Properties

Label 847.1.bb.a.412.1
Level $847$
Weight $1$
Character 847.412
Analytic conductor $0.423$
Analytic rank $0$
Dimension $40$
Projective image $D_{55}$
CM discriminant -7
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [847,1,Mod(20,847)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(847, base_ring=CyclotomicField(110))
 
chi = DirichletCharacter(H, H._module([55, 76]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("847.20");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 847 = 7 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 847.bb (of order \(110\), degree \(40\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.422708065700\)
Analytic rank: \(0\)
Dimension: \(40\)
Coefficient field: \(\Q(\zeta_{55})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{40} - x^{39} + x^{35} - x^{34} + x^{30} - x^{28} + x^{25} - x^{23} + x^{20} - x^{17} + x^{15} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{55}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{55} - \cdots)\)

Embedding invariants

Embedding label 412.1
Root \(-0.921124 - 0.389270i\) of defining polynomial
Character \(\chi\) \(=\) 847.412
Dual form 847.1.bb.a.405.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.73511 - 0.733264i) q^{2} +(1.77599 + 1.82745i) q^{4} +(0.941844 - 0.336049i) q^{7} +(-1.05812 - 2.71777i) q^{8} +(0.309017 + 0.951057i) q^{9} +(0.516397 + 0.856349i) q^{11} +(-1.88062 - 0.107538i) q^{14} +(-0.0841108 + 2.94426i) q^{16} +(0.161197 - 1.87678i) q^{18} +(-0.268077 - 1.86452i) q^{22} +(-1.17182 + 0.344079i) q^{23} +(-0.870746 + 0.491733i) q^{25} +(2.28683 + 1.12436i) q^{28} +(0.442719 + 0.250015i) q^{29} +(1.09331 - 2.39402i) q^{32} +(-1.18920 + 2.25379i) q^{36} +(0.755084 + 1.43104i) q^{37} +(-0.0480458 - 0.0308771i) q^{43} +(-0.647820 + 2.46456i) q^{44} +(2.28555 + 0.262242i) q^{46} +(0.774142 - 0.633012i) q^{49} +(1.87141 - 0.214724i) q^{50} +(-0.0567398 - 1.98615i) q^{53} +(-1.90989 - 2.20413i) q^{56} +(-0.584840 - 0.758434i) q^{58} +(0.610648 + 0.791902i) q^{63} +(-1.48242 + 1.36055i) q^{64} +(0.964926 - 1.11358i) q^{67} +(1.78310 - 0.204591i) q^{71} +(2.25777 - 1.84617i) q^{72} +(-0.260822 - 3.03669i) q^{74} +(0.774142 + 0.633012i) q^{77} +(-1.52561 - 1.24748i) q^{79} +(-0.809017 + 0.587785i) q^{81} +(0.0607236 + 0.0888054i) q^{86} +(1.78094 - 2.30957i) q^{88} +(-2.70994 - 1.53037i) q^{92} +(-1.80739 + 0.530696i) q^{98} +(-0.654861 + 0.755750i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 2 q^{2} + 3 q^{4} + q^{7} - q^{8} - 10 q^{9} + q^{11} - 3 q^{14} - 3 q^{18} + 2 q^{22} - 9 q^{23} + q^{25} - 2 q^{28} + 2 q^{29} - 4 q^{32} + 3 q^{36} - 3 q^{37} + 2 q^{43} - 13 q^{44} - q^{46}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/847\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(365\)
\(\chi(n)\) \(-1\) \(e\left(\frac{7}{55}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.73511 0.733264i −1.73511 0.733264i −0.998369 0.0570888i \(-0.981818\pi\)
−0.736741 0.676175i \(-0.763636\pi\)
\(3\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(4\) 1.77599 + 1.82745i 1.77599 + 1.82745i
\(5\) 0 0 −0.254218 0.967147i \(-0.581818\pi\)
0.254218 + 0.967147i \(0.418182\pi\)
\(6\) 0 0
\(7\) 0.941844 0.336049i 0.941844 0.336049i
\(8\) −1.05812 2.71777i −1.05812 2.71777i
\(9\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(10\) 0 0
\(11\) 0.516397 + 0.856349i 0.516397 + 0.856349i
\(12\) 0 0
\(13\) 0 0 0.897398 0.441221i \(-0.145455\pi\)
−0.897398 + 0.441221i \(0.854545\pi\)
\(14\) −1.88062 0.107538i −1.88062 0.107538i
\(15\) 0 0
\(16\) −0.0841108 + 2.94426i −0.0841108 + 2.94426i
\(17\) 0 0 −0.736741 0.676175i \(-0.763636\pi\)
0.736741 + 0.676175i \(0.236364\pi\)
\(18\) 0.161197 1.87678i 0.161197 1.87678i
\(19\) 0 0 0.198590 0.980083i \(-0.436364\pi\)
−0.198590 + 0.980083i \(0.563636\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −0.268077 1.86452i −0.268077 1.86452i
\(23\) −1.17182 + 0.344079i −1.17182 + 0.344079i −0.809017 0.587785i \(-0.800000\pi\)
−0.362808 + 0.931864i \(0.618182\pi\)
\(24\) 0 0
\(25\) −0.870746 + 0.491733i −0.870746 + 0.491733i
\(26\) 0 0
\(27\) 0 0
\(28\) 2.28683 + 1.12436i 2.28683 + 1.12436i
\(29\) 0.442719 + 0.250015i 0.442719 + 0.250015i 0.696938 0.717132i \(-0.254545\pi\)
−0.254218 + 0.967147i \(0.581818\pi\)
\(30\) 0 0
\(31\) 0 0 0.985354 0.170522i \(-0.0545455\pi\)
−0.985354 + 0.170522i \(0.945455\pi\)
\(32\) 1.09331 2.39402i 1.09331 2.39402i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) −1.18920 + 2.25379i −1.18920 + 2.25379i
\(37\) 0.755084 + 1.43104i 0.755084 + 1.43104i 0.897398 + 0.441221i \(0.145455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 0.974012 0.226497i \(-0.0727273\pi\)
−0.974012 + 0.226497i \(0.927273\pi\)
\(42\) 0 0
\(43\) −0.0480458 0.0308771i −0.0480458 0.0308771i 0.516397 0.856349i \(-0.327273\pi\)
−0.564443 + 0.825472i \(0.690909\pi\)
\(44\) −0.647820 + 2.46456i −0.647820 + 2.46456i
\(45\) 0 0
\(46\) 2.28555 + 0.262242i 2.28555 + 0.262242i
\(47\) 0 0 −0.0855750 0.996332i \(-0.527273\pi\)
0.0855750 + 0.996332i \(0.472727\pi\)
\(48\) 0 0
\(49\) 0.774142 0.633012i 0.774142 0.633012i
\(50\) 1.87141 0.214724i 1.87141 0.214724i
\(51\) 0 0
\(52\) 0 0
\(53\) −0.0567398 1.98615i −0.0567398 1.98615i −0.142315 0.989821i \(-0.545455\pi\)
0.0855750 0.996332i \(-0.472727\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −1.90989 2.20413i −1.90989 2.20413i
\(57\) 0 0
\(58\) −0.584840 0.758434i −0.584840 0.758434i
\(59\) 0 0 −0.974012 0.226497i \(-0.927273\pi\)
0.974012 + 0.226497i \(0.0727273\pi\)
\(60\) 0 0
\(61\) 0 0 0.921124 0.389270i \(-0.127273\pi\)
−0.921124 + 0.389270i \(0.872727\pi\)
\(62\) 0 0
\(63\) 0.610648 + 0.791902i 0.610648 + 0.791902i
\(64\) −1.48242 + 1.36055i −1.48242 + 1.36055i
\(65\) 0 0
\(66\) 0 0
\(67\) 0.964926 1.11358i 0.964926 1.11358i −0.0285561 0.999592i \(-0.509091\pi\)
0.993482 0.113991i \(-0.0363636\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1.78310 0.204591i 1.78310 0.204591i 0.841254 0.540641i \(-0.181818\pi\)
0.941844 + 0.336049i \(0.109091\pi\)
\(72\) 2.25777 1.84617i 2.25777 1.84617i
\(73\) 0 0 0.610648 0.791902i \(-0.290909\pi\)
−0.610648 + 0.791902i \(0.709091\pi\)
\(74\) −0.260822 3.03669i −0.260822 3.03669i
\(75\) 0 0
\(76\) 0 0
\(77\) 0.774142 + 0.633012i 0.774142 + 0.633012i
\(78\) 0 0
\(79\) −1.52561 1.24748i −1.52561 1.24748i −0.870746 0.491733i \(-0.836364\pi\)
−0.654861 0.755750i \(-0.727273\pi\)
\(80\) 0 0
\(81\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(82\) 0 0
\(83\) 0 0 0.564443 0.825472i \(-0.309091\pi\)
−0.564443 + 0.825472i \(0.690909\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0.0607236 + 0.0888054i 0.0607236 + 0.0888054i
\(87\) 0 0
\(88\) 1.78094 2.30957i 1.78094 2.30957i
\(89\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −2.70994 1.53037i −2.70994 1.53037i
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 0.254218 0.967147i \(-0.418182\pi\)
−0.254218 + 0.967147i \(0.581818\pi\)
\(98\) −1.80739 + 0.530696i −1.80739 + 0.530696i
\(99\) −0.654861 + 0.755750i −0.654861 + 0.755750i
\(100\) −2.44506 0.717934i −2.44506 0.717934i
\(101\) 0 0 0.516397 0.856349i \(-0.327273\pi\)
−0.516397 + 0.856349i \(0.672727\pi\)
\(102\) 0 0
\(103\) 0 0 0.0855750 0.996332i \(-0.472727\pi\)
−0.0855750 + 0.996332i \(0.527273\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −1.35792 + 3.48780i −1.35792 + 3.48780i
\(107\) 1.73865 + 0.0994197i 1.73865 + 0.0994197i 0.897398 0.441221i \(-0.145455\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(108\) 0 0
\(109\) −0.0243572 0.169408i −0.0243572 0.169408i 0.974012 0.226497i \(-0.0727273\pi\)
−0.998369 + 0.0570888i \(0.981818\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0.910198 + 2.80130i 0.910198 + 2.80130i
\(113\) 0.668382 + 1.71672i 0.668382 + 1.71672i 0.696938 + 0.717132i \(0.254545\pi\)
−0.0285561 + 0.999592i \(0.509091\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0.329376 + 1.25307i 0.329376 + 1.25307i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −0.466667 + 0.884433i −0.466667 + 0.884433i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) −0.478868 1.82180i −0.478868 1.82180i
\(127\) −1.03111 1.70990i −1.03111 1.70990i −0.564443 0.825472i \(-0.690909\pi\)
−0.466667 0.884433i \(-0.654545\pi\)
\(128\) 1.09101 0.389270i 1.09101 0.389270i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −2.49080 + 1.22465i −2.49080 + 1.22465i
\(135\) 0 0
\(136\) 0 0
\(137\) −0.0398036 + 1.39331i −0.0398036 + 1.39331i 0.696938 + 0.717132i \(0.254545\pi\)
−0.736741 + 0.676175i \(0.763636\pi\)
\(138\) 0 0
\(139\) 0 0 0.0855750 0.996332i \(-0.472727\pi\)
−0.0855750 + 0.996332i \(0.527273\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −3.24389 0.952492i −3.24389 0.952492i
\(143\) 0 0
\(144\) −2.82615 + 0.829833i −2.82615 + 0.829833i
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) −1.27414 + 3.92140i −1.27414 + 3.92140i
\(149\) −1.17534 0.577877i −1.17534 0.577877i −0.254218 0.967147i \(-0.581818\pi\)
−0.921124 + 0.389270i \(0.872727\pi\)
\(150\) 0 0
\(151\) −0.505709 + 0.520362i −0.505709 + 0.520362i −0.921124 0.389270i \(-0.872727\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) −0.879056 1.66600i −0.879056 1.66600i
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 0.466667 0.884433i \(-0.345455\pi\)
−0.466667 + 0.884433i \(0.654545\pi\)
\(158\) 1.73236 + 3.28319i 1.73236 + 3.28319i
\(159\) 0 0
\(160\) 0 0
\(161\) −0.988049 + 0.717860i −0.988049 + 0.717860i
\(162\) 1.83474 0.426649i 1.83474 0.426649i
\(163\) −1.34816 1.10239i −1.34816 1.10239i −0.985354 0.170522i \(-0.945455\pi\)
−0.362808 0.931864i \(-0.618182\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.993482 0.113991i \(-0.963636\pi\)
0.993482 + 0.113991i \(0.0363636\pi\)
\(168\) 0 0
\(169\) 0.610648 0.791902i 0.610648 0.791902i
\(170\) 0 0
\(171\) 0 0
\(172\) −0.0289024 0.142639i −0.0289024 0.142639i
\(173\) 0 0 −0.941844 0.336049i \(-0.890909\pi\)
0.941844 + 0.336049i \(0.109091\pi\)
\(174\) 0 0
\(175\) −0.654861 + 0.755750i −0.654861 + 0.755750i
\(176\) −2.56475 + 1.44838i −2.56475 + 1.44838i
\(177\) 0 0
\(178\) 0 0
\(179\) −1.21930 1.58122i −1.21930 1.58122i −0.654861 0.755750i \(-0.727273\pi\)
−0.564443 0.825472i \(-0.690909\pi\)
\(180\) 0 0
\(181\) 0 0 0.921124 0.389270i \(-0.127273\pi\)
−0.921124 + 0.389270i \(0.872727\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 2.17506 + 2.82067i 2.17506 + 2.82067i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −0.391364 1.93146i −0.391364 1.93146i −0.362808 0.931864i \(-0.618182\pi\)
−0.0285561 0.999592i \(-0.509091\pi\)
\(192\) 0 0
\(193\) −1.42616 + 1.16617i −1.42616 + 1.16617i −0.466667 + 0.884433i \(0.654545\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 2.53167 + 0.290482i 2.53167 + 0.290482i
\(197\) 1.17260 0.753586i 1.17260 0.753586i 0.198590 0.980083i \(-0.436364\pi\)
0.974012 + 0.226497i \(0.0727273\pi\)
\(198\) 1.69042 0.831123i 1.69042 0.831123i
\(199\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(200\) 2.25777 + 1.84617i 2.25777 + 1.84617i
\(201\) 0 0
\(202\) 0 0
\(203\) 0.500990 + 0.0866997i 0.500990 + 0.0866997i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −0.689352 1.00815i −0.689352 1.00815i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0.919665 0.159154i 0.919665 0.159154i 0.309017 0.951057i \(-0.400000\pi\)
0.610648 + 0.791902i \(0.290909\pi\)
\(212\) 3.52884 3.63109i 3.52884 3.63109i
\(213\) 0 0
\(214\) −2.94385 1.44739i −2.94385 1.44739i
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) −0.0819583 + 0.311802i −0.0819583 + 0.311802i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.198590 0.980083i \(-0.436364\pi\)
−0.198590 + 0.980083i \(0.563636\pi\)
\(224\) 0.225221 2.62220i 0.225221 2.62220i
\(225\) −0.736741 0.676175i −0.736741 0.676175i
\(226\) 0.0990958 3.46881i 0.0990958 3.46881i
\(227\) 0 0 0.362808 0.931864i \(-0.381818\pi\)
−0.362808 + 0.931864i \(0.618182\pi\)
\(228\) 0 0
\(229\) 0 0 0.897398 0.441221i \(-0.145455\pi\)
−0.897398 + 0.441221i \(0.854545\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0.211031 1.46775i 0.211031 1.46775i
\(233\) 0.256741 + 0.790166i 0.256741 + 0.790166i 0.993482 + 0.113991i \(0.0363636\pi\)
−0.736741 + 0.676175i \(0.763636\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.19207 + 0.866091i 1.19207 + 0.866091i 0.993482 0.113991i \(-0.0363636\pi\)
0.198590 + 0.980083i \(0.436364\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 1.45824 1.19240i 1.45824 1.19240i
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(252\) −0.362659 + 2.52235i −0.362659 + 2.52235i
\(253\) −0.899779 0.825810i −0.899779 0.825810i
\(254\) 0.535279 + 3.72295i 0.535279 + 3.72295i
\(255\) 0 0
\(256\) −0.169605 0.00969837i −0.169605 0.00969837i
\(257\) 0 0 0.362808 0.931864i \(-0.381818\pi\)
−0.362808 + 0.931864i \(0.618182\pi\)
\(258\) 0 0
\(259\) 1.19207 + 1.09407i 1.19207 + 1.09407i
\(260\) 0 0
\(261\) −0.100971 + 0.498310i −0.100971 + 0.498310i
\(262\) 0 0
\(263\) −1.72209 0.505653i −1.72209 0.505653i −0.736741 0.676175i \(-0.763636\pi\)
−0.985354 + 0.170522i \(0.945455\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 3.74873 0.214360i 3.74873 0.214360i
\(269\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(270\) 0 0
\(271\) 0 0 −0.870746 0.491733i \(-0.836364\pi\)
0.870746 + 0.491733i \(0.163636\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 1.09072 2.38835i 1.09072 2.38835i
\(275\) −0.870746 0.491733i −0.870746 0.491733i
\(276\) 0 0
\(277\) −0.224186 0.327862i −0.224186 0.327862i 0.696938 0.717132i \(-0.254545\pi\)
−0.921124 + 0.389270i \(0.872727\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −1.95786 0.338821i −1.95786 0.338821i −0.998369 0.0570888i \(-0.981818\pi\)
−0.959493 0.281733i \(-0.909091\pi\)
\(282\) 0 0
\(283\) 0 0 0.974012 0.226497i \(-0.0727273\pi\)
−0.974012 + 0.226497i \(0.927273\pi\)
\(284\) 3.54065 + 2.89518i 3.54065 + 2.89518i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 2.61470 + 0.300009i 2.61470 + 0.300009i
\(289\) 0.0855750 + 0.996332i 0.0855750 + 0.996332i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 −0.198590 0.980083i \(-0.563636\pi\)
0.198590 + 0.980083i \(0.436364\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 3.09027 3.56636i 3.09027 3.56636i
\(297\) 0 0
\(298\) 1.61561 + 1.86452i 1.61561 + 1.86452i
\(299\) 0 0
\(300\) 0 0
\(301\) −0.0556279 0.0129357i −0.0556279 0.0129357i
\(302\) 1.25902 0.532067i 1.25902 0.532067i
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(308\) 0.218069 + 2.53894i 0.218069 + 2.53894i
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.941844 0.336049i \(-0.890909\pi\)
0.941844 + 0.336049i \(0.109091\pi\)
\(312\) 0 0
\(313\) 0 0 0.993482 0.113991i \(-0.0363636\pi\)
−0.993482 + 0.113991i \(0.963636\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −0.429751 5.00350i −0.429751 5.00350i
\(317\) 0.614005 + 0.0704506i 0.614005 + 0.0704506i 0.415415 0.909632i \(-0.363636\pi\)
0.198590 + 0.980083i \(0.436364\pi\)
\(318\) 0 0
\(319\) 0.0145189 + 0.508229i 0.0145189 + 0.508229i
\(320\) 0 0
\(321\) 0 0
\(322\) 2.24075 0.521065i 2.24075 0.521065i
\(323\) 0 0
\(324\) −2.51096 0.434539i −2.51096 0.434539i
\(325\) 0 0
\(326\) 1.53087 + 2.90132i 1.53087 + 2.90132i
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0.809238 1.77198i 0.809238 1.77198i 0.198590 0.980083i \(-0.436364\pi\)
0.610648 0.791902i \(-0.290909\pi\)
\(332\) 0 0
\(333\) −1.12767 + 1.16034i −1.12767 + 1.16034i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −1.94485 + 0.111210i −1.94485 + 0.111210i −0.985354 0.170522i \(-0.945455\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(338\) −1.64021 + 0.926272i −1.64021 + 0.926272i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0.516397 0.856349i 0.516397 0.856349i
\(344\) −0.0330785 + 0.163249i −0.0330785 + 0.163249i
\(345\) 0 0
\(346\) 0 0
\(347\) 0.0322365 1.12843i 0.0322365 1.12843i −0.809017 0.587785i \(-0.800000\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(348\) 0 0
\(349\) 0 0 −0.998369 0.0570888i \(-0.981818\pi\)
0.998369 + 0.0570888i \(0.0181818\pi\)
\(350\) 1.69042 0.831123i 1.69042 0.831123i
\(351\) 0 0
\(352\) 2.61470 0.300009i 2.61470 0.300009i
\(353\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0.956174 + 3.63766i 0.956174 + 3.63766i
\(359\) 1.35765 + 1.39699i 1.35765 + 1.39699i 0.841254 + 0.540641i \(0.181818\pi\)
0.516397 + 0.856349i \(0.327273\pi\)
\(360\) 0 0
\(361\) −0.921124 0.389270i −0.921124 0.389270i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.696938 0.717132i \(-0.745455\pi\)
0.696938 + 0.717132i \(0.254545\pi\)
\(368\) −0.914495 3.47910i −0.914495 3.47910i
\(369\) 0 0
\(370\) 0 0
\(371\) −0.720886 1.85158i −0.720886 1.85158i
\(372\) 0 0
\(373\) 0.273100 1.89945i 0.273100 1.89945i −0.142315 0.989821i \(-0.545455\pi\)
0.415415 0.909632i \(-0.363636\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0.0207207 0.725319i 0.0207207 0.725319i −0.921124 0.389270i \(-0.872727\pi\)
0.941844 0.336049i \(-0.109091\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −0.737207 + 3.63826i −0.737207 + 3.63826i
\(383\) 0 0 0.516397 0.856349i \(-0.327273\pi\)
−0.516397 + 0.856349i \(0.672727\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 3.32965 0.977674i 3.32965 0.977674i
\(387\) 0.0145189 0.0552358i 0.0145189 0.0552358i
\(388\) 0 0
\(389\) 0.724432 0.0414245i 0.724432 0.0414245i 0.309017 0.951057i \(-0.400000\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −2.53952 1.43413i −2.53952 1.43413i
\(393\) 0 0
\(394\) −2.58717 + 0.447728i −2.58717 + 0.447728i
\(395\) 0 0
\(396\) −2.54413 + 0.145478i −2.54413 + 0.145478i
\(397\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −1.37455 2.60507i −1.37455 2.60507i
\(401\) 0.526814 0.770442i 0.526814 0.770442i −0.466667 0.884433i \(-0.654545\pi\)
0.993482 + 0.113991i \(0.0363636\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) −0.805699 0.517791i −0.805699 0.517791i
\(407\) −0.835549 + 1.38560i −0.835549 + 1.38560i
\(408\) 0 0
\(409\) 0 0 −0.993482 0.113991i \(-0.963636\pi\)
0.993482 + 0.113991i \(0.0363636\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0.456866 + 2.25472i 0.456866 + 2.25472i
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(420\) 0 0
\(421\) 1.18956 + 1.54264i 1.18956 + 1.54264i 0.774142 + 0.633012i \(0.218182\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(422\) −1.71242 0.398207i −1.71242 0.398207i
\(423\) 0 0
\(424\) −5.33786 + 2.25580i −5.33786 + 2.25580i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 2.90615 + 3.35388i 2.90615 + 3.35388i
\(429\) 0 0
\(430\) 0 0
\(431\) −0.0113419 0.397019i −0.0113419 0.397019i −0.985354 0.170522i \(-0.945455\pi\)
0.974012 0.226497i \(-0.0727273\pi\)
\(432\) 0 0
\(433\) 0 0 −0.198590 0.980083i \(-0.563636\pi\)
0.198590 + 0.980083i \(0.436364\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0.266327 0.345379i 0.266327 0.345379i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(440\) 0 0
\(441\) 0.841254 + 0.540641i 0.841254 + 0.540641i
\(442\) 0 0
\(443\) −1.09955 + 0.255689i −1.09955 + 0.255689i −0.736741 0.676175i \(-0.763636\pi\)
−0.362808 + 0.931864i \(0.618182\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) −0.938995 + 1.77959i −0.938995 + 1.77959i
\(449\) −0.0966045 0.141280i −0.0966045 0.141280i 0.774142 0.633012i \(-0.218182\pi\)
−0.870746 + 0.491733i \(0.836364\pi\)
\(450\) 0.782513 + 1.71346i 0.782513 + 1.71346i
\(451\) 0 0
\(452\) −1.95019 + 4.27033i −1.95019 + 4.27033i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −0.500000 + 1.53884i −0.500000 + 1.53884i 0.309017 + 0.951057i \(0.400000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(462\) 0 0
\(463\) −0.990959 0.290972i −0.990959 0.290972i −0.254218 0.967147i \(-0.581818\pi\)
−0.736741 + 0.676175i \(0.763636\pi\)
\(464\) −0.773348 + 1.28245i −0.773348 + 1.28245i
\(465\) 0 0
\(466\) 0.133927 1.55928i 0.133927 1.55928i
\(467\) 0 0 −0.736741 0.676175i \(-0.763636\pi\)
0.736741 + 0.676175i \(0.236364\pi\)
\(468\) 0 0
\(469\) 0.534591 1.37309i 0.534591 1.37309i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0.00163090 0.0570888i 0.00163090 0.0570888i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 1.87141 0.667718i 1.87141 0.667718i
\(478\) −1.43330 2.37687i −1.43330 2.37687i
\(479\) 0 0 −0.254218 0.967147i \(-0.581818\pi\)
0.254218 + 0.967147i \(0.418182\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −2.44506 + 0.717934i −2.44506 + 0.717934i
\(485\) 0 0
\(486\) 0 0
\(487\) 0.0462047 + 0.0335697i 0.0462047 + 0.0335697i 0.610648 0.791902i \(-0.290909\pi\)
−0.564443 + 0.825472i \(0.690909\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −1.80739 + 0.644874i −1.80739 + 0.644874i −0.809017 + 0.587785i \(0.800000\pi\)
−0.998369 + 0.0570888i \(0.981818\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.61065 0.791902i 1.61065 0.791902i
\(498\) 0 0
\(499\) −0.224227 + 0.575924i −0.224227 + 0.575924i −0.998369 0.0570888i \(-0.981818\pi\)
0.774142 + 0.633012i \(0.218182\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.198590 0.980083i \(-0.436364\pi\)
−0.198590 + 0.980083i \(0.563636\pi\)
\(504\) 1.50606 2.49753i 1.50606 2.49753i
\(505\) 0 0
\(506\) 0.955679 + 2.09265i 0.955679 + 2.09265i
\(507\) 0 0
\(508\) 1.29353 4.92109i 1.29353 4.92109i
\(509\) 0 0 0.870746 0.491733i \(-0.163636\pi\)
−0.870746 + 0.491733i \(0.836364\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −0.752349 0.369905i −0.752349 0.369905i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) −1.26613 2.77244i −1.26613 2.77244i
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 −0.466667 0.884433i \(-0.654545\pi\)
0.466667 + 0.884433i \(0.345455\pi\)
\(522\) 0.540588 0.790585i 0.540588 0.790585i
\(523\) 0 0 −0.985354 0.170522i \(-0.945455\pi\)
0.985354 + 0.170522i \(0.0545455\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 2.61725 + 2.14011i 2.61725 + 2.14011i
\(527\) 0 0
\(528\) 0 0
\(529\) 0.413529 0.265759i 0.413529 0.265759i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) −4.04747 1.44413i −4.04747 1.44413i
\(537\) 0 0
\(538\) 0 0
\(539\) 0.941844 + 0.336049i 0.941844 + 0.336049i
\(540\) 0 0
\(541\) 0.687626 0.631097i 0.687626 0.631097i −0.254218 0.967147i \(-0.581818\pi\)
0.941844 + 0.336049i \(0.109091\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0.507345 + 0.657936i 0.507345 + 0.657936i 0.974012 0.226497i \(-0.0727273\pi\)
−0.466667 + 0.884433i \(0.654545\pi\)
\(548\) −2.61690 + 2.40177i −2.61690 + 2.40177i
\(549\) 0 0
\(550\) 1.15027 + 1.49170i 1.15027 + 1.49170i
\(551\) 0 0
\(552\) 0 0
\(553\) −1.85610 0.662255i −1.85610 0.662255i
\(554\) 0.148578 + 0.733264i 0.148578 + 0.733264i
\(555\) 0 0
\(556\) 0 0
\(557\) 0.377401 0.489423i 0.377401 0.489423i −0.564443 0.825472i \(-0.690909\pi\)
0.941844 + 0.336049i \(0.109091\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 3.14866 + 2.02352i 3.14866 + 2.02352i
\(563\) 0 0 −0.774142 0.633012i \(-0.781818\pi\)
0.774142 + 0.633012i \(0.218182\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −0.564443 + 0.825472i −0.564443 + 0.825472i
\(568\) −2.44277 4.62956i −2.44277 4.62956i
\(569\) −0.785171 + 1.48806i −0.785171 + 1.48806i 0.0855750 + 0.996332i \(0.472727\pi\)
−0.870746 + 0.491733i \(0.836364\pi\)
\(570\) 0 0
\(571\) 0.579037 + 1.26791i 0.579037 + 1.26791i 0.941844 + 0.336049i \(0.109091\pi\)
−0.362808 + 0.931864i \(0.618182\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0.851167 0.875830i 0.851167 0.875830i
\(576\) −1.75205 0.989430i −1.75205 0.989430i
\(577\) 0 0 −0.897398 0.441221i \(-0.854545\pi\)
0.897398 + 0.441221i \(0.145455\pi\)
\(578\) 0.582092 1.79149i 0.582092 1.79149i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 1.67154 1.07423i 1.67154 1.07423i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 0.0855750 0.996332i \(-0.472727\pi\)
−0.0855750 + 0.996332i \(0.527273\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −4.27688 + 2.10280i −4.27688 + 2.10280i
\(593\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −1.03136 3.17419i −1.03136 3.17419i
\(597\) 0 0
\(598\) 0 0
\(599\) 0.0883814 + 0.146564i 0.0883814 + 0.146564i 0.897398 0.441221i \(-0.145455\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(600\) 0 0
\(601\) 0 0 −0.696938 0.717132i \(-0.745455\pi\)
0.696938 + 0.717132i \(0.254545\pi\)
\(602\) 0.0870352 + 0.0632348i 0.0870352 + 0.0632348i
\(603\) 1.35726 + 0.573583i 1.35726 + 0.573583i
\(604\) −1.84907 −1.84907
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 −0.921124 0.389270i \(-0.872727\pi\)
0.921124 + 0.389270i \(0.127273\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0.409569 + 1.05197i 0.409569 + 1.05197i 0.974012 + 0.226497i \(0.0727273\pi\)
−0.564443 + 0.825472i \(0.690909\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0.901243 2.77374i 0.901243 2.77374i
\(617\) −0.146982 1.02228i −0.146982 1.02228i −0.921124 0.389270i \(-0.872727\pi\)
0.774142 0.633012i \(-0.218182\pi\)
\(618\) 0 0
\(619\) 0 0 −0.998369 0.0570888i \(-0.981818\pi\)
0.998369 + 0.0570888i \(0.0181818\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0.516397 0.856349i 0.516397 0.856349i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0.931812 0.0532830i 0.931812 0.0532830i 0.415415 0.909632i \(-0.363636\pi\)
0.516397 + 0.856349i \(0.327273\pi\)
\(632\) −1.77609 + 5.46623i −1.77609 + 5.46623i
\(633\) 0 0
\(634\) −1.01371 0.572467i −1.01371 0.572467i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0.347474 0.892480i 0.347474 0.892480i
\(639\) 0.745586 + 1.63260i 0.745586 + 1.63260i
\(640\) 0 0
\(641\) 0.526814 0.998424i 0.526814 0.998424i −0.466667 0.884433i \(-0.654545\pi\)
0.993482 0.113991i \(-0.0363636\pi\)
\(642\) 0 0
\(643\) 0 0 0.564443 0.825472i \(-0.309091\pi\)
−0.564443 + 0.825472i \(0.690909\pi\)
\(644\) −3.06663 0.530700i −3.06663 0.530700i
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.774142 0.633012i \(-0.781818\pi\)
0.774142 + 0.633012i \(0.218182\pi\)
\(648\) 2.45350 + 1.57677i 2.45350 + 1.57677i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −0.379766 4.42154i −0.379766 4.42154i
\(653\) −1.21930 + 1.58122i −1.21930 + 1.58122i −0.564443 + 0.825472i \(0.690909\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −1.10181 + 1.27155i −1.10181 + 1.27155i −0.142315 + 0.989821i \(0.545455\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(660\) 0 0
\(661\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(662\) −2.70345 + 2.48120i −2.70345 + 2.48120i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 2.80747 1.18645i 2.80747 1.18645i
\(667\) −0.604814 0.140644i −0.604814 0.140644i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0.0322365 + 1.12843i 0.0322365 + 1.12843i 0.841254 + 0.540641i \(0.181818\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(674\) 3.45607 + 1.23312i 3.45607 + 1.23312i
\(675\) 0 0
\(676\) 2.53167 0.290482i 2.53167 0.290482i
\(677\) 0 0 0.774142 0.633012i \(-0.218182\pi\)
−0.774142 + 0.633012i \(0.781818\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −0.785171 0.504599i −0.785171 0.504599i 0.0855750 0.996332i \(-0.472727\pi\)
−0.870746 + 0.491733i \(0.836364\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −1.52394 + 1.10720i −1.52394 + 1.10720i
\(687\) 0 0
\(688\) 0.0949516 0.138862i 0.0949516 0.138862i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 −0.564443 0.825472i \(-0.690909\pi\)
0.564443 + 0.825472i \(0.309091\pi\)
\(692\) 0 0
\(693\) −0.362808 + 0.931864i −0.362808 + 0.931864i
\(694\) −0.883368 + 1.93431i −0.883368 + 1.93431i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −2.54413 + 0.145478i −2.54413 + 0.145478i
\(701\) 0.631827 0.356809i 0.631827 0.356809i −0.142315 0.989821i \(-0.545455\pi\)
0.774142 + 0.633012i \(0.218182\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −1.93062 0.566882i −1.93062 0.566882i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0.831697 + 0.763325i 0.831697 + 0.763325i 0.974012 0.226497i \(-0.0727273\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(710\) 0 0
\(711\) 0.714988 1.83643i 0.714988 1.83643i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0.724134 5.03646i 0.724134 5.03646i
\(717\) 0 0
\(718\) −1.33131 3.41945i −1.33131 3.41945i
\(719\) 0 0 0.941844 0.336049i \(-0.109091\pi\)
−0.941844 + 0.336049i \(0.890909\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 1.31281 + 1.35085i 1.31281 + 1.35085i
\(723\) 0 0
\(724\) 0 0
\(725\) −0.508437 −0.508437
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) −0.809017 0.587785i −0.809017 0.587785i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 0.941844 0.336049i \(-0.109091\pi\)
−0.941844 + 0.336049i \(0.890909\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) −0.457439 + 3.18156i −0.457439 + 3.18156i
\(737\) 1.45190 + 0.251261i 1.45190 + 0.251261i
\(738\) 0 0
\(739\) 0.554623 0.272690i 0.554623 0.272690i −0.142315 0.989821i \(-0.545455\pi\)
0.696938 + 0.717132i \(0.254545\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −0.106880 + 3.74129i −0.106880 + 3.74129i
\(743\) −0.455331 0.417899i −0.455331 0.417899i 0.415415 0.909632i \(-0.363636\pi\)
−0.870746 + 0.491733i \(0.836364\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −1.86666 + 3.09551i −1.86666 + 3.09551i
\(747\) 0 0
\(748\) 0 0
\(749\) 1.67095 0.490635i 1.67095 0.490635i
\(750\) 0 0
\(751\) −1.21371 + 0.685414i −1.21371 + 0.685414i −0.959493 0.281733i \(-0.909091\pi\)
−0.254218 + 0.967147i \(0.581818\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −1.01767 + 0.176114i −1.01767 + 0.176114i −0.654861 0.755750i \(-0.727273\pi\)
−0.362808 + 0.931864i \(0.618182\pi\)
\(758\) −0.567803 + 1.24332i −0.567803 + 1.24332i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.564443 0.825472i \(-0.690909\pi\)
0.564443 + 0.825472i \(0.309091\pi\)
\(762\) 0 0
\(763\) −0.0798701 0.151371i −0.0798701 0.151371i
\(764\) 2.83459 4.14545i 2.83459 4.14545i
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −4.66397 0.535140i −4.66397 0.535140i
\(773\) 0 0 −0.0855750 0.996332i \(-0.527273\pi\)
0.0855750 + 0.996332i \(0.472727\pi\)
\(774\) −0.0656944 + 0.0851940i −0.0656944 + 0.0851940i
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) −1.28734 0.459324i −1.28734 0.459324i
\(779\) 0 0
\(780\) 0 0
\(781\) 1.09599 + 1.42130i 1.09599 + 1.42130i
\(782\) 0 0
\(783\) 0 0
\(784\) 1.79864 + 2.33252i 1.79864 + 2.33252i
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 0.921124 0.389270i \(-0.127273\pi\)
−0.921124 + 0.389270i \(0.872727\pi\)
\(788\) 3.45968 + 0.804514i 3.45968 + 0.804514i
\(789\) 0 0
\(790\) 0 0
\(791\) 1.20642 + 1.39228i 1.20642 + 1.39228i
\(792\) 2.74687 + 0.980083i 2.74687 + 0.980083i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 0.993482 0.113991i \(-0.0363636\pi\)
−0.993482 + 0.113991i \(0.963636\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0.225221 + 2.62220i 0.225221 + 2.62220i
\(801\) 0 0
\(802\) −1.47902 + 0.950507i −1.47902 + 0.950507i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1.12705 1.64825i 1.12705 1.64825i 0.516397 0.856349i \(-0.327273\pi\)
0.610648 0.791902i \(-0.290909\pi\)
\(810\) 0 0
\(811\) 0 0 0.466667 0.884433i \(-0.345455\pi\)
−0.466667 + 0.884433i \(0.654545\pi\)
\(812\) 0.731316 + 1.06951i 0.731316 + 1.06951i
\(813\) 0 0
\(814\) 2.46578 1.79149i 2.46578 1.79149i
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0.284165 0.0162492i 0.284165 0.0162492i 0.0855750 0.996332i \(-0.472727\pi\)
0.198590 + 0.980083i \(0.436364\pi\)
\(822\) 0 0
\(823\) −0.157116 + 0.597730i −0.157116 + 0.597730i 0.841254 + 0.540641i \(0.181818\pi\)
−0.998369 + 0.0570888i \(0.981818\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −0.676337 + 1.12158i −0.676337 + 1.12158i 0.309017 + 0.951057i \(0.400000\pi\)
−0.985354 + 0.170522i \(0.945455\pi\)
\(828\) 0.618055 3.05022i 0.618055 3.05022i
\(829\) 0 0 0.0855750 0.996332i \(-0.472727\pi\)
−0.0855750 + 0.996332i \(0.527273\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 −0.362808 0.931864i \(-0.618182\pi\)
0.362808 + 0.931864i \(0.381818\pi\)
\(840\) 0 0
\(841\) −0.382905 0.634976i −0.382905 0.634976i
\(842\) −0.932847 3.54892i −0.932847 3.54892i
\(843\) 0 0
\(844\) 1.92417 + 1.39799i 1.92417 + 1.39799i
\(845\) 0 0
\(846\) 0 0
\(847\) −0.142315 + 0.989821i −0.142315 + 0.989821i
\(848\) 5.85253 5.85253
\(849\) 0 0
\(850\) 0 0
\(851\) −1.37722 1.41712i −1.37722 1.41712i
\(852\) 0 0
\(853\) 0 0 −0.516397 0.856349i \(-0.672727\pi\)
0.516397 + 0.856349i \(0.327273\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −1.56951 4.83045i −1.56951 4.83045i
\(857\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(858\) 0 0
\(859\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −0.271440 + 0.697188i −0.271440 + 0.697188i
\(863\) 0.00812790 0.284514i 0.00812790 0.284514i −0.985354 0.170522i \(-0.945455\pi\)
0.993482 0.113991i \(-0.0363636\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0.280461 1.95065i 0.280461 1.95065i
\(870\) 0 0
\(871\) 0 0
\(872\) −0.434638 + 0.245452i −0.434638 + 0.245452i
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 1.25086 1.28711i 1.25086 1.28711i 0.309017 0.951057i \(-0.400000\pi\)
0.941844 0.336049i \(-0.109091\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(882\) −1.06324 1.55493i −1.06324 1.55493i
\(883\) −0.387721 + 0.734813i −0.387721 + 0.734813i −0.998369 0.0570888i \(-0.981818\pi\)
0.610648 + 0.791902i \(0.290909\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 2.09533 + 0.362610i 2.09533 + 0.362610i
\(887\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(888\) 0 0
\(889\) −1.54576 1.26396i −1.54576 1.26396i
\(890\) 0 0
\(891\) −0.921124 0.389270i −0.921124 0.389270i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0.896744 0.733264i 0.896744 0.733264i
\(897\) 0 0
\(898\) 0.0640242 + 0.315972i 0.0640242 + 0.315972i
\(899\) 0 0
\(900\) −0.0727689 2.54724i −0.0727689 2.54724i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 3.95842 3.63301i 3.95842 3.63301i
\(905\) 0 0
\(906\) 0 0
\(907\) 1.69694 0.717132i 1.69694 0.717132i 0.696938 0.717132i \(-0.254545\pi\)
1.00000 \(0\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0.964926 0.885601i 0.964926 0.885601i −0.0285561 0.999592i \(-0.509091\pi\)
0.993482 + 0.113991i \(0.0363636\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 1.99593 2.30343i 1.99593 2.30343i
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 1.19859 0.980083i 1.19859 0.980083i 0.198590 0.980083i \(-0.436364\pi\)
1.00000 \(0\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −1.36118 0.874775i −1.36118 0.874775i
\(926\) 1.50606 + 1.23150i 1.50606 + 1.23150i
\(927\) 0 0
\(928\) 1.08257 0.786534i 1.08257 0.786534i
\(929\) 0 0 −0.985354 0.170522i \(-0.945455\pi\)
0.985354 + 0.170522i \(0.0545455\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −0.988023 + 1.87251i −0.988023 + 1.87251i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 0.985354 0.170522i \(-0.0545455\pi\)
−0.985354 + 0.170522i \(0.945455\pi\)
\(938\) −1.93441 + 1.99046i −1.93441 + 1.99046i
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) −0.0446909 + 0.0978595i −0.0446909 + 0.0978595i
\(947\) −1.61435 0.474017i −1.61435 0.474017i −0.654861 0.755750i \(-0.727273\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0.338621 0.869741i 0.338621 0.869741i −0.654861 0.755750i \(-0.727273\pi\)
0.993482 0.113991i \(-0.0363636\pi\)
\(954\) −3.73672 0.213673i −3.73672 0.213673i
\(955\) 0 0
\(956\) 0.534371 + 3.71663i 0.534371 + 3.71663i
\(957\) 0 0
\(958\) 0 0
\(959\) 0.430731 + 1.32565i 0.430731 + 1.32565i
\(960\) 0 0
\(961\) 0.941844 0.336049i 0.941844 0.336049i
\(962\) 0 0
\(963\) 0.442719 + 1.68428i 0.442719 + 1.68428i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0.171150 0.171150 0.0855750 0.996332i \(-0.472727\pi\)
0.0855750 + 0.996332i \(0.472727\pi\)
\(968\) 2.89747 + 0.332454i 2.89747 + 0.332454i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −0.0555548 0.0921272i −0.0555548 0.0921272i
\(975\) 0 0
\(976\) 0 0
\(977\) 0.601972 + 1.85268i 0.601972 + 1.85268i 0.516397 + 0.856349i \(0.327273\pi\)
0.0855750 + 0.996332i \(0.472727\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0.153590 0.0755150i 0.153590 0.0755150i
\(982\) 3.60888 + 0.206363i 3.60888 + 0.206363i
\(983\) 0 0 0.362808 0.931864i \(-0.381818\pi\)
−0.362808 + 0.931864i \(0.618182\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0.0669254 + 0.0196511i 0.0669254 + 0.0196511i
\(990\) 0 0
\(991\) −1.61435 + 0.474017i −1.61435 + 0.474017i −0.959493 0.281733i \(-0.909091\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) −3.37532 + 0.193008i −3.37532 + 0.193008i
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 −0.870746 0.491733i \(-0.836364\pi\)
0.870746 + 0.491733i \(0.163636\pi\)
\(998\) 0.811363 0.834873i 0.811363 0.834873i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 847.1.bb.a.412.1 yes 40
7.6 odd 2 CM 847.1.bb.a.412.1 yes 40
121.42 even 55 inner 847.1.bb.a.405.1 40
847.405 odd 110 inner 847.1.bb.a.405.1 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
847.1.bb.a.405.1 40 121.42 even 55 inner
847.1.bb.a.405.1 40 847.405 odd 110 inner
847.1.bb.a.412.1 yes 40 1.1 even 1 trivial
847.1.bb.a.412.1 yes 40 7.6 odd 2 CM