Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [85,3,Mod(14,85)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(85, base_ring=CyclotomicField(16))
chi = DirichletCharacter(H, H._module([8, 9]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("85.14");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 85 = 5 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 85.p (of order \(16\), degree \(8\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.31608224706\) |
Analytic rank: | \(0\) |
Dimension: | \(128\) |
Relative dimension: | \(16\) over \(\Q(\zeta_{16})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{16}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
14.1 | −1.45551 | − | 3.51390i | −0.468685 | − | 0.0932273i | −7.40057 | + | 7.40057i | −0.936923 | − | 4.91143i | 0.354582 | + | 1.78261i | −6.09968 | + | 9.12882i | 22.7209 | + | 9.41129i | −8.10394 | − | 3.35676i | −15.8946 | + | 10.4409i |
14.2 | −1.33424 | − | 3.22115i | 4.93268 | + | 0.981171i | −5.76715 | + | 5.76715i | 4.22315 | + | 2.67675i | −3.42090 | − | 17.1980i | 3.95192 | − | 5.91447i | 13.3870 | + | 5.54508i | 15.0537 | + | 6.23546i | 2.98750 | − | 17.1748i |
14.3 | −1.20149 | − | 2.90065i | −3.75496 | − | 0.746907i | −4.14176 | + | 4.14176i | 0.501336 | + | 4.97480i | 2.34502 | + | 11.7892i | 0.580455 | − | 0.868712i | 5.38745 | + | 2.23156i | 5.22691 | + | 2.16506i | 13.8278 | − | 7.43136i |
14.4 | −0.957956 | − | 2.31271i | 1.86011 | + | 0.369999i | −1.60252 | + | 1.60252i | −4.85937 | − | 1.17749i | −0.926203 | − | 4.65634i | 5.79956 | − | 8.67965i | −4.00954 | − | 1.66080i | −4.99181 | − | 2.06767i | 1.93188 | + | 12.3663i |
14.5 | −0.746854 | − | 1.80306i | −1.51403 | − | 0.301160i | 0.135175 | − | 0.135175i | 4.28345 | − | 2.57915i | 0.587751 | + | 2.95483i | 1.25798 | − | 1.88271i | −7.55695 | − | 3.13019i | −6.11331 | − | 2.53222i | −7.84949 | − | 5.79710i |
14.6 | −0.439826 | − | 1.06183i | 5.22866 | + | 1.04004i | 1.89438 | − | 1.89438i | −1.35606 | − | 4.81260i | −1.19534 | − | 6.00940i | −5.63579 | + | 8.43455i | −7.09205 | − | 2.93762i | 17.9423 | + | 7.43192i | −4.51375 | + | 3.55661i |
14.7 | −0.328307 | − | 0.792602i | 2.04665 | + | 0.407105i | 2.30799 | − | 2.30799i | 3.60547 | + | 3.46419i | −0.349258 | − | 1.75584i | −2.59661 | + | 3.88610i | −5.75746 | − | 2.38482i | −4.29186 | − | 1.77774i | 1.56202 | − | 3.99502i |
14.8 | −0.308672 | − | 0.745199i | −3.19795 | − | 0.636111i | 2.36838 | − | 2.36838i | −4.85925 | + | 1.17800i | 0.513086 | + | 2.57946i | −3.07748 | + | 4.60577i | −5.47677 | − | 2.26855i | 1.50731 | + | 0.624350i | 2.37776 | + | 3.25749i |
14.9 | 0.308672 | + | 0.745199i | 3.19795 | + | 0.636111i | 2.36838 | − | 2.36838i | −2.94789 | + | 4.03856i | 0.513086 | + | 2.57946i | 3.07748 | − | 4.60577i | 5.47677 | + | 2.26855i | 1.50731 | + | 0.624350i | −3.91946 | − | 0.950175i |
14.10 | 0.328307 | + | 0.792602i | −2.04665 | − | 0.407105i | 2.30799 | − | 2.30799i | −1.82074 | − | 4.65671i | −0.349258 | − | 1.75584i | 2.59661 | − | 3.88610i | 5.75746 | + | 2.38482i | −4.29186 | − | 1.77774i | 3.09315 | − | 2.97195i |
14.11 | 0.439826 | + | 1.06183i | −5.22866 | − | 1.04004i | 1.89438 | − | 1.89438i | 3.92732 | + | 3.09454i | −1.19534 | − | 6.00940i | 5.63579 | − | 8.43455i | 7.09205 | + | 2.93762i | 17.9423 | + | 7.43192i | −1.55855 | + | 5.53121i |
14.12 | 0.746854 | + | 1.80306i | 1.51403 | + | 0.301160i | 0.135175 | − | 0.135175i | 4.02203 | − | 2.97040i | 0.587751 | + | 2.95483i | −1.25798 | + | 1.88271i | 7.55695 | + | 3.13019i | −6.11331 | − | 2.53222i | 8.35969 | + | 5.03353i |
14.13 | 0.957956 | + | 2.31271i | −1.86011 | − | 0.369999i | −1.60252 | + | 1.60252i | −0.771745 | + | 4.94008i | −0.926203 | − | 4.65634i | −5.79956 | + | 8.67965i | 4.00954 | + | 1.66080i | −4.99181 | − | 2.06767i | −12.1643 | + | 2.94756i |
14.14 | 1.20149 | + | 2.90065i | 3.75496 | + | 0.746907i | −4.14176 | + | 4.14176i | −4.40427 | − | 2.36695i | 2.34502 | + | 11.7892i | −0.580455 | + | 0.868712i | −5.38745 | − | 2.23156i | 5.22691 | + | 2.16506i | 1.57401 | − | 15.6191i |
14.15 | 1.33424 | + | 3.22115i | −4.93268 | − | 0.981171i | −5.76715 | + | 5.76715i | −0.856866 | − | 4.92603i | −3.42090 | − | 17.1980i | −3.95192 | + | 5.91447i | −13.3870 | − | 5.54508i | 15.0537 | + | 6.23546i | 14.7242 | − | 9.33261i |
14.16 | 1.45551 | + | 3.51390i | 0.468685 | + | 0.0932273i | −7.40057 | + | 7.40057i | 4.17903 | + | 2.74513i | 0.354582 | + | 1.78261i | 6.09968 | − | 9.12882i | −22.7209 | − | 9.41129i | −8.10394 | − | 3.35676i | −3.56351 | + | 18.6802i |
24.1 | −3.41305 | − | 1.41373i | −0.300774 | − | 0.200970i | 6.82185 | + | 6.82185i | −0.469678 | − | 4.97789i | 0.742437 | + | 1.11114i | 7.65847 | + | 1.52336i | −7.98412 | − | 19.2754i | −3.39408 | − | 8.19402i | −5.43437 | + | 17.6538i |
24.2 | −2.93643 | − | 1.21631i | 2.61324 | + | 1.74611i | 4.31479 | + | 4.31479i | −3.16949 | + | 3.86708i | −5.54979 | − | 8.30585i | −8.01084 | − | 1.59346i | −2.55673 | − | 6.17250i | 0.335974 | + | 0.811112i | 14.0106 | − | 7.50035i |
24.3 | −2.69497 | − | 1.11629i | −0.782295 | − | 0.522713i | 3.18832 | + | 3.18832i | 3.64794 | + | 3.41943i | 1.52476 | + | 2.28196i | 0.889448 | + | 0.176922i | −0.568156 | − | 1.37165i | −3.10539 | − | 7.49709i | −6.01400 | − | 13.2874i |
24.4 | −2.05790 | − | 0.852408i | 4.45190 | + | 2.97466i | 0.679908 | + | 0.679908i | 2.15905 | − | 4.50982i | −6.62591 | − | 9.91638i | 0.440630 | + | 0.0876467i | 2.59001 | + | 6.25284i | 7.52662 | + | 18.1709i | −8.28731 | + | 7.44035i |
See next 80 embeddings (of 128 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
17.e | odd | 16 | 1 | inner |
85.p | odd | 16 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 85.3.p.a | ✓ | 128 |
5.b | even | 2 | 1 | inner | 85.3.p.a | ✓ | 128 |
5.c | odd | 4 | 2 | 425.3.u.f | 128 | ||
17.e | odd | 16 | 1 | inner | 85.3.p.a | ✓ | 128 |
85.o | even | 16 | 1 | 425.3.u.f | 128 | ||
85.p | odd | 16 | 1 | inner | 85.3.p.a | ✓ | 128 |
85.r | even | 16 | 1 | 425.3.u.f | 128 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
85.3.p.a | ✓ | 128 | 1.a | even | 1 | 1 | trivial |
85.3.p.a | ✓ | 128 | 5.b | even | 2 | 1 | inner |
85.3.p.a | ✓ | 128 | 17.e | odd | 16 | 1 | inner |
85.3.p.a | ✓ | 128 | 85.p | odd | 16 | 1 | inner |
425.3.u.f | 128 | 5.c | odd | 4 | 2 | ||
425.3.u.f | 128 | 85.o | even | 16 | 1 | ||
425.3.u.f | 128 | 85.r | even | 16 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(85, [\chi])\).