Properties

Label 85.4.a.c.1.1
Level $85$
Weight $4$
Character 85.1
Self dual yes
Analytic conductor $5.015$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [85,4,Mod(1,85)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(85, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("85.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 85 = 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 85.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.01516235049\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 85.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000 q^{2} +10.0000 q^{3} +1.00000 q^{4} +5.00000 q^{5} +30.0000 q^{6} -22.0000 q^{7} -21.0000 q^{8} +73.0000 q^{9} +15.0000 q^{10} -30.0000 q^{11} +10.0000 q^{12} -46.0000 q^{13} -66.0000 q^{14} +50.0000 q^{15} -71.0000 q^{16} +17.0000 q^{17} +219.000 q^{18} +104.000 q^{19} +5.00000 q^{20} -220.000 q^{21} -90.0000 q^{22} +42.0000 q^{23} -210.000 q^{24} +25.0000 q^{25} -138.000 q^{26} +460.000 q^{27} -22.0000 q^{28} -66.0000 q^{29} +150.000 q^{30} +194.000 q^{31} -45.0000 q^{32} -300.000 q^{33} +51.0000 q^{34} -110.000 q^{35} +73.0000 q^{36} +206.000 q^{37} +312.000 q^{38} -460.000 q^{39} -105.000 q^{40} -126.000 q^{41} -660.000 q^{42} -388.000 q^{43} -30.0000 q^{44} +365.000 q^{45} +126.000 q^{46} -540.000 q^{47} -710.000 q^{48} +141.000 q^{49} +75.0000 q^{50} +170.000 q^{51} -46.0000 q^{52} +78.0000 q^{53} +1380.00 q^{54} -150.000 q^{55} +462.000 q^{56} +1040.00 q^{57} -198.000 q^{58} +432.000 q^{59} +50.0000 q^{60} -610.000 q^{61} +582.000 q^{62} -1606.00 q^{63} +433.000 q^{64} -230.000 q^{65} -900.000 q^{66} +848.000 q^{67} +17.0000 q^{68} +420.000 q^{69} -330.000 q^{70} -174.000 q^{71} -1533.00 q^{72} +362.000 q^{73} +618.000 q^{74} +250.000 q^{75} +104.000 q^{76} +660.000 q^{77} -1380.00 q^{78} +398.000 q^{79} -355.000 q^{80} +2629.00 q^{81} -378.000 q^{82} +828.000 q^{83} -220.000 q^{84} +85.0000 q^{85} -1164.00 q^{86} -660.000 q^{87} +630.000 q^{88} +630.000 q^{89} +1095.00 q^{90} +1012.00 q^{91} +42.0000 q^{92} +1940.00 q^{93} -1620.00 q^{94} +520.000 q^{95} -450.000 q^{96} -1486.00 q^{97} +423.000 q^{98} -2190.00 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.00000 1.06066 0.530330 0.847791i \(-0.322068\pi\)
0.530330 + 0.847791i \(0.322068\pi\)
\(3\) 10.0000 1.92450 0.962250 0.272166i \(-0.0877398\pi\)
0.962250 + 0.272166i \(0.0877398\pi\)
\(4\) 1.00000 0.125000
\(5\) 5.00000 0.447214
\(6\) 30.0000 2.04124
\(7\) −22.0000 −1.18789 −0.593944 0.804506i \(-0.702430\pi\)
−0.593944 + 0.804506i \(0.702430\pi\)
\(8\) −21.0000 −0.928078
\(9\) 73.0000 2.70370
\(10\) 15.0000 0.474342
\(11\) −30.0000 −0.822304 −0.411152 0.911567i \(-0.634873\pi\)
−0.411152 + 0.911567i \(0.634873\pi\)
\(12\) 10.0000 0.240563
\(13\) −46.0000 −0.981393 −0.490696 0.871331i \(-0.663258\pi\)
−0.490696 + 0.871331i \(0.663258\pi\)
\(14\) −66.0000 −1.25995
\(15\) 50.0000 0.860663
\(16\) −71.0000 −1.10938
\(17\) 17.0000 0.242536
\(18\) 219.000 2.86771
\(19\) 104.000 1.25575 0.627875 0.778314i \(-0.283925\pi\)
0.627875 + 0.778314i \(0.283925\pi\)
\(20\) 5.00000 0.0559017
\(21\) −220.000 −2.28609
\(22\) −90.0000 −0.872185
\(23\) 42.0000 0.380765 0.190383 0.981710i \(-0.439027\pi\)
0.190383 + 0.981710i \(0.439027\pi\)
\(24\) −210.000 −1.78609
\(25\) 25.0000 0.200000
\(26\) −138.000 −1.04092
\(27\) 460.000 3.27878
\(28\) −22.0000 −0.148486
\(29\) −66.0000 −0.422617 −0.211308 0.977419i \(-0.567772\pi\)
−0.211308 + 0.977419i \(0.567772\pi\)
\(30\) 150.000 0.912871
\(31\) 194.000 1.12398 0.561991 0.827143i \(-0.310036\pi\)
0.561991 + 0.827143i \(0.310036\pi\)
\(32\) −45.0000 −0.248592
\(33\) −300.000 −1.58252
\(34\) 51.0000 0.257248
\(35\) −110.000 −0.531240
\(36\) 73.0000 0.337963
\(37\) 206.000 0.915302 0.457651 0.889132i \(-0.348691\pi\)
0.457651 + 0.889132i \(0.348691\pi\)
\(38\) 312.000 1.33192
\(39\) −460.000 −1.88869
\(40\) −105.000 −0.415049
\(41\) −126.000 −0.479949 −0.239974 0.970779i \(-0.577139\pi\)
−0.239974 + 0.970779i \(0.577139\pi\)
\(42\) −660.000 −2.42477
\(43\) −388.000 −1.37603 −0.688017 0.725695i \(-0.741518\pi\)
−0.688017 + 0.725695i \(0.741518\pi\)
\(44\) −30.0000 −0.102788
\(45\) 365.000 1.20913
\(46\) 126.000 0.403863
\(47\) −540.000 −1.67590 −0.837948 0.545750i \(-0.816245\pi\)
−0.837948 + 0.545750i \(0.816245\pi\)
\(48\) −710.000 −2.13499
\(49\) 141.000 0.411079
\(50\) 75.0000 0.212132
\(51\) 170.000 0.466760
\(52\) −46.0000 −0.122674
\(53\) 78.0000 0.202153 0.101077 0.994879i \(-0.467771\pi\)
0.101077 + 0.994879i \(0.467771\pi\)
\(54\) 1380.00 3.47767
\(55\) −150.000 −0.367745
\(56\) 462.000 1.10245
\(57\) 1040.00 2.41669
\(58\) −198.000 −0.448253
\(59\) 432.000 0.953248 0.476624 0.879107i \(-0.341860\pi\)
0.476624 + 0.879107i \(0.341860\pi\)
\(60\) 50.0000 0.107583
\(61\) −610.000 −1.28037 −0.640184 0.768221i \(-0.721142\pi\)
−0.640184 + 0.768221i \(0.721142\pi\)
\(62\) 582.000 1.19216
\(63\) −1606.00 −3.21170
\(64\) 433.000 0.845703
\(65\) −230.000 −0.438892
\(66\) −900.000 −1.67852
\(67\) 848.000 1.54626 0.773132 0.634245i \(-0.218689\pi\)
0.773132 + 0.634245i \(0.218689\pi\)
\(68\) 17.0000 0.0303170
\(69\) 420.000 0.732783
\(70\) −330.000 −0.563465
\(71\) −174.000 −0.290845 −0.145423 0.989370i \(-0.546454\pi\)
−0.145423 + 0.989370i \(0.546454\pi\)
\(72\) −1533.00 −2.50925
\(73\) 362.000 0.580396 0.290198 0.956967i \(-0.406279\pi\)
0.290198 + 0.956967i \(0.406279\pi\)
\(74\) 618.000 0.970825
\(75\) 250.000 0.384900
\(76\) 104.000 0.156969
\(77\) 660.000 0.976805
\(78\) −1380.00 −2.00326
\(79\) 398.000 0.566816 0.283408 0.958999i \(-0.408535\pi\)
0.283408 + 0.958999i \(0.408535\pi\)
\(80\) −355.000 −0.496128
\(81\) 2629.00 3.60631
\(82\) −378.000 −0.509062
\(83\) 828.000 1.09500 0.547499 0.836806i \(-0.315580\pi\)
0.547499 + 0.836806i \(0.315580\pi\)
\(84\) −220.000 −0.285762
\(85\) 85.0000 0.108465
\(86\) −1164.00 −1.45950
\(87\) −660.000 −0.813327
\(88\) 630.000 0.763162
\(89\) 630.000 0.750336 0.375168 0.926957i \(-0.377585\pi\)
0.375168 + 0.926957i \(0.377585\pi\)
\(90\) 1095.00 1.28248
\(91\) 1012.00 1.16578
\(92\) 42.0000 0.0475957
\(93\) 1940.00 2.16310
\(94\) −1620.00 −1.77756
\(95\) 520.000 0.561588
\(96\) −450.000 −0.478416
\(97\) −1486.00 −1.55547 −0.777734 0.628593i \(-0.783631\pi\)
−0.777734 + 0.628593i \(0.783631\pi\)
\(98\) 423.000 0.436015
\(99\) −2190.00 −2.22327
\(100\) 25.0000 0.0250000
\(101\) −1230.00 −1.21178 −0.605889 0.795549i \(-0.707182\pi\)
−0.605889 + 0.795549i \(0.707182\pi\)
\(102\) 510.000 0.495074
\(103\) −1276.00 −1.22066 −0.610330 0.792147i \(-0.708963\pi\)
−0.610330 + 0.792147i \(0.708963\pi\)
\(104\) 966.000 0.910809
\(105\) −1100.00 −1.02237
\(106\) 234.000 0.214416
\(107\) −414.000 −0.374046 −0.187023 0.982356i \(-0.559884\pi\)
−0.187023 + 0.982356i \(0.559884\pi\)
\(108\) 460.000 0.409847
\(109\) 614.000 0.539546 0.269773 0.962924i \(-0.413051\pi\)
0.269773 + 0.962924i \(0.413051\pi\)
\(110\) −450.000 −0.390053
\(111\) 2060.00 1.76150
\(112\) 1562.00 1.31781
\(113\) 258.000 0.214784 0.107392 0.994217i \(-0.465750\pi\)
0.107392 + 0.994217i \(0.465750\pi\)
\(114\) 3120.00 2.56329
\(115\) 210.000 0.170283
\(116\) −66.0000 −0.0528271
\(117\) −3358.00 −2.65339
\(118\) 1296.00 1.01107
\(119\) −374.000 −0.288105
\(120\) −1050.00 −0.798762
\(121\) −431.000 −0.323817
\(122\) −1830.00 −1.35804
\(123\) −1260.00 −0.923662
\(124\) 194.000 0.140498
\(125\) 125.000 0.0894427
\(126\) −4818.00 −3.40652
\(127\) 296.000 0.206817 0.103408 0.994639i \(-0.467025\pi\)
0.103408 + 0.994639i \(0.467025\pi\)
\(128\) 1659.00 1.14560
\(129\) −3880.00 −2.64818
\(130\) −690.000 −0.465515
\(131\) 246.000 0.164070 0.0820348 0.996629i \(-0.473858\pi\)
0.0820348 + 0.996629i \(0.473858\pi\)
\(132\) −300.000 −0.197816
\(133\) −2288.00 −1.49169
\(134\) 2544.00 1.64006
\(135\) 2300.00 1.46631
\(136\) −357.000 −0.225092
\(137\) 1998.00 1.24599 0.622995 0.782226i \(-0.285916\pi\)
0.622995 + 0.782226i \(0.285916\pi\)
\(138\) 1260.00 0.777234
\(139\) −562.000 −0.342937 −0.171468 0.985190i \(-0.554851\pi\)
−0.171468 + 0.985190i \(0.554851\pi\)
\(140\) −110.000 −0.0664050
\(141\) −5400.00 −3.22526
\(142\) −522.000 −0.308488
\(143\) 1380.00 0.807003
\(144\) −5183.00 −2.99942
\(145\) −330.000 −0.189000
\(146\) 1086.00 0.615603
\(147\) 1410.00 0.791121
\(148\) 206.000 0.114413
\(149\) 2670.00 1.46802 0.734010 0.679139i \(-0.237647\pi\)
0.734010 + 0.679139i \(0.237647\pi\)
\(150\) 750.000 0.408248
\(151\) 1244.00 0.670432 0.335216 0.942141i \(-0.391191\pi\)
0.335216 + 0.942141i \(0.391191\pi\)
\(152\) −2184.00 −1.16543
\(153\) 1241.00 0.655744
\(154\) 1980.00 1.03606
\(155\) 970.000 0.502660
\(156\) −460.000 −0.236086
\(157\) −2794.00 −1.42029 −0.710145 0.704056i \(-0.751371\pi\)
−0.710145 + 0.704056i \(0.751371\pi\)
\(158\) 1194.00 0.601200
\(159\) 780.000 0.389044
\(160\) −225.000 −0.111174
\(161\) −924.000 −0.452307
\(162\) 7887.00 3.82507
\(163\) −3418.00 −1.64244 −0.821222 0.570609i \(-0.806707\pi\)
−0.821222 + 0.570609i \(0.806707\pi\)
\(164\) −126.000 −0.0599936
\(165\) −1500.00 −0.707726
\(166\) 2484.00 1.16142
\(167\) 102.000 0.0472635 0.0236317 0.999721i \(-0.492477\pi\)
0.0236317 + 0.999721i \(0.492477\pi\)
\(168\) 4620.00 2.12167
\(169\) −81.0000 −0.0368685
\(170\) 255.000 0.115045
\(171\) 7592.00 3.39517
\(172\) −388.000 −0.172004
\(173\) 1806.00 0.793686 0.396843 0.917887i \(-0.370106\pi\)
0.396843 + 0.917887i \(0.370106\pi\)
\(174\) −1980.00 −0.862663
\(175\) −550.000 −0.237578
\(176\) 2130.00 0.912243
\(177\) 4320.00 1.83453
\(178\) 1890.00 0.795851
\(179\) 528.000 0.220472 0.110236 0.993905i \(-0.464839\pi\)
0.110236 + 0.993905i \(0.464839\pi\)
\(180\) 365.000 0.151142
\(181\) −4042.00 −1.65989 −0.829943 0.557848i \(-0.811627\pi\)
−0.829943 + 0.557848i \(0.811627\pi\)
\(182\) 3036.00 1.23650
\(183\) −6100.00 −2.46407
\(184\) −882.000 −0.353380
\(185\) 1030.00 0.409336
\(186\) 5820.00 2.29432
\(187\) −510.000 −0.199438
\(188\) −540.000 −0.209487
\(189\) −10120.0 −3.89482
\(190\) 1560.00 0.595654
\(191\) 3144.00 1.19106 0.595528 0.803334i \(-0.296943\pi\)
0.595528 + 0.803334i \(0.296943\pi\)
\(192\) 4330.00 1.62756
\(193\) −2014.00 −0.751145 −0.375572 0.926793i \(-0.622554\pi\)
−0.375572 + 0.926793i \(0.622554\pi\)
\(194\) −4458.00 −1.64982
\(195\) −2300.00 −0.844648
\(196\) 141.000 0.0513848
\(197\) −3666.00 −1.32585 −0.662923 0.748688i \(-0.730684\pi\)
−0.662923 + 0.748688i \(0.730684\pi\)
\(198\) −6570.00 −2.35813
\(199\) 2090.00 0.744503 0.372252 0.928132i \(-0.378586\pi\)
0.372252 + 0.928132i \(0.378586\pi\)
\(200\) −525.000 −0.185616
\(201\) 8480.00 2.97579
\(202\) −3690.00 −1.28528
\(203\) 1452.00 0.502022
\(204\) 170.000 0.0583450
\(205\) −630.000 −0.214640
\(206\) −3828.00 −1.29471
\(207\) 3066.00 1.02948
\(208\) 3266.00 1.08873
\(209\) −3120.00 −1.03261
\(210\) −3300.00 −1.08439
\(211\) −2542.00 −0.829377 −0.414688 0.909963i \(-0.636109\pi\)
−0.414688 + 0.909963i \(0.636109\pi\)
\(212\) 78.0000 0.0252692
\(213\) −1740.00 −0.559732
\(214\) −1242.00 −0.396735
\(215\) −1940.00 −0.615381
\(216\) −9660.00 −3.04296
\(217\) −4268.00 −1.33516
\(218\) 1842.00 0.572275
\(219\) 3620.00 1.11697
\(220\) −150.000 −0.0459682
\(221\) −782.000 −0.238023
\(222\) 6180.00 1.86835
\(223\) 992.000 0.297889 0.148944 0.988846i \(-0.452412\pi\)
0.148944 + 0.988846i \(0.452412\pi\)
\(224\) 990.000 0.295300
\(225\) 1825.00 0.540741
\(226\) 774.000 0.227813
\(227\) −1098.00 −0.321043 −0.160522 0.987032i \(-0.551318\pi\)
−0.160522 + 0.987032i \(0.551318\pi\)
\(228\) 1040.00 0.302086
\(229\) 2954.00 0.852427 0.426214 0.904623i \(-0.359847\pi\)
0.426214 + 0.904623i \(0.359847\pi\)
\(230\) 630.000 0.180613
\(231\) 6600.00 1.87986
\(232\) 1386.00 0.392221
\(233\) −678.000 −0.190632 −0.0953160 0.995447i \(-0.530386\pi\)
−0.0953160 + 0.995447i \(0.530386\pi\)
\(234\) −10074.0 −2.81435
\(235\) −2700.00 −0.749483
\(236\) 432.000 0.119156
\(237\) 3980.00 1.09084
\(238\) −1122.00 −0.305582
\(239\) −2664.00 −0.721003 −0.360502 0.932759i \(-0.617395\pi\)
−0.360502 + 0.932759i \(0.617395\pi\)
\(240\) −3550.00 −0.954798
\(241\) 3458.00 0.924271 0.462136 0.886809i \(-0.347083\pi\)
0.462136 + 0.886809i \(0.347083\pi\)
\(242\) −1293.00 −0.343459
\(243\) 13870.0 3.66157
\(244\) −610.000 −0.160046
\(245\) 705.000 0.183840
\(246\) −3780.00 −0.979691
\(247\) −4784.00 −1.23238
\(248\) −4074.00 −1.04314
\(249\) 8280.00 2.10732
\(250\) 375.000 0.0948683
\(251\) 1092.00 0.274607 0.137304 0.990529i \(-0.456156\pi\)
0.137304 + 0.990529i \(0.456156\pi\)
\(252\) −1606.00 −0.401462
\(253\) −1260.00 −0.313105
\(254\) 888.000 0.219363
\(255\) 850.000 0.208741
\(256\) 1513.00 0.369385
\(257\) −3714.00 −0.901451 −0.450726 0.892663i \(-0.648835\pi\)
−0.450726 + 0.892663i \(0.648835\pi\)
\(258\) −11640.0 −2.80882
\(259\) −4532.00 −1.08728
\(260\) −230.000 −0.0548615
\(261\) −4818.00 −1.14263
\(262\) 738.000 0.174022
\(263\) 3672.00 0.860932 0.430466 0.902607i \(-0.358349\pi\)
0.430466 + 0.902607i \(0.358349\pi\)
\(264\) 6300.00 1.46871
\(265\) 390.000 0.0904057
\(266\) −6864.00 −1.58218
\(267\) 6300.00 1.44402
\(268\) 848.000 0.193283
\(269\) −642.000 −0.145515 −0.0727573 0.997350i \(-0.523180\pi\)
−0.0727573 + 0.997350i \(0.523180\pi\)
\(270\) 6900.00 1.55526
\(271\) 1424.00 0.319195 0.159597 0.987182i \(-0.448980\pi\)
0.159597 + 0.987182i \(0.448980\pi\)
\(272\) −1207.00 −0.269063
\(273\) 10120.0 2.24355
\(274\) 5994.00 1.32157
\(275\) −750.000 −0.164461
\(276\) 420.000 0.0915979
\(277\) −4762.00 −1.03293 −0.516464 0.856309i \(-0.672752\pi\)
−0.516464 + 0.856309i \(0.672752\pi\)
\(278\) −1686.00 −0.363739
\(279\) 14162.0 3.03891
\(280\) 2310.00 0.493032
\(281\) −4806.00 −1.02029 −0.510146 0.860088i \(-0.670409\pi\)
−0.510146 + 0.860088i \(0.670409\pi\)
\(282\) −16200.0 −3.42091
\(283\) −298.000 −0.0625946 −0.0312973 0.999510i \(-0.509964\pi\)
−0.0312973 + 0.999510i \(0.509964\pi\)
\(284\) −174.000 −0.0363556
\(285\) 5200.00 1.08078
\(286\) 4140.00 0.855956
\(287\) 2772.00 0.570125
\(288\) −3285.00 −0.672120
\(289\) 289.000 0.0588235
\(290\) −990.000 −0.200465
\(291\) −14860.0 −2.99350
\(292\) 362.000 0.0725495
\(293\) 318.000 0.0634053 0.0317027 0.999497i \(-0.489907\pi\)
0.0317027 + 0.999497i \(0.489907\pi\)
\(294\) 4230.00 0.839111
\(295\) 2160.00 0.426305
\(296\) −4326.00 −0.849472
\(297\) −13800.0 −2.69615
\(298\) 8010.00 1.55707
\(299\) −1932.00 −0.373680
\(300\) 250.000 0.0481125
\(301\) 8536.00 1.63457
\(302\) 3732.00 0.711101
\(303\) −12300.0 −2.33207
\(304\) −7384.00 −1.39310
\(305\) −3050.00 −0.572598
\(306\) 3723.00 0.695522
\(307\) 1496.00 0.278115 0.139057 0.990284i \(-0.455593\pi\)
0.139057 + 0.990284i \(0.455593\pi\)
\(308\) 660.000 0.122101
\(309\) −12760.0 −2.34916
\(310\) 2910.00 0.533151
\(311\) 6258.00 1.14102 0.570512 0.821289i \(-0.306745\pi\)
0.570512 + 0.821289i \(0.306745\pi\)
\(312\) 9660.00 1.75285
\(313\) −2926.00 −0.528394 −0.264197 0.964469i \(-0.585107\pi\)
−0.264197 + 0.964469i \(0.585107\pi\)
\(314\) −8382.00 −1.50644
\(315\) −8030.00 −1.43632
\(316\) 398.000 0.0708521
\(317\) −7290.00 −1.29163 −0.645816 0.763493i \(-0.723483\pi\)
−0.645816 + 0.763493i \(0.723483\pi\)
\(318\) 2340.00 0.412644
\(319\) 1980.00 0.347519
\(320\) 2165.00 0.378210
\(321\) −4140.00 −0.719851
\(322\) −2772.00 −0.479744
\(323\) 1768.00 0.304564
\(324\) 2629.00 0.450789
\(325\) −1150.00 −0.196279
\(326\) −10254.0 −1.74208
\(327\) 6140.00 1.03836
\(328\) 2646.00 0.445430
\(329\) 11880.0 1.99078
\(330\) −4500.00 −0.750657
\(331\) 10184.0 1.69113 0.845564 0.533874i \(-0.179264\pi\)
0.845564 + 0.533874i \(0.179264\pi\)
\(332\) 828.000 0.136875
\(333\) 15038.0 2.47471
\(334\) 306.000 0.0501305
\(335\) 4240.00 0.691510
\(336\) 15620.0 2.53613
\(337\) −7198.00 −1.16350 −0.581751 0.813367i \(-0.697632\pi\)
−0.581751 + 0.813367i \(0.697632\pi\)
\(338\) −243.000 −0.0391049
\(339\) 2580.00 0.413352
\(340\) 85.0000 0.0135582
\(341\) −5820.00 −0.924254
\(342\) 22776.0 3.60113
\(343\) 4444.00 0.699573
\(344\) 8148.00 1.27707
\(345\) 2100.00 0.327711
\(346\) 5418.00 0.841831
\(347\) 6174.00 0.955152 0.477576 0.878590i \(-0.341516\pi\)
0.477576 + 0.878590i \(0.341516\pi\)
\(348\) −660.000 −0.101666
\(349\) 5798.00 0.889283 0.444642 0.895709i \(-0.353331\pi\)
0.444642 + 0.895709i \(0.353331\pi\)
\(350\) −1650.00 −0.251989
\(351\) −21160.0 −3.21777
\(352\) 1350.00 0.204418
\(353\) 10050.0 1.51532 0.757659 0.652650i \(-0.226343\pi\)
0.757659 + 0.652650i \(0.226343\pi\)
\(354\) 12960.0 1.94581
\(355\) −870.000 −0.130070
\(356\) 630.000 0.0937919
\(357\) −3740.00 −0.554459
\(358\) 1584.00 0.233846
\(359\) 6300.00 0.926187 0.463094 0.886309i \(-0.346739\pi\)
0.463094 + 0.886309i \(0.346739\pi\)
\(360\) −7665.00 −1.12217
\(361\) 3957.00 0.576906
\(362\) −12126.0 −1.76058
\(363\) −4310.00 −0.623185
\(364\) 1012.00 0.145723
\(365\) 1810.00 0.259561
\(366\) −18300.0 −2.61354
\(367\) −8494.00 −1.20813 −0.604064 0.796936i \(-0.706453\pi\)
−0.604064 + 0.796936i \(0.706453\pi\)
\(368\) −2982.00 −0.422412
\(369\) −9198.00 −1.29764
\(370\) 3090.00 0.434166
\(371\) −1716.00 −0.240136
\(372\) 1940.00 0.270388
\(373\) −1942.00 −0.269579 −0.134789 0.990874i \(-0.543036\pi\)
−0.134789 + 0.990874i \(0.543036\pi\)
\(374\) −1530.00 −0.211536
\(375\) 1250.00 0.172133
\(376\) 11340.0 1.55536
\(377\) 3036.00 0.414753
\(378\) −30360.0 −4.13108
\(379\) 5318.00 0.720758 0.360379 0.932806i \(-0.382647\pi\)
0.360379 + 0.932806i \(0.382647\pi\)
\(380\) 520.000 0.0701985
\(381\) 2960.00 0.398019
\(382\) 9432.00 1.26331
\(383\) −5472.00 −0.730042 −0.365021 0.930999i \(-0.618938\pi\)
−0.365021 + 0.930999i \(0.618938\pi\)
\(384\) 16590.0 2.20470
\(385\) 3300.00 0.436840
\(386\) −6042.00 −0.796709
\(387\) −28324.0 −3.72039
\(388\) −1486.00 −0.194434
\(389\) −9366.00 −1.22076 −0.610379 0.792109i \(-0.708983\pi\)
−0.610379 + 0.792109i \(0.708983\pi\)
\(390\) −6900.00 −0.895885
\(391\) 714.000 0.0923492
\(392\) −2961.00 −0.381513
\(393\) 2460.00 0.315752
\(394\) −10998.0 −1.40627
\(395\) 1990.00 0.253488
\(396\) −2190.00 −0.277908
\(397\) 13502.0 1.70692 0.853458 0.521161i \(-0.174501\pi\)
0.853458 + 0.521161i \(0.174501\pi\)
\(398\) 6270.00 0.789665
\(399\) −22880.0 −2.87076
\(400\) −1775.00 −0.221875
\(401\) 5466.00 0.680696 0.340348 0.940300i \(-0.389455\pi\)
0.340348 + 0.940300i \(0.389455\pi\)
\(402\) 25440.0 3.15630
\(403\) −8924.00 −1.10307
\(404\) −1230.00 −0.151472
\(405\) 13145.0 1.61279
\(406\) 4356.00 0.532475
\(407\) −6180.00 −0.752657
\(408\) −3570.00 −0.433190
\(409\) 6074.00 0.734328 0.367164 0.930156i \(-0.380329\pi\)
0.367164 + 0.930156i \(0.380329\pi\)
\(410\) −1890.00 −0.227660
\(411\) 19980.0 2.39791
\(412\) −1276.00 −0.152583
\(413\) −9504.00 −1.13235
\(414\) 9198.00 1.09193
\(415\) 4140.00 0.489698
\(416\) 2070.00 0.243967
\(417\) −5620.00 −0.659982
\(418\) −9360.00 −1.09525
\(419\) 8922.00 1.04026 0.520129 0.854088i \(-0.325884\pi\)
0.520129 + 0.854088i \(0.325884\pi\)
\(420\) −1100.00 −0.127796
\(421\) 8882.00 1.02822 0.514112 0.857723i \(-0.328122\pi\)
0.514112 + 0.857723i \(0.328122\pi\)
\(422\) −7626.00 −0.879687
\(423\) −39420.0 −4.53113
\(424\) −1638.00 −0.187614
\(425\) 425.000 0.0485071
\(426\) −5220.00 −0.593685
\(427\) 13420.0 1.52094
\(428\) −414.000 −0.0467557
\(429\) 13800.0 1.55308
\(430\) −5820.00 −0.652710
\(431\) −3738.00 −0.417757 −0.208878 0.977942i \(-0.566981\pi\)
−0.208878 + 0.977942i \(0.566981\pi\)
\(432\) −32660.0 −3.63740
\(433\) −6754.00 −0.749599 −0.374800 0.927106i \(-0.622289\pi\)
−0.374800 + 0.927106i \(0.622289\pi\)
\(434\) −12804.0 −1.41616
\(435\) −3300.00 −0.363731
\(436\) 614.000 0.0674433
\(437\) 4368.00 0.478146
\(438\) 10860.0 1.18473
\(439\) −7270.00 −0.790383 −0.395192 0.918599i \(-0.629322\pi\)
−0.395192 + 0.918599i \(0.629322\pi\)
\(440\) 3150.00 0.341296
\(441\) 10293.0 1.11144
\(442\) −2346.00 −0.252461
\(443\) −11136.0 −1.19433 −0.597164 0.802119i \(-0.703706\pi\)
−0.597164 + 0.802119i \(0.703706\pi\)
\(444\) 2060.00 0.220188
\(445\) 3150.00 0.335560
\(446\) 2976.00 0.315959
\(447\) 26700.0 2.82521
\(448\) −9526.00 −1.00460
\(449\) −1974.00 −0.207481 −0.103740 0.994604i \(-0.533081\pi\)
−0.103740 + 0.994604i \(0.533081\pi\)
\(450\) 5475.00 0.573542
\(451\) 3780.00 0.394664
\(452\) 258.000 0.0268480
\(453\) 12440.0 1.29025
\(454\) −3294.00 −0.340518
\(455\) 5060.00 0.521355
\(456\) −21840.0 −2.24288
\(457\) 10838.0 1.10937 0.554683 0.832062i \(-0.312840\pi\)
0.554683 + 0.832062i \(0.312840\pi\)
\(458\) 8862.00 0.904136
\(459\) 7820.00 0.795221
\(460\) 210.000 0.0212854
\(461\) −15642.0 −1.58030 −0.790152 0.612910i \(-0.789999\pi\)
−0.790152 + 0.612910i \(0.789999\pi\)
\(462\) 19800.0 1.99389
\(463\) 2276.00 0.228455 0.114228 0.993455i \(-0.463561\pi\)
0.114228 + 0.993455i \(0.463561\pi\)
\(464\) 4686.00 0.468841
\(465\) 9700.00 0.967369
\(466\) −2034.00 −0.202196
\(467\) 10164.0 1.00714 0.503569 0.863955i \(-0.332020\pi\)
0.503569 + 0.863955i \(0.332020\pi\)
\(468\) −3358.00 −0.331674
\(469\) −18656.0 −1.83679
\(470\) −8100.00 −0.794947
\(471\) −27940.0 −2.73335
\(472\) −9072.00 −0.884688
\(473\) 11640.0 1.13152
\(474\) 11940.0 1.15701
\(475\) 2600.00 0.251150
\(476\) −374.000 −0.0360132
\(477\) 5694.00 0.546563
\(478\) −7992.00 −0.764740
\(479\) 14034.0 1.33868 0.669342 0.742954i \(-0.266576\pi\)
0.669342 + 0.742954i \(0.266576\pi\)
\(480\) −2250.00 −0.213954
\(481\) −9476.00 −0.898271
\(482\) 10374.0 0.980338
\(483\) −9240.00 −0.870465
\(484\) −431.000 −0.0404771
\(485\) −7430.00 −0.695627
\(486\) 41610.0 3.88368
\(487\) −11350.0 −1.05609 −0.528047 0.849215i \(-0.677075\pi\)
−0.528047 + 0.849215i \(0.677075\pi\)
\(488\) 12810.0 1.18828
\(489\) −34180.0 −3.16089
\(490\) 2115.00 0.194992
\(491\) 7320.00 0.672804 0.336402 0.941718i \(-0.390790\pi\)
0.336402 + 0.941718i \(0.390790\pi\)
\(492\) −1260.00 −0.115458
\(493\) −1122.00 −0.102500
\(494\) −14352.0 −1.30714
\(495\) −10950.0 −0.994275
\(496\) −13774.0 −1.24692
\(497\) 3828.00 0.345491
\(498\) 24840.0 2.23515
\(499\) −7630.00 −0.684500 −0.342250 0.939609i \(-0.611189\pi\)
−0.342250 + 0.939609i \(0.611189\pi\)
\(500\) 125.000 0.0111803
\(501\) 1020.00 0.0909586
\(502\) 3276.00 0.291265
\(503\) 4314.00 0.382409 0.191205 0.981550i \(-0.438761\pi\)
0.191205 + 0.981550i \(0.438761\pi\)
\(504\) 33726.0 2.98071
\(505\) −6150.00 −0.541924
\(506\) −3780.00 −0.332098
\(507\) −810.000 −0.0709534
\(508\) 296.000 0.0258521
\(509\) −8058.00 −0.701699 −0.350849 0.936432i \(-0.614107\pi\)
−0.350849 + 0.936432i \(0.614107\pi\)
\(510\) 2550.00 0.221404
\(511\) −7964.00 −0.689445
\(512\) −8733.00 −0.753804
\(513\) 47840.0 4.11732
\(514\) −11142.0 −0.956133
\(515\) −6380.00 −0.545896
\(516\) −3880.00 −0.331022
\(517\) 16200.0 1.37810
\(518\) −13596.0 −1.15323
\(519\) 18060.0 1.52745
\(520\) 4830.00 0.407326
\(521\) −3414.00 −0.287083 −0.143541 0.989644i \(-0.545849\pi\)
−0.143541 + 0.989644i \(0.545849\pi\)
\(522\) −14454.0 −1.21194
\(523\) 15752.0 1.31699 0.658496 0.752584i \(-0.271193\pi\)
0.658496 + 0.752584i \(0.271193\pi\)
\(524\) 246.000 0.0205087
\(525\) −5500.00 −0.457218
\(526\) 11016.0 0.913157
\(527\) 3298.00 0.272606
\(528\) 21300.0 1.75561
\(529\) −10403.0 −0.855018
\(530\) 1170.00 0.0958897
\(531\) 31536.0 2.57730
\(532\) −2288.00 −0.186461
\(533\) 5796.00 0.471018
\(534\) 18900.0 1.53162
\(535\) −2070.00 −0.167278
\(536\) −17808.0 −1.43505
\(537\) 5280.00 0.424299
\(538\) −1926.00 −0.154342
\(539\) −4230.00 −0.338032
\(540\) 2300.00 0.183289
\(541\) −11554.0 −0.918198 −0.459099 0.888385i \(-0.651828\pi\)
−0.459099 + 0.888385i \(0.651828\pi\)
\(542\) 4272.00 0.338557
\(543\) −40420.0 −3.19445
\(544\) −765.000 −0.0602925
\(545\) 3070.00 0.241292
\(546\) 30360.0 2.37965
\(547\) −8134.00 −0.635804 −0.317902 0.948124i \(-0.602978\pi\)
−0.317902 + 0.948124i \(0.602978\pi\)
\(548\) 1998.00 0.155749
\(549\) −44530.0 −3.46174
\(550\) −2250.00 −0.174437
\(551\) −6864.00 −0.530701
\(552\) −8820.00 −0.680080
\(553\) −8756.00 −0.673315
\(554\) −14286.0 −1.09558
\(555\) 10300.0 0.787767
\(556\) −562.000 −0.0428671
\(557\) 10290.0 0.782767 0.391384 0.920228i \(-0.371997\pi\)
0.391384 + 0.920228i \(0.371997\pi\)
\(558\) 42486.0 3.22325
\(559\) 17848.0 1.35043
\(560\) 7810.00 0.589344
\(561\) −5100.00 −0.383818
\(562\) −14418.0 −1.08218
\(563\) 22428.0 1.67891 0.839456 0.543428i \(-0.182874\pi\)
0.839456 + 0.543428i \(0.182874\pi\)
\(564\) −5400.00 −0.403158
\(565\) 1290.00 0.0960544
\(566\) −894.000 −0.0663916
\(567\) −57838.0 −4.28389
\(568\) 3654.00 0.269927
\(569\) 21978.0 1.61927 0.809636 0.586932i \(-0.199665\pi\)
0.809636 + 0.586932i \(0.199665\pi\)
\(570\) 15600.0 1.14634
\(571\) 8378.00 0.614025 0.307013 0.951705i \(-0.400671\pi\)
0.307013 + 0.951705i \(0.400671\pi\)
\(572\) 1380.00 0.100875
\(573\) 31440.0 2.29219
\(574\) 8316.00 0.604709
\(575\) 1050.00 0.0761531
\(576\) 31609.0 2.28653
\(577\) −15658.0 −1.12972 −0.564862 0.825185i \(-0.691071\pi\)
−0.564862 + 0.825185i \(0.691071\pi\)
\(578\) 867.000 0.0623918
\(579\) −20140.0 −1.44558
\(580\) −330.000 −0.0236250
\(581\) −18216.0 −1.30073
\(582\) −44580.0 −3.17509
\(583\) −2340.00 −0.166231
\(584\) −7602.00 −0.538652
\(585\) −16790.0 −1.18663
\(586\) 954.000 0.0672515
\(587\) 20028.0 1.40825 0.704126 0.710075i \(-0.251339\pi\)
0.704126 + 0.710075i \(0.251339\pi\)
\(588\) 1410.00 0.0988902
\(589\) 20176.0 1.41144
\(590\) 6480.00 0.452165
\(591\) −36660.0 −2.55159
\(592\) −14626.0 −1.01541
\(593\) −21006.0 −1.45466 −0.727330 0.686288i \(-0.759239\pi\)
−0.727330 + 0.686288i \(0.759239\pi\)
\(594\) −41400.0 −2.85970
\(595\) −1870.00 −0.128845
\(596\) 2670.00 0.183502
\(597\) 20900.0 1.43280
\(598\) −5796.00 −0.396348
\(599\) 9984.00 0.681027 0.340514 0.940240i \(-0.389399\pi\)
0.340514 + 0.940240i \(0.389399\pi\)
\(600\) −5250.00 −0.357217
\(601\) −12790.0 −0.868078 −0.434039 0.900894i \(-0.642912\pi\)
−0.434039 + 0.900894i \(0.642912\pi\)
\(602\) 25608.0 1.73373
\(603\) 61904.0 4.18064
\(604\) 1244.00 0.0838040
\(605\) −2155.00 −0.144815
\(606\) −36900.0 −2.47353
\(607\) 10310.0 0.689407 0.344703 0.938712i \(-0.387979\pi\)
0.344703 + 0.938712i \(0.387979\pi\)
\(608\) −4680.00 −0.312170
\(609\) 14520.0 0.966141
\(610\) −9150.00 −0.607332
\(611\) 24840.0 1.64471
\(612\) 1241.00 0.0819681
\(613\) −18178.0 −1.19772 −0.598860 0.800854i \(-0.704379\pi\)
−0.598860 + 0.800854i \(0.704379\pi\)
\(614\) 4488.00 0.294985
\(615\) −6300.00 −0.413074
\(616\) −13860.0 −0.906551
\(617\) 22818.0 1.48885 0.744423 0.667708i \(-0.232725\pi\)
0.744423 + 0.667708i \(0.232725\pi\)
\(618\) −38280.0 −2.49166
\(619\) −25702.0 −1.66890 −0.834451 0.551082i \(-0.814215\pi\)
−0.834451 + 0.551082i \(0.814215\pi\)
\(620\) 970.000 0.0628325
\(621\) 19320.0 1.24845
\(622\) 18774.0 1.21024
\(623\) −13860.0 −0.891315
\(624\) 32660.0 2.09527
\(625\) 625.000 0.0400000
\(626\) −8778.00 −0.560446
\(627\) −31200.0 −1.98725
\(628\) −2794.00 −0.177536
\(629\) 3502.00 0.221993
\(630\) −24090.0 −1.52344
\(631\) 23396.0 1.47604 0.738019 0.674780i \(-0.235761\pi\)
0.738019 + 0.674780i \(0.235761\pi\)
\(632\) −8358.00 −0.526050
\(633\) −25420.0 −1.59614
\(634\) −21870.0 −1.36998
\(635\) 1480.00 0.0924914
\(636\) 780.000 0.0486305
\(637\) −6486.00 −0.403430
\(638\) 5940.00 0.368600
\(639\) −12702.0 −0.786359
\(640\) 8295.00 0.512326
\(641\) 90.0000 0.00554569 0.00277284 0.999996i \(-0.499117\pi\)
0.00277284 + 0.999996i \(0.499117\pi\)
\(642\) −12420.0 −0.763518
\(643\) −18934.0 −1.16125 −0.580625 0.814171i \(-0.697192\pi\)
−0.580625 + 0.814171i \(0.697192\pi\)
\(644\) −924.000 −0.0565384
\(645\) −19400.0 −1.18430
\(646\) 5304.00 0.323039
\(647\) −2124.00 −0.129062 −0.0645310 0.997916i \(-0.520555\pi\)
−0.0645310 + 0.997916i \(0.520555\pi\)
\(648\) −55209.0 −3.34694
\(649\) −12960.0 −0.783859
\(650\) −3450.00 −0.208185
\(651\) −42680.0 −2.56953
\(652\) −3418.00 −0.205306
\(653\) −7482.00 −0.448382 −0.224191 0.974545i \(-0.571974\pi\)
−0.224191 + 0.974545i \(0.571974\pi\)
\(654\) 18420.0 1.10134
\(655\) 1230.00 0.0733742
\(656\) 8946.00 0.532443
\(657\) 26426.0 1.56922
\(658\) 35640.0 2.11154
\(659\) 27996.0 1.65489 0.827443 0.561550i \(-0.189795\pi\)
0.827443 + 0.561550i \(0.189795\pi\)
\(660\) −1500.00 −0.0884658
\(661\) 11198.0 0.658928 0.329464 0.944168i \(-0.393132\pi\)
0.329464 + 0.944168i \(0.393132\pi\)
\(662\) 30552.0 1.79371
\(663\) −7820.00 −0.458075
\(664\) −17388.0 −1.01624
\(665\) −11440.0 −0.667104
\(666\) 45114.0 2.62482
\(667\) −2772.00 −0.160918
\(668\) 102.000 0.00590793
\(669\) 9920.00 0.573288
\(670\) 12720.0 0.733457
\(671\) 18300.0 1.05285
\(672\) 9900.00 0.568305
\(673\) −21334.0 −1.22194 −0.610970 0.791654i \(-0.709220\pi\)
−0.610970 + 0.791654i \(0.709220\pi\)
\(674\) −21594.0 −1.23408
\(675\) 11500.0 0.655756
\(676\) −81.0000 −0.00460856
\(677\) 11550.0 0.655691 0.327845 0.944731i \(-0.393678\pi\)
0.327845 + 0.944731i \(0.393678\pi\)
\(678\) 7740.00 0.438426
\(679\) 32692.0 1.84772
\(680\) −1785.00 −0.100664
\(681\) −10980.0 −0.617848
\(682\) −17460.0 −0.980320
\(683\) −25590.0 −1.43364 −0.716819 0.697260i \(-0.754402\pi\)
−0.716819 + 0.697260i \(0.754402\pi\)
\(684\) 7592.00 0.424397
\(685\) 9990.00 0.557224
\(686\) 13332.0 0.742009
\(687\) 29540.0 1.64050
\(688\) 27548.0 1.52654
\(689\) −3588.00 −0.198392
\(690\) 6300.00 0.347590
\(691\) −3358.00 −0.184869 −0.0924344 0.995719i \(-0.529465\pi\)
−0.0924344 + 0.995719i \(0.529465\pi\)
\(692\) 1806.00 0.0992107
\(693\) 48180.0 2.64099
\(694\) 18522.0 1.01309
\(695\) −2810.00 −0.153366
\(696\) 13860.0 0.754830
\(697\) −2142.00 −0.116405
\(698\) 17394.0 0.943227
\(699\) −6780.00 −0.366871
\(700\) −550.000 −0.0296972
\(701\) −4758.00 −0.256358 −0.128179 0.991751i \(-0.540913\pi\)
−0.128179 + 0.991751i \(0.540913\pi\)
\(702\) −63480.0 −3.41296
\(703\) 21424.0 1.14939
\(704\) −12990.0 −0.695425
\(705\) −27000.0 −1.44238
\(706\) 30150.0 1.60724
\(707\) 27060.0 1.43946
\(708\) 4320.00 0.229316
\(709\) −12226.0 −0.647612 −0.323806 0.946123i \(-0.604963\pi\)
−0.323806 + 0.946123i \(0.604963\pi\)
\(710\) −2610.00 −0.137960
\(711\) 29054.0 1.53250
\(712\) −13230.0 −0.696370
\(713\) 8148.00 0.427973
\(714\) −11220.0 −0.588092
\(715\) 6900.00 0.360903
\(716\) 528.000 0.0275591
\(717\) −26640.0 −1.38757
\(718\) 18900.0 0.982370
\(719\) −3774.00 −0.195753 −0.0978765 0.995199i \(-0.531205\pi\)
−0.0978765 + 0.995199i \(0.531205\pi\)
\(720\) −25915.0 −1.34138
\(721\) 28072.0 1.45001
\(722\) 11871.0 0.611901
\(723\) 34580.0 1.77876
\(724\) −4042.00 −0.207486
\(725\) −1650.00 −0.0845234
\(726\) −12930.0 −0.660988
\(727\) 3980.00 0.203040 0.101520 0.994834i \(-0.467629\pi\)
0.101520 + 0.994834i \(0.467629\pi\)
\(728\) −21252.0 −1.08194
\(729\) 67717.0 3.44038
\(730\) 5430.00 0.275306
\(731\) −6596.00 −0.333737
\(732\) −6100.00 −0.308009
\(733\) −18490.0 −0.931710 −0.465855 0.884861i \(-0.654253\pi\)
−0.465855 + 0.884861i \(0.654253\pi\)
\(734\) −25482.0 −1.28141
\(735\) 7050.00 0.353800
\(736\) −1890.00 −0.0946553
\(737\) −25440.0 −1.27150
\(738\) −27594.0 −1.37635
\(739\) −24448.0 −1.21696 −0.608481 0.793569i \(-0.708221\pi\)
−0.608481 + 0.793569i \(0.708221\pi\)
\(740\) 1030.00 0.0511670
\(741\) −47840.0 −2.37172
\(742\) −5148.00 −0.254702
\(743\) −32274.0 −1.59356 −0.796782 0.604267i \(-0.793466\pi\)
−0.796782 + 0.604267i \(0.793466\pi\)
\(744\) −40740.0 −2.00753
\(745\) 13350.0 0.656518
\(746\) −5826.00 −0.285932
\(747\) 60444.0 2.96055
\(748\) −510.000 −0.0249297
\(749\) 9108.00 0.444325
\(750\) 3750.00 0.182574
\(751\) 9890.00 0.480548 0.240274 0.970705i \(-0.422763\pi\)
0.240274 + 0.970705i \(0.422763\pi\)
\(752\) 38340.0 1.85920
\(753\) 10920.0 0.528482
\(754\) 9108.00 0.439912
\(755\) 6220.00 0.299826
\(756\) −10120.0 −0.486853
\(757\) 13394.0 0.643082 0.321541 0.946896i \(-0.395799\pi\)
0.321541 + 0.946896i \(0.395799\pi\)
\(758\) 15954.0 0.764479
\(759\) −12600.0 −0.602571
\(760\) −10920.0 −0.521197
\(761\) 30198.0 1.43847 0.719236 0.694766i \(-0.244492\pi\)
0.719236 + 0.694766i \(0.244492\pi\)
\(762\) 8880.00 0.422163
\(763\) −13508.0 −0.640921
\(764\) 3144.00 0.148882
\(765\) 6205.00 0.293258
\(766\) −16416.0 −0.774327
\(767\) −19872.0 −0.935510
\(768\) 15130.0 0.710881
\(769\) 8174.00 0.383306 0.191653 0.981463i \(-0.438615\pi\)
0.191653 + 0.981463i \(0.438615\pi\)
\(770\) 9900.00 0.463339
\(771\) −37140.0 −1.73484
\(772\) −2014.00 −0.0938931
\(773\) 7842.00 0.364886 0.182443 0.983216i \(-0.441599\pi\)
0.182443 + 0.983216i \(0.441599\pi\)
\(774\) −84972.0 −3.94607
\(775\) 4850.00 0.224796
\(776\) 31206.0 1.44360
\(777\) −45320.0 −2.09247
\(778\) −28098.0 −1.29481
\(779\) −13104.0 −0.602695
\(780\) −2300.00 −0.105581
\(781\) 5220.00 0.239163
\(782\) 2142.00 0.0979511
\(783\) −30360.0 −1.38567
\(784\) −10011.0 −0.456040
\(785\) −13970.0 −0.635173
\(786\) 7380.00 0.334906
\(787\) −28294.0 −1.28154 −0.640770 0.767733i \(-0.721385\pi\)
−0.640770 + 0.767733i \(0.721385\pi\)
\(788\) −3666.00 −0.165731
\(789\) 36720.0 1.65687
\(790\) 5970.00 0.268865
\(791\) −5676.00 −0.255139
\(792\) 45990.0 2.06336
\(793\) 28060.0 1.25654
\(794\) 40506.0 1.81046
\(795\) 3900.00 0.173986
\(796\) 2090.00 0.0930629
\(797\) −2970.00 −0.131998 −0.0659992 0.997820i \(-0.521023\pi\)
−0.0659992 + 0.997820i \(0.521023\pi\)
\(798\) −68640.0 −3.04490
\(799\) −9180.00 −0.406464
\(800\) −1125.00 −0.0497184
\(801\) 45990.0 2.02869
\(802\) 16398.0 0.721987
\(803\) −10860.0 −0.477262
\(804\) 8480.00 0.371973
\(805\) −4620.00 −0.202278
\(806\) −26772.0 −1.16998
\(807\) −6420.00 −0.280043
\(808\) 25830.0 1.12462
\(809\) 8034.00 0.349148 0.174574 0.984644i \(-0.444145\pi\)
0.174574 + 0.984644i \(0.444145\pi\)
\(810\) 39435.0 1.71062
\(811\) 21110.0 0.914023 0.457011 0.889461i \(-0.348920\pi\)
0.457011 + 0.889461i \(0.348920\pi\)
\(812\) 1452.00 0.0627527
\(813\) 14240.0 0.614291
\(814\) −18540.0 −0.798313
\(815\) −17090.0 −0.734523
\(816\) −12070.0 −0.517812
\(817\) −40352.0 −1.72795
\(818\) 18222.0 0.778872
\(819\) 73876.0 3.15194
\(820\) −630.000 −0.0268299
\(821\) 6702.00 0.284898 0.142449 0.989802i \(-0.454502\pi\)
0.142449 + 0.989802i \(0.454502\pi\)
\(822\) 59940.0 2.54337
\(823\) 6290.00 0.266410 0.133205 0.991088i \(-0.457473\pi\)
0.133205 + 0.991088i \(0.457473\pi\)
\(824\) 26796.0 1.13287
\(825\) −7500.00 −0.316505
\(826\) −28512.0 −1.20104
\(827\) −38346.0 −1.61236 −0.806180 0.591671i \(-0.798469\pi\)
−0.806180 + 0.591671i \(0.798469\pi\)
\(828\) 3066.00 0.128685
\(829\) −7066.00 −0.296034 −0.148017 0.988985i \(-0.547289\pi\)
−0.148017 + 0.988985i \(0.547289\pi\)
\(830\) 12420.0 0.519403
\(831\) −47620.0 −1.98787
\(832\) −19918.0 −0.829967
\(833\) 2397.00 0.0997012
\(834\) −16860.0 −0.700017
\(835\) 510.000 0.0211369
\(836\) −3120.00 −0.129076
\(837\) 89240.0 3.68529
\(838\) 26766.0 1.10336
\(839\) −2370.00 −0.0975226 −0.0487613 0.998810i \(-0.515527\pi\)
−0.0487613 + 0.998810i \(0.515527\pi\)
\(840\) 23100.0 0.948840
\(841\) −20033.0 −0.821395
\(842\) 26646.0 1.09060
\(843\) −48060.0 −1.96355
\(844\) −2542.00 −0.103672
\(845\) −405.000 −0.0164881
\(846\) −118260. −4.80598
\(847\) 9482.00 0.384658
\(848\) −5538.00 −0.224264
\(849\) −2980.00 −0.120463
\(850\) 1275.00 0.0514496
\(851\) 8652.00 0.348516
\(852\) −1740.00 −0.0699665
\(853\) 16742.0 0.672022 0.336011 0.941858i \(-0.390922\pi\)
0.336011 + 0.941858i \(0.390922\pi\)
\(854\) 40260.0 1.61320
\(855\) 37960.0 1.51837
\(856\) 8694.00 0.347143
\(857\) 210.000 0.00837044 0.00418522 0.999991i \(-0.498668\pi\)
0.00418522 + 0.999991i \(0.498668\pi\)
\(858\) 41400.0 1.64729
\(859\) 26528.0 1.05369 0.526847 0.849960i \(-0.323374\pi\)
0.526847 + 0.849960i \(0.323374\pi\)
\(860\) −1940.00 −0.0769226
\(861\) 27720.0 1.09721
\(862\) −11214.0 −0.443098
\(863\) 21108.0 0.832589 0.416295 0.909230i \(-0.363328\pi\)
0.416295 + 0.909230i \(0.363328\pi\)
\(864\) −20700.0 −0.815079
\(865\) 9030.00 0.354947
\(866\) −20262.0 −0.795070
\(867\) 2890.00 0.113206
\(868\) −4268.00 −0.166896
\(869\) −11940.0 −0.466095
\(870\) −9900.00 −0.385795
\(871\) −39008.0 −1.51749
\(872\) −12894.0 −0.500741
\(873\) −108478. −4.20553
\(874\) 13104.0 0.507150
\(875\) −2750.00 −0.106248
\(876\) 3620.00 0.139622
\(877\) 16022.0 0.616904 0.308452 0.951240i \(-0.400189\pi\)
0.308452 + 0.951240i \(0.400189\pi\)
\(878\) −21810.0 −0.838328
\(879\) 3180.00 0.122024
\(880\) 10650.0 0.407968
\(881\) 11034.0 0.421958 0.210979 0.977491i \(-0.432335\pi\)
0.210979 + 0.977491i \(0.432335\pi\)
\(882\) 30879.0 1.17885
\(883\) 23384.0 0.891205 0.445603 0.895231i \(-0.352989\pi\)
0.445603 + 0.895231i \(0.352989\pi\)
\(884\) −782.000 −0.0297528
\(885\) 21600.0 0.820425
\(886\) −33408.0 −1.26678
\(887\) 534.000 0.0202142 0.0101071 0.999949i \(-0.496783\pi\)
0.0101071 + 0.999949i \(0.496783\pi\)
\(888\) −43260.0 −1.63481
\(889\) −6512.00 −0.245675
\(890\) 9450.00 0.355915
\(891\) −78870.0 −2.96548
\(892\) 992.000 0.0372361
\(893\) −56160.0 −2.10450
\(894\) 80100.0 2.99658
\(895\) 2640.00 0.0985983
\(896\) −36498.0 −1.36084
\(897\) −19320.0 −0.719148
\(898\) −5922.00 −0.220066
\(899\) −12804.0 −0.475014
\(900\) 1825.00 0.0675926
\(901\) 1326.00 0.0490294
\(902\) 11340.0 0.418604
\(903\) 85360.0 3.14574
\(904\) −5418.00 −0.199336
\(905\) −20210.0 −0.742324
\(906\) 37320.0 1.36851
\(907\) 30014.0 1.09879 0.549393 0.835564i \(-0.314859\pi\)
0.549393 + 0.835564i \(0.314859\pi\)
\(908\) −1098.00 −0.0401304
\(909\) −89790.0 −3.27629
\(910\) 15180.0 0.552980
\(911\) 45246.0 1.64552 0.822759 0.568390i \(-0.192434\pi\)
0.822759 + 0.568390i \(0.192434\pi\)
\(912\) −73840.0 −2.68102
\(913\) −24840.0 −0.900421
\(914\) 32514.0 1.17666
\(915\) −30500.0 −1.10197
\(916\) 2954.00 0.106553
\(917\) −5412.00 −0.194896
\(918\) 23460.0 0.843459
\(919\) 24176.0 0.867783 0.433892 0.900965i \(-0.357140\pi\)
0.433892 + 0.900965i \(0.357140\pi\)
\(920\) −4410.00 −0.158036
\(921\) 14960.0 0.535232
\(922\) −46926.0 −1.67617
\(923\) 8004.00 0.285433
\(924\) 6600.00 0.234983
\(925\) 5150.00 0.183060
\(926\) 6828.00 0.242313
\(927\) −93148.0 −3.30030
\(928\) 2970.00 0.105059
\(929\) −5070.00 −0.179054 −0.0895271 0.995984i \(-0.528536\pi\)
−0.0895271 + 0.995984i \(0.528536\pi\)
\(930\) 29100.0 1.02605
\(931\) 14664.0 0.516212
\(932\) −678.000 −0.0238290
\(933\) 62580.0 2.19590
\(934\) 30492.0 1.06823
\(935\) −2550.00 −0.0891914
\(936\) 70518.0 2.46256
\(937\) 27530.0 0.959836 0.479918 0.877313i \(-0.340666\pi\)
0.479918 + 0.877313i \(0.340666\pi\)
\(938\) −55968.0 −1.94821
\(939\) −29260.0 −1.01689
\(940\) −2700.00 −0.0936854
\(941\) 27726.0 0.960512 0.480256 0.877128i \(-0.340544\pi\)
0.480256 + 0.877128i \(0.340544\pi\)
\(942\) −83820.0 −2.89915
\(943\) −5292.00 −0.182748
\(944\) −30672.0 −1.05751
\(945\) −50600.0 −1.74182
\(946\) 34920.0 1.20016
\(947\) −50406.0 −1.72965 −0.864823 0.502077i \(-0.832569\pi\)
−0.864823 + 0.502077i \(0.832569\pi\)
\(948\) 3980.00 0.136355
\(949\) −16652.0 −0.569596
\(950\) 7800.00 0.266385
\(951\) −72900.0 −2.48575
\(952\) 7854.00 0.267384
\(953\) −19746.0 −0.671181 −0.335591 0.942008i \(-0.608936\pi\)
−0.335591 + 0.942008i \(0.608936\pi\)
\(954\) 17082.0 0.579717
\(955\) 15720.0 0.532657
\(956\) −2664.00 −0.0901254
\(957\) 19800.0 0.668802
\(958\) 42102.0 1.41989
\(959\) −43956.0 −1.48010
\(960\) 21650.0 0.727865
\(961\) 7845.00 0.263335
\(962\) −28428.0 −0.952760
\(963\) −30222.0 −1.01131
\(964\) 3458.00 0.115534
\(965\) −10070.0 −0.335922
\(966\) −27720.0 −0.923267
\(967\) −16720.0 −0.556028 −0.278014 0.960577i \(-0.589676\pi\)
−0.278014 + 0.960577i \(0.589676\pi\)
\(968\) 9051.00 0.300527
\(969\) 17680.0 0.586134
\(970\) −22290.0 −0.737823
\(971\) 28128.0 0.929630 0.464815 0.885408i \(-0.346121\pi\)
0.464815 + 0.885408i \(0.346121\pi\)
\(972\) 13870.0 0.457696
\(973\) 12364.0 0.407371
\(974\) −34050.0 −1.12016
\(975\) −11500.0 −0.377738
\(976\) 43310.0 1.42041
\(977\) −60174.0 −1.97046 −0.985229 0.171244i \(-0.945221\pi\)
−0.985229 + 0.171244i \(0.945221\pi\)
\(978\) −102540. −3.35263
\(979\) −18900.0 −0.617004
\(980\) 705.000 0.0229800
\(981\) 44822.0 1.45877
\(982\) 21960.0 0.713617
\(983\) 40566.0 1.31623 0.658115 0.752917i \(-0.271354\pi\)
0.658115 + 0.752917i \(0.271354\pi\)
\(984\) 26460.0 0.857230
\(985\) −18330.0 −0.592936
\(986\) −3366.00 −0.108717
\(987\) 118800. 3.83125
\(988\) −4784.00 −0.154048
\(989\) −16296.0 −0.523946
\(990\) −32850.0 −1.05459
\(991\) −26422.0 −0.846945 −0.423472 0.905909i \(-0.639189\pi\)
−0.423472 + 0.905909i \(0.639189\pi\)
\(992\) −8730.00 −0.279413
\(993\) 101840. 3.25458
\(994\) 11484.0 0.366449
\(995\) 10450.0 0.332952
\(996\) 8280.00 0.263416
\(997\) 55982.0 1.77830 0.889151 0.457613i \(-0.151296\pi\)
0.889151 + 0.457613i \(0.151296\pi\)
\(998\) −22890.0 −0.726022
\(999\) 94760.0 3.00107
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 85.4.a.c.1.1 1
3.2 odd 2 765.4.a.a.1.1 1
4.3 odd 2 1360.4.a.a.1.1 1
5.2 odd 4 425.4.b.d.324.2 2
5.3 odd 4 425.4.b.d.324.1 2
5.4 even 2 425.4.a.a.1.1 1
17.16 even 2 1445.4.a.f.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.4.a.c.1.1 1 1.1 even 1 trivial
425.4.a.a.1.1 1 5.4 even 2
425.4.b.d.324.1 2 5.3 odd 4
425.4.b.d.324.2 2 5.2 odd 4
765.4.a.a.1.1 1 3.2 odd 2
1360.4.a.a.1.1 1 4.3 odd 2
1445.4.a.f.1.1 1 17.16 even 2