(515\) 16.7200 + 29.5722i 0.736769 + 1.30311i
\(516\) 16.0520 0.706648
\(517\) −2.48106 2.48106i −0.109117 0.109117i
\(518\) 10.2544i 0.450551i
\(519\) −37.7669 −1.65778
\(520\) 0 0
\(521\) −35.0306 −1.53472 −0.767359 0.641218i \(-0.778429\pi\)
−0.767359 + 0.641218i \(0.778429\pi\)
\(522\) 4.46316i 0.195347i
\(523\) 28.5551 + 28.5551i 1.24863 + 1.24863i 0.956327 + 0.292298i \(0.0944199\pi\)
0.292298 + 0.956327i \(0.405580\pi\)
\(524\) 33.9161 1.48163
\(525\) 10.5425 + 42.3870i 0.460111 + 1.84992i
\(526\) −7.15081 + 7.15081i −0.311790 + 0.311790i
\(527\) 1.78319 0.0776769
\(528\) 8.05506i 0.350551i
\(529\) 62.3912i 2.71266i
\(530\) −4.38346 7.75293i −0.190405 0.336766i
\(531\) −11.0875 11.0875i −0.481158 0.481158i
\(532\) −52.5307 52.5307i −2.27749 2.27749i
\(533\) 0 0
\(534\) 12.8443i 0.555827i
\(535\) 11.4990 + 20.3381i 0.497147 + 0.879292i
\(536\) −42.7118 −1.84487
\(537\) −30.4828 30.4828i −1.31543 1.31543i
\(538\) 4.26468 0.183864
\(539\) −8.90912 8.90912i −0.383743 0.383743i
\(540\) −5.03368 8.90296i −0.216615 0.383122i
\(541\) 16.7846 + 16.7846i 0.721626 + 0.721626i 0.968936 0.247310i \(-0.0795467\pi\)
−0.247310 + 0.968936i \(0.579547\pi\)
\(542\) 4.94723 4.94723i 0.212502 0.212502i
\(543\) 3.61838 3.61838i 0.155279 0.155279i
\(544\) 0.871515 0.871515i 0.0373659 0.0373659i
\(545\) −11.3819 + 6.43528i −0.487549 + 0.275657i
\(546\) 0 0
\(547\) 10.0151 10.0151i 0.428216 0.428216i −0.459804 0.888020i \(-0.652080\pi\)
0.888020 + 0.459804i \(0.152080\pi\)
\(548\) −49.7022 −2.12317
\(549\) 9.14497i 0.390298i
\(550\) 20.7933 5.17168i 0.886628 0.220521i
\(551\) −2.96103 + 2.96103i −0.126144 + 0.126144i
\(552\) 83.4199i 3.55059i
\(553\) 26.7310i 1.13672i
\(554\) 47.8022 47.8022i 2.03092 2.03092i
\(555\) −5.25907 + 2.97345i −0.223235 + 0.126216i
\(556\) 32.6045i 1.38274i
\(557\) −17.9619 −0.761072 −0.380536 0.924766i \(-0.624260\pi\)
−0.380536 + 0.924766i \(0.624260\pi\)
\(558\) −19.1041 + 19.1041i −0.808743 + 0.808743i
\(559\) 0 0
\(560\) 4.26743 15.3707i 0.180332 0.649532i
\(561\) −1.14994 + 1.14994i −0.0485506 + 0.0485506i
\(562\) 6.11785 6.11785i 0.258066 0.258066i
\(563\) 10.6362 10.6362i 0.448262 0.448262i −0.446514 0.894777i \(-0.647335\pi\)
0.894777 + 0.446514i \(0.147335\pi\)
\(564\) −11.6459 11.6459i −0.490380 0.490380i
\(565\) 28.5438 16.1385i 1.20085 0.678953i
\(566\) −13.0976 13.0976i −0.550532 0.550532i
\(567\) −38.6071 −1.62135
\(568\) −30.3062 30.3062i −1.27162 1.27162i
\(569\) −21.9520 −0.920277 −0.460138 0.887847i \(-0.652200\pi\)
−0.460138 + 0.887847i \(0.652200\pi\)
\(570\) 18.1627 65.4197i 0.760751 2.74013i
\(571\) 12.0101i 0.502606i −0.967908 0.251303i \(-0.919141\pi\)
0.967908 0.251303i \(-0.0808590\pi\)
\(572\) 0 0
\(573\) 13.4606 + 13.4606i 0.562325 + 0.562325i
\(574\) 19.1291 + 19.1291i 0.798435 + 0.798435i
\(575\) 44.8376 11.1520i 1.86986 0.465070i
\(576\) 28.0650i 1.16938i
\(577\) 21.1801i 0.881741i 0.897571 + 0.440870i \(0.145330\pi\)
−0.897571 + 0.440870i \(0.854670\pi\)
\(578\) −39.9790 −1.66291
\(579\) −38.4124 + 38.4124i −1.59637 + 1.59637i
\(580\) −5.97712 1.65945i −0.248186 0.0689048i
\(581\) −42.7619 −1.77406
\(582\) −3.46131 3.46131i −0.143476 0.143476i
\(583\) 3.03262i 0.125598i
\(584\) 17.3724 0.718873
\(585\) 0 0
\(586\) −53.5214 −2.21095
\(587\) 34.5014i 1.42403i −0.702166 0.712013i \(-0.747784\pi\)
0.702166 0.712013i \(-0.252216\pi\)
\(588\) −41.8186 41.8186i −1.72457 1.72457i
\(589\) 25.3488 1.04448
\(590\) −29.4280 + 16.6385i −1.21153 + 0.684994i
\(591\) 36.4656 36.4656i 1.50000 1.50000i
\(592\) 2.20645 0.0906845
\(593\) 28.3656i 1.16483i −0.812890 0.582417i \(-0.802107\pi\)
0.812890 0.582417i \(-0.197893\pi\)
\(594\) 5.40203i 0.221648i
\(595\) −2.80355 + 1.58511i −0.114934 + 0.0649833i
\(596\) 32.6107 + 32.6107i 1.33579 + 1.33579i
\(597\) 13.4452 + 13.4452i 0.550276 + 0.550276i
\(598\) 0 0
\(599\) 3.01612i 0.123235i 0.998100 + 0.0616176i \(0.0196259\pi\)
−0.998100 + 0.0616176i \(0.980374\pi\)
\(600\) 43.8025 10.8945i 1.78823 0.444767i
\(601\) 13.5808 0.553973 0.276986 0.960874i \(-0.410664\pi\)
0.276986 + 0.960874i \(0.410664\pi\)
\(602\) −11.8728 11.8728i −0.483899 0.483899i
\(603\) −27.2042 −1.10784
\(604\) 10.7444 + 10.7444i 0.437185 + 0.437185i
\(605\) 16.6704 + 4.62824i 0.677746 + 0.188165i
\(606\) −31.1328 31.1328i −1.26468 1.26468i
\(607\) −25.3551 + 25.3551i −1.02913 + 1.02913i −0.0295695 + 0.999563i \(0.509414\pi\)
−0.999563 + 0.0295695i \(0.990586\pi\)
\(608\) 12.3890 12.3890i 0.502438 0.502438i
\(609\) −4.72282 + 4.72282i −0.191378 + 0.191378i
\(610\) −18.9978 5.27442i −0.769198 0.213555i
\(611\) 0 0
\(612\) −2.43224 + 2.43224i −0.0983175 + 0.0983175i
\(613\) 4.50152 0.181815 0.0909074 0.995859i \(-0.471023\pi\)
0.0909074 + 0.995859i \(0.471023\pi\)
\(614\) 48.4175i 1.95397i
\(615\) −4.26374 + 15.3575i −0.171931 + 0.619273i
\(616\) −18.4461 + 18.4461i −0.743213 + 0.743213i
\(617\) 38.4700i 1.54874i −0.632731 0.774372i \(-0.718066\pi\)
0.632731 0.774372i \(-0.281934\pi\)
\(618\) 84.2250i 3.38803i
\(619\) 5.85514 5.85514i 0.235338 0.235338i −0.579578 0.814916i \(-0.696783\pi\)
0.814916 + 0.579578i \(0.196783\pi\)
\(620\) 18.4814 + 32.6876i 0.742230 + 1.31277i
\(621\) 11.6487i 0.467446i
\(622\) 50.7134 2.03342
\(623\) 6.12441 6.12441i 0.245369 0.245369i
\(624\) 0 0
\(625\) 11.7115 + 22.0871i 0.468459 + 0.883485i
\(626\) −12.4012 + 12.4012i −0.495651 + 0.495651i
\(627\) −16.3469 + 16.3469i −0.652834 + 0.652834i
\(628\) 47.3018 47.3018i 1.88755 1.88755i
\(629\) −0.314994 0.314994i −0.0125596 0.0125596i
\(630\) 13.0537 47.0179i 0.520073 1.87324i
\(631\) −26.4142 26.4142i −1.05153 1.05153i −0.998598 0.0529351i \(-0.983142\pi\)
−0.0529351 0.998598i \(-0.516858\pi\)
\(632\) −27.6237 −1.09881
\(633\) −40.9345 40.9345i −1.62700 1.62700i
\(634\) 61.4053 2.43872
\(635\) −13.6900 + 7.74023i −0.543270 + 0.307162i
\(636\) 14.2348i 0.564448i
\(637\) 0 0
\(638\) 2.31681 + 2.31681i 0.0917235 + 0.0917235i
\(639\) −19.3027 19.3027i −0.763603 0.763603i
\(640\) 44.5174 + 12.3595i 1.75971 + 0.488553i
\(641\) 3.43214i 0.135561i −0.997700 0.0677806i \(-0.978408\pi\)
0.997700 0.0677806i \(-0.0215918\pi\)
\(642\) 57.9252i 2.28613i
\(643\) 16.4627 0.649227 0.324614 0.945847i \(-0.394766\pi\)
0.324614 + 0.945847i \(0.394766\pi\)
\(644\) −88.6302 + 88.6302i −3.49252 + 3.49252i
\(645\) 2.64636 9.53185i 0.104200 0.375316i
\(646\) 5.00619 0.196966
\(647\) 13.4904 + 13.4904i 0.530364 + 0.530364i 0.920681 0.390317i \(-0.127635\pi\)
−0.390317 + 0.920681i \(0.627635\pi\)
\(648\) 39.8964i 1.56728i
\(649\) 11.5110 0.451846
\(650\) 0 0
\(651\) 40.4311 1.58462
\(652\) 57.4872i 2.25137i
\(653\) −27.0722 27.0722i −1.05942 1.05942i −0.998120 0.0612973i \(-0.980476\pi\)
−0.0612973 0.998120i \(-0.519524\pi\)
\(654\) 32.4171 1.26761
\(655\) 5.59149 20.1398i 0.218477 0.786928i
\(656\) 4.11605 4.11605i 0.160705 0.160705i
\(657\) 11.0649 0.431681
\(658\) 17.2277i 0.671605i
\(659\) 39.2882i 1.53045i 0.643763 + 0.765225i \(0.277372\pi\)
−0.643763 + 0.765225i \(0.722628\pi\)
\(660\) −32.9979 9.16131i −1.28444 0.356604i
\(661\) 19.1671 + 19.1671i 0.745515 + 0.745515i 0.973633 0.228119i \(-0.0732574\pi\)
−0.228119 + 0.973633i \(0.573257\pi\)
\(662\) 17.6545 + 17.6545i 0.686161 + 0.686161i
\(663\) 0 0
\(664\) 44.1900i 1.71490i
\(665\) −39.8537 + 22.5331i −1.54546 + 0.873794i
\(666\) 6.74935 0.261532
\(667\) 4.99587 + 4.99587i 0.193441 + 0.193441i
\(668\) −45.2943 −1.75249
\(669\) −48.7808 48.7808i −1.88597 1.88597i
\(670\) −15.6902 + 56.5140i −0.606164 + 2.18332i
\(671\) 4.74713 + 4.74713i 0.183261 + 0.183261i
\(672\) 19.7603 19.7603i 0.762270 0.762270i
\(673\) −5.02239 + 5.02239i −0.193599 + 0.193599i −0.797249 0.603650i \(-0.793712\pi\)
0.603650 + 0.797249i \(0.293712\pi\)
\(674\) −15.8462 + 15.8462i −0.610373 + 0.610373i
\(675\) −6.11655 + 1.52130i −0.235426 + 0.0585550i
\(676\) 0 0
\(677\) 19.2265 19.2265i 0.738933 0.738933i −0.233439 0.972372i \(-0.574998\pi\)
0.972372 + 0.233439i \(0.0749978\pi\)
\(678\) −81.2961 −3.12216
\(679\) 3.30084i 0.126675i
\(680\) 1.63805 + 2.89718i 0.0628163 + 0.111102i
\(681\) −12.9987 + 12.9987i −0.498112 + 0.498112i
\(682\) 19.8338i 0.759475i
\(683\) 4.61676i 0.176655i −0.996091 0.0883277i \(-0.971848\pi\)
0.996091 0.0883277i \(-0.0281523\pi\)
\(684\) −34.5753 + 34.5753i −1.32202 + 1.32202i
\(685\) −8.19401 + 29.5138i −0.313077 + 1.12766i
\(686\) 0.220219i 0.00840798i
\(687\) −41.1139 −1.56859
\(688\) −2.55469 + 2.55469i −0.0973967 + 0.0973967i
\(689\) 0 0
\(690\) −110.377 30.6442i −4.20197 1.16661i
\(691\) 7.48635 7.48635i 0.284794 0.284794i −0.550223 0.835018i \(-0.685457\pi\)
0.835018 + 0.550223i \(0.185457\pi\)
\(692\) 41.4658 41.4658i 1.57629 1.57629i
\(693\) −11.7487 + 11.7487i −0.446297 + 0.446297i
\(694\) 11.9539 + 11.9539i 0.453766 + 0.453766i
\(695\) −19.3610 5.37525i −0.734404 0.203895i
\(696\) 4.88054 + 4.88054i 0.184996 + 0.184996i
\(697\) −1.17522 −0.0445146
\(698\) 54.7086 + 54.7086i 2.07075 + 2.07075i
\(699\) −5.05594 −0.191233
\(700\) −58.1134 34.9634i −2.19648 1.32149i
\(701\) 48.9646i 1.84937i −0.380735 0.924684i \(-0.624329\pi\)
0.380735 0.924684i \(-0.375671\pi\)
\(702\) 0 0
\(703\) −4.47777 4.47777i −0.168882 0.168882i
\(704\) −14.5685 14.5685i −0.549070 0.549070i
\(705\) −8.83542 + 4.99550i −0.332761 + 0.188141i
\(706\) 30.6528i 1.15363i
\(707\) 29.6895i 1.11659i
\(708\) 54.0316 2.03063
\(709\) 17.4186 17.4186i 0.654169 0.654169i −0.299825 0.953994i \(-0.596928\pi\)
0.953994 + 0.299825i \(0.0969284\pi\)
\(710\) −51.2324 + 28.9665i −1.92272 + 1.08709i
\(711\) −17.5942 −0.659834
\(712\) −6.32893 6.32893i −0.237187 0.237187i
\(713\) 42.7687i 1.60170i
\(714\) 7.98484 0.298825
\(715\) 0 0
\(716\) 66.9366 2.50154
\(717\) 23.3291i 0.871242i
\(718\) −29.7274 29.7274i −1.10942 1.10942i
\(719\) −46.6034 −1.73801 −0.869007 0.494799i \(-0.835242\pi\)
−0.869007 + 0.494799i \(0.835242\pi\)
\(720\) −10.1169 2.80879i −0.377035 0.104678i
\(721\) −40.1601 + 40.1601i −1.49564 + 1.49564i
\(722\) 26.0891 0.970937
\(723\) 33.8652i 1.25946i
\(724\) 7.94552i 0.295293i
\(725\) −1.97080 + 3.27571i −0.0731937 + 0.121657i
\(726\) −30.3304 30.3304i −1.12567 1.12567i
\(727\) 16.4412 + 16.4412i 0.609770 + 0.609770i 0.942886 0.333116i \(-0.108100\pi\)
−0.333116 + 0.942886i \(0.608100\pi\)
\(728\) 0 0
\(729\) 16.5738i 0.613846i
\(730\) 6.38172 22.9861i 0.236198 0.850755i
\(731\) 0.729418 0.0269785
\(732\) 22.2826 + 22.2826i 0.823588 + 0.823588i
\(733\) −30.6968 −1.13381 −0.566907 0.823782i \(-0.691860\pi\)
−0.566907 + 0.823782i \(0.691860\pi\)
\(734\) 58.4687 + 58.4687i 2.15812 + 2.15812i
\(735\) −31.7267 + 17.9381i −1.17026 + 0.661657i
\(736\) −20.9028 20.9028i −0.770486 0.770486i
\(737\) 14.1216 14.1216i 0.520176 0.520176i
\(738\) 12.5907 12.5907i 0.463469 0.463469i
\(739\) 24.4091 24.4091i 0.897902 0.897902i −0.0973480 0.995250i \(-0.531036\pi\)
0.995250 + 0.0973480i \(0.0310360\pi\)
\(740\) 2.50948 9.03881i 0.0922502 0.332273i
\(741\) 0 0
\(742\) 10.5288 10.5288i 0.386523 0.386523i
\(743\) −0.307988 −0.0112990 −0.00564949 0.999984i \(-0.501798\pi\)
−0.00564949 + 0.999984i \(0.501798\pi\)
\(744\) 41.7813i 1.53178i
\(745\) 24.7409 13.9884i 0.906437 0.512494i
\(746\) 25.0528 25.0528i 0.917249 0.917249i
\(747\) 28.1456i 1.02979i
\(748\) 2.52514i 0.0923282i
\(749\) −27.6199 + 27.6199i −1.00921 + 1.00921i
\(750\) 1.67579 61.9592i 0.0611911 2.26243i
\(751\) 20.9010i 0.762690i 0.924433 + 0.381345i \(0.124539\pi\)
−0.924433 + 0.381345i \(0.875461\pi\)
\(752\) 3.70691 0.135177
\(753\) 29.3529 29.3529i 1.06968 1.06968i
\(754\) 0 0
\(755\) 8.15153 4.60883i 0.296665 0.167733i
\(756\) 12.0905 12.0905i 0.439729 0.439729i
\(757\) −23.7489 + 23.7489i −0.863168 + 0.863168i −0.991705 0.128536i \(-0.958972\pi\)
0.128536 + 0.991705i \(0.458972\pi\)
\(758\) −54.3352 + 54.3352i −1.97354 + 1.97354i
\(759\) 27.5807 + 27.5807i 1.00112 + 1.00112i
\(760\) 23.2855 + 41.1846i 0.844656 + 1.49392i
\(761\) 33.9474 + 33.9474i 1.23059 + 1.23059i 0.963736 + 0.266856i \(0.0859850\pi\)
0.266856 + 0.963736i \(0.414015\pi\)
\(762\) 38.9906 1.41248
\(763\) −15.4571 15.4571i −0.559584 0.559584i
\(764\) −29.5579 −1.06937
\(765\) 1.04331 + 1.84528i 0.0377210 + 0.0667162i
\(766\) 76.4612i 2.76266i
\(767\) 0 0
\(768\) −43.3025 43.3025i −1.56255 1.56255i
\(769\) 16.5558 + 16.5558i 0.597016 + 0.597016i 0.939517 0.342502i \(-0.111274\pi\)
−0.342502 + 0.939517i \(0.611274\pi\)
\(770\) 17.6307 + 31.1830i 0.635365 + 1.12376i
\(771\) 21.0658i 0.758667i
\(772\) 84.3490i 3.03579i
\(773\) −26.8939 −0.967307 −0.483653 0.875260i \(-0.660690\pi\)
−0.483653 + 0.875260i \(0.660690\pi\)
\(774\) −7.81460 + 7.81460i −0.280890 + 0.280890i
\(775\) 22.4572 5.58553i 0.806686 0.200638i
\(776\) 3.41107 0.122450
\(777\) −7.14201 7.14201i −0.256218 0.256218i
\(778\) 27.9513i 1.00210i
\(779\) −16.7062 −0.598563
\(780\) 0 0
\(781\) 20.0399 0.717086
\(782\) 8.44649i 0.302046i
\(783\) −0.681514 0.681514i −0.0243553 0.0243553i
\(784\) 13.3110 0.475392
\(785\) −20.2901 35.8867i −0.724186 1.28085i
\(786\) −36.6428 + 36.6428i −1.30701 + 1.30701i
\(787\) 1.45463 0.0518521 0.0259261 0.999664i \(-0.491747\pi\)
0.0259261 + 0.999664i \(0.491747\pi\)
\(788\) 80.0741i 2.85252i
\(789\) 9.96087i 0.354616i
\(790\) −10.1476 + 36.5502i −0.361034 + 1.30040i
\(791\) 38.7636 + 38.7636i 1.37827 + 1.37827i
\(792\) 12.1411 + 12.1411i 0.431414 + 0.431414i
\(793\) 0 0
\(794\) 19.3299i 0.685994i
\(795\) 8.45282 + 2.34678i 0.299790 + 0.0832318i
\(796\) −29.5241 −1.04645
\(797\) 8.79879 + 8.79879i 0.311669 + 0.311669i 0.845556 0.533887i \(-0.179269\pi\)
−0.533887 + 0.845556i \(0.679269\pi\)
\(798\) 113.508 4.01813
\(799\) −0.529200 0.529200i −0.0187218 0.0187218i
\(800\) 8.24585 13.7056i 0.291535 0.484566i
\(801\) −4.03104 4.03104i −0.142430 0.142430i
\(802\) −27.7018 + 27.7018i −0.978183 + 0.978183i
\(803\) −5.74373 + 5.74373i −0.202692 + 0.202692i
\(804\) 66.2855 66.2855i 2.33771 2.33771i
\(805\) 38.0180 + 67.2415i 1.33996 + 2.36995i
\(806\) 0 0
\(807\) −2.97029 + 2.97029i −0.104559 + 0.104559i
\(808\) 30.6810 1.07935
\(809\) 7.21727i 0.253746i 0.991919 + 0.126873i \(0.0404940\pi\)
−0.991919 + 0.126873i \(0.959506\pi\)
\(810\) 52.7887 + 14.6559i 1.85481 + 0.514956i
\(811\) −15.0515 + 15.0515i −0.528530 + 0.528530i −0.920134 0.391604i \(-0.871920\pi\)
0.391604 + 0.920134i \(0.371920\pi\)
\(812\) 10.3707i 0.363942i
\(813\) 6.89134i 0.241690i
\(814\) −3.50357 + 3.50357i −0.122800 + 0.122800i
\(815\) −34.1366 9.47747i −1.19575 0.331981i
\(816\) 1.71811i 0.0601460i
\(817\) 10.3690 0.362765
\(818\) 7.08575 7.08575i 0.247747 0.247747i
\(819\) 0 0
\(820\) −12.1802 21.5429i −0.425352 0.752311i
\(821\) −12.4012 + 12.4012i −0.432805 + 0.432805i −0.889581 0.456777i \(-0.849004\pi\)
0.456777 + 0.889581i \(0.349004\pi\)
\(822\) 53.6980 53.6980i 1.87293 1.87293i
\(823\) −7.74299 + 7.74299i −0.269904 + 0.269904i −0.829061 0.559158i \(-0.811125\pi\)
0.559158 + 0.829061i \(0.311125\pi\)
\(824\) 41.5013 + 41.5013i 1.44576 + 1.44576i
\(825\) −10.8802 + 18.0842i −0.378800 + 0.629611i
\(826\) −39.9644 39.9644i −1.39054 1.39054i
\(827\) 1.86613 0.0648917 0.0324458 0.999473i \(-0.489670\pi\)
0.0324458 + 0.999473i \(0.489670\pi\)
\(828\) 58.3358 + 58.3358i 2.02731 + 2.02731i
\(829\) 34.7843 1.20811 0.604055 0.796943i \(-0.293551\pi\)
0.604055 + 0.796943i \(0.293551\pi\)
\(830\) 58.4697 + 16.2331i 2.02951 + 0.563461i
\(831\) 66.5870i 2.30988i
\(832\) 0 0
\(833\) −1.90028 1.90028i −0.0658408 0.0658408i
\(834\) 35.2258 + 35.2258i 1.21977 + 1.21977i
\(835\) −7.46731 + 26.8963i −0.258417 + 0.930784i
\(836\) 35.8959i 1.24149i
\(837\) 5.83431i 0.201663i
\(838\) −40.5189 −1.39970
\(839\) 13.7215 13.7215i 0.473718 0.473718i −0.429397 0.903116i \(-0.641274\pi\)
0.903116 + 0.429397i \(0.141274\pi\)
\(840\) 37.1403 + 65.6892i 1.28146 + 2.26649i
\(841\) 28.4154 0.979842
\(842\) −21.9815 21.9815i −0.757533 0.757533i
\(843\) 8.52199i 0.293513i
\(844\) 89.8873 3.09405
\(845\) 0 0
\(846\) 11.3391 0.389848
\(847\) 28.9243i 0.993849i
\(848\) −2.26549 2.26549i −0.0777973 0.0777973i
\(849\) 18.2445 0.626151
\(850\) 4.43512 1.10310i 0.152123 0.0378360i
\(851\) −7.55493 + 7.55493i −0.258980 + 0.258980i
\(852\) 94.0657 3.22264
\(853\) 2.67051i 0.0914364i 0.998954 + 0.0457182i \(0.0145576\pi\)
−0.998954 + 0.0457182i \(0.985442\pi\)
\(854\) 32.9625i 1.12795i
\(855\) 14.8311 + 26.2314i 0.507213 + 0.897096i
\(856\) 28.5422 + 28.5422i 0.975553 + 0.975553i
\(857\) −17.5773 17.5773i −0.600430 0.600430i 0.339996 0.940427i \(-0.389574\pi\)
−0.940427 + 0.339996i \(0.889574\pi\)
\(858\) 0 0
\(859\) 52.8699i 1.80390i 0.431844 + 0.901949i \(0.357863\pi\)
−0.431844 + 0.901949i \(0.642137\pi\)
\(860\) 7.55986 + 13.3709i 0.257789 + 0.455946i
\(861\) −26.6463 −0.908104
\(862\) 17.9744 + 17.9744i 0.612211 + 0.612211i
\(863\) −3.40127 −0.115780 −0.0578902 0.998323i \(-0.518437\pi\)
−0.0578902 + 0.998323i \(0.518437\pi\)
\(864\) 2.85146 + 2.85146i 0.0970087 + 0.0970087i
\(865\) −17.7868 31.4590i −0.604768 1.06964i
\(866\) 8.56625 + 8.56625i 0.291093 + 0.291093i
\(867\) 27.8447 27.8447i 0.945657 0.945657i
\(868\) −44.3910 + 44.3910i −1.50673 + 1.50673i
\(869\) 9.13309 9.13309i 0.309819 0.309819i
\(870\) 8.25052 4.66479i 0.279719 0.158151i
\(871\) 0 0
\(872\) −15.9733 + 15.9733i −0.540923 + 0.540923i
\(873\) 2.17259 0.0735311
\(874\) 120.070i 4.06144i
\(875\) −30.3424 + 28.7443i −1.02576 + 0.971735i
\(876\) −26.9605 + 26.9605i −0.910912 + 0.910912i
\(877\) 19.6750i 0.664379i −0.943213 0.332189i \(-0.892213\pi\)
0.943213 0.332189i \(-0.107787\pi\)
\(878\) 48.0161i 1.62046i
\(879\) 37.2768 37.2768i 1.25732 1.25732i
\(880\) 6.70970 3.79362i 0.226184 0.127883i
\(881\) 2.38273i 0.0802762i −0.999194 0.0401381i \(-0.987220\pi\)
0.999194 0.0401381i \(-0.0127798\pi\)
\(882\) 40.7172 1.37102
\(883\) −30.4180 + 30.4180i −1.02365 + 1.02365i −0.0239343 + 0.999714i \(0.507619\pi\)
−0.999714 + 0.0239343i \(0.992381\pi\)
\(884\) 0 0
\(885\) 8.90776 32.0846i 0.299431 1.07851i
\(886\) 6.31260 6.31260i 0.212076 0.212076i
\(887\) −16.0566 + 16.0566i −0.539127 + 0.539127i −0.923272 0.384146i \(-0.874496\pi\)
0.384146 + 0.923272i \(0.374496\pi\)
\(888\) −7.38052 + 7.38052i −0.247674 + 0.247674i
\(889\) −18.5915 18.5915i −0.623538 0.623538i
\(890\) −10.6990 + 6.04917i −0.358632 + 0.202769i
\(891\) −13.1907 13.1907i −0.441906 0.441906i
\(892\) 107.117 3.58653
\(893\) −7.52280 7.52280i −0.251741 0.251741i
\(894\) −70.4649 −2.35670
\(895\) 11.0353 39.7477i 0.368869 1.32862i
\(896\) 77.2410i 2.58044i
\(897\) 0 0
\(898\) 51.6980 + 51.6980i 1.72518 + 1.72518i
\(899\) 2.50221 + 2.50221i 0.0834533 + 0.0834533i
\(900\) −23.0127 + 38.2498i −0.767089 + 1.27499i
\(901\) 0.646845i 0.0215495i
\(902\) 13.0716i 0.435235i
\(903\) 16.5385 0.550365
\(904\) 40.0581 40.0581i 1.33231 1.33231i
\(905\) 4.71815 + 1.30992i 0.156837 + 0.0435431i
\(906\) −23.2165 −0.771316
\(907\) −16.3686 16.3686i −0.543510 0.543510i 0.381046 0.924556i \(-0.375564\pi\)
−0.924556 + 0.381046i \(0.875564\pi\)
\(908\) 28.5436i 0.947253i
\(909\) 19.5414 0.648147
\(910\) 0 0
\(911\) −23.7450 −0.786707 −0.393354 0.919387i \(-0.628685\pi\)
−0.393354 + 0.919387i \(0.628685\pi\)
\(912\) 24.4237i 0.808749i
\(913\) −14.6103 14.6103i −0.483530 0.483530i
\(914\) −24.1508 −0.798837
\(915\) 16.9052 9.55812i 0.558869 0.315982i
\(916\) 45.1406 45.1406i 1.49149 1.49149i
\(917\) 34.9440 1.15395
\(918\) 1.15223i 0.0380293i
\(919\) 56.9671i 1.87917i −0.342313 0.939586i \(-0.611210\pi\)
0.342313 0.939586i \(-0.388790\pi\)
\(920\) 69.4870 39.2876i 2.29092 1.29527i
\(921\) −33.7221 33.7221i −1.11118 1.11118i
\(922\) −32.3379 32.3379i −1.06499 1.06499i
\(923\) 0 0
\(924\) 57.2537i 1.88351i
\(925\) −4.95364 2.98032i −0.162875 0.0979922i
\(926\) −39.8398 −1.30922
\(927\) 26.4331 + 26.4331i 0.868177 + 0.868177i
\(928\) 2.44586 0.0802892
\(929\) 20.6626 + 20.6626i 0.677918 + 0.677918i 0.959529 0.281611i \(-0.0908687\pi\)
−0.281611 + 0.959529i \(0.590869\pi\)
\(930\) −55.2828 15.3483i −1.81279 0.503292i
\(931\) −27.0133 27.0133i −0.885325 0.885325i
\(932\) 5.55112 5.55112i 0.181833 0.181833i
\(933\) −35.3211 + 35.3211i −1.15636 + 1.15636i
\(934\) −23.1496 + 23.1496i −0.757478 + 0.757478i
\(935\) −1.49946 0.416299i −0.0490375 0.0136144i
\(936\) 0 0
\(937\) −1.77191 + 1.77191i −0.0578859 + 0.0578859i −0.735457 0.677571i \(-0.763033\pi\)
0.677571 + 0.735457i \(0.263033\pi\)
\(938\) −98.0558 −3.20164
\(939\) 17.2745i 0.563731i
\(940\) 4.21601 15.1855i 0.137511 0.495297i
\(941\) −15.5682 + 15.5682i −0.507507 + 0.507507i −0.913761 0.406253i \(-0.866835\pi\)
0.406253 + 0.913761i \(0.366835\pi\)
\(942\) 102.209i 3.33016i
\(943\) 28.1869i 0.917891i
\(944\) −8.59920 + 8.59920i −0.279880 + 0.279880i
\(945\) −5.18624 9.17279i −0.168708 0.298391i
\(946\) 8.11306i 0.263778i
\(947\) 0.361869 0.0117591 0.00587957 0.999983i \(-0.498128\pi\)
0.00587957 + 0.999983i \(0.498128\pi\)
\(948\) 42.8699 42.8699i 1.39235 1.39235i
\(949\) 0 0
\(950\) 63.0471 15.6810i 2.04552 0.508760i
\(951\) −42.7679 + 42.7679i −1.38684 + 1.38684i
\(952\) −3.93447 + 3.93447i −0.127517 + 0.127517i
\(953\) −28.6611 + 28.6611i −0.928423 + 0.928423i −0.997604 0.0691813i \(-0.977961\pi\)
0.0691813 + 0.997604i \(0.477961\pi\)
\(954\) −6.92996 6.92996i −0.224366 0.224366i
\(955\) −4.87298 + 17.5518i −0.157686 + 0.567964i
\(956\) 25.6140 + 25.6140i 0.828415 + 0.828415i
\(957\) −3.22725 −0.104322
\(958\) 23.1837 + 23.1837i 0.749031 + 0.749031i
\(959\) −51.2085 −1.65361
\(960\) −51.8805 + 29.3329i −1.67443 + 0.946716i
\(961\) 9.57907i 0.309002i
\(962\) 0 0
\(963\) 18.1792 + 18.1792i 0.585817 + 0.585817i
\(964\) 37.1820 + 37.1820i 1.19755 + 1.19755i
\(965\) −50.0875 13.9060i −1.61237 0.447649i
\(966\) 191.511i 6.16178i
\(967\) 12.2654i 0.394430i 0.980360 + 0.197215i \(0.0631897\pi\)
−0.980360 + 0.197215i \(0.936810\pi\)
\(968\) 29.8902 0.960707
\(969\) −3.48674 + 3.48674i −0.112010 + 0.112010i
\(970\) 1.25305 4.51334i 0.0402332 0.144915i
\(971\) 22.6199 0.725907 0.362953 0.931807i \(-0.381768\pi\)
0.362953 + 0.931807i \(0.381768\pi\)
\(972\) −52.2135 52.2135i −1.67475 1.67475i
\(973\) 33.5927i 1.07693i
\(974\) 48.5378 1.55525
\(975\) 0 0
\(976\) −7.09261 −0.227029
\(977\) 35.1692i 1.12516i −0.826742 0.562581i \(-0.809808\pi\)
0.826742 0.562581i \(-0.190192\pi\)
\(978\) 62.1090 + 62.1090i 1.98603 + 1.98603i
\(979\) 4.18500 0.133753
\(980\) 15.1391 54.5290i 0.483600 1.74186i
\(981\) −10.1737 + 10.1737i −0.324823 + 0.324823i
\(982\) −24.1722 −0.771367
\(983\) 12.2764i 0.391555i 0.980648 + 0.195778i \(0.0627231\pi\)
−0.980648 + 0.195778i \(0.937277\pi\)
\(984\) 27.5362i 0.877821i
\(985\) 47.5490 + 13.2012i 1.51504 + 0.420625i
\(986\) 0.494167 + 0.494167i 0.0157375 + 0.0157375i
\(987\) −11.9988 11.9988i −0.381927 0.381927i
\(988\) 0 0
\(989\) 17.4946i 0.556297i
\(990\) 20.5244 11.6044i 0.652309 0.368812i
\(991\) 33.1990 1.05460 0.527301 0.849679i \(-0.323204\pi\)
0.527301 + 0.849679i \(0.323204\pi\)
\(992\) −10.4693 10.4693i −0.332399 0.332399i
\(993\) −24.5922 −0.780409
\(994\) −69.5755 69.5755i −2.20680 2.20680i
\(995\) −4.86740 + 17.5318i −0.154307 + 0.555795i
\(996\) −68.5794 68.5794i −2.17302 2.17302i
\(997\) −26.5760 + 26.5760i −0.841671 + 0.841671i −0.989076 0.147405i \(-0.952908\pi\)
0.147405 + 0.989076i \(0.452908\pi\)
\(998\) 18.7456 18.7456i 0.593383 0.593383i
\(999\) 1.03061 1.03061i 0.0326070 0.0326070i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.f.f.408.5 72
5.2 odd 4 845.2.k.f.577.32 yes 72
13.2 odd 12 845.2.o.i.488.32 144
13.3 even 3 845.2.t.i.188.32 144
13.4 even 6 845.2.t.i.418.32 144
13.5 odd 4 845.2.k.f.268.5 yes 72
13.6 odd 12 845.2.o.i.258.32 144
13.7 odd 12 845.2.o.i.258.5 144
13.8 odd 4 845.2.k.f.268.32 yes 72
13.9 even 3 845.2.t.i.418.5 144
13.10 even 6 845.2.t.i.188.5 144
13.11 odd 12 845.2.o.i.488.5 144
13.12 even 2 inner 845.2.f.f.408.32 yes 72
65.2 even 12 845.2.t.i.657.32 144
65.7 even 12 845.2.t.i.427.32 144
65.12 odd 4 845.2.k.f.577.5 yes 72
65.17 odd 12 845.2.o.i.587.32 144
65.22 odd 12 845.2.o.i.587.5 144
65.32 even 12 845.2.t.i.427.5 144
65.37 even 12 845.2.t.i.657.5 144
65.42 odd 12 845.2.o.i.357.5 144
65.47 even 4 inner 845.2.f.f.437.32 yes 72
65.57 even 4 inner 845.2.f.f.437.5 yes 72
65.62 odd 12 845.2.o.i.357.32 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
845.2.f.f.408.5 72 1.1 even 1 trivial
845.2.f.f.408.32 yes 72 13.12 even 2 inner
845.2.f.f.437.5 yes 72 65.57 even 4 inner
845.2.f.f.437.32 yes 72 65.47 even 4 inner
845.2.k.f.268.5 yes 72 13.5 odd 4
845.2.k.f.268.32 yes 72 13.8 odd 4
845.2.k.f.577.5 yes 72 65.12 odd 4
845.2.k.f.577.32 yes 72 5.2 odd 4
845.2.o.i.258.5 144 13.7 odd 12
845.2.o.i.258.32 144 13.6 odd 12
845.2.o.i.357.5 144 65.42 odd 12
845.2.o.i.357.32 144 65.62 odd 12
845.2.o.i.488.5 144 13.11 odd 12
845.2.o.i.488.32 144 13.2 odd 12
845.2.o.i.587.5 144 65.22 odd 12
845.2.o.i.587.32 144 65.17 odd 12
845.2.t.i.188.5 144 13.10 even 6
845.2.t.i.188.32 144 13.3 even 3
845.2.t.i.418.5 144 13.9 even 3
845.2.t.i.418.32 144 13.4 even 6
845.2.t.i.427.5 144 65.32 even 12
845.2.t.i.427.32 144 65.7 even 12
845.2.t.i.657.5 144 65.37 even 12
845.2.t.i.657.32 144 65.2 even 12