Properties

Label 8512.2.a.bk.1.2
Level $8512$
Weight $2$
Character 8512.1
Self dual yes
Analytic conductor $67.969$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8512,2,Mod(1,8512)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8512, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8512.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8512 = 2^{6} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8512.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.9686622005\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.1101.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 9x + 12 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1064)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.43163\) of defining polynomial
Character \(\chi\) \(=\) 8512.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.43163 q^{3} +2.51882 q^{5} -1.00000 q^{7} -0.950444 q^{9} -1.95044 q^{11} -5.38207 q^{13} -3.60601 q^{15} -3.95044 q^{17} -1.00000 q^{19} +1.43163 q^{21} +8.51882 q^{23} +1.34444 q^{25} +5.65556 q^{27} -3.95044 q^{29} -5.95044 q^{31} +2.79231 q^{33} -2.51882 q^{35} -7.55645 q^{37} +7.70512 q^{39} +6.81370 q^{41} +5.03763 q^{43} -2.39399 q^{45} -5.65556 q^{47} +1.00000 q^{49} +5.65556 q^{51} -11.4316 q^{53} -4.91281 q^{55} +1.43163 q^{57} +0.617929 q^{59} -5.48118 q^{61} +0.950444 q^{63} -13.5565 q^{65} -0.223935 q^{67} -12.1958 q^{69} +13.5565 q^{71} +7.43163 q^{73} -1.92473 q^{75} +1.95044 q^{77} +5.03763 q^{79} -5.24533 q^{81} -13.7804 q^{83} -9.95044 q^{85} +5.65556 q^{87} +10.9385 q^{89} +5.38207 q^{91} +8.51882 q^{93} -2.51882 q^{95} +4.69320 q^{97} +1.85379 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{3} - 2 q^{5} - 3 q^{7} + 10 q^{9} + 7 q^{11} + 5 q^{15} + q^{17} - 3 q^{19} + q^{21} + 16 q^{23} + 7 q^{25} + 14 q^{27} + q^{29} - 5 q^{31} + 12 q^{33} + 2 q^{35} + 6 q^{37} + 33 q^{39} + q^{41}+ \cdots + 54 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.43163 −0.826550 −0.413275 0.910606i \(-0.635615\pi\)
−0.413275 + 0.910606i \(0.635615\pi\)
\(4\) 0 0
\(5\) 2.51882 1.12645 0.563225 0.826304i \(-0.309561\pi\)
0.563225 + 0.826304i \(0.309561\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) −0.950444 −0.316815
\(10\) 0 0
\(11\) −1.95044 −0.588081 −0.294040 0.955793i \(-0.595000\pi\)
−0.294040 + 0.955793i \(0.595000\pi\)
\(12\) 0 0
\(13\) −5.38207 −1.49272 −0.746359 0.665544i \(-0.768200\pi\)
−0.746359 + 0.665544i \(0.768200\pi\)
\(14\) 0 0
\(15\) −3.60601 −0.931067
\(16\) 0 0
\(17\) −3.95044 −0.958123 −0.479062 0.877781i \(-0.659023\pi\)
−0.479062 + 0.877781i \(0.659023\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 1.43163 0.312407
\(22\) 0 0
\(23\) 8.51882 1.77630 0.888148 0.459557i \(-0.151992\pi\)
0.888148 + 0.459557i \(0.151992\pi\)
\(24\) 0 0
\(25\) 1.34444 0.268888
\(26\) 0 0
\(27\) 5.65556 1.08841
\(28\) 0 0
\(29\) −3.95044 −0.733579 −0.366789 0.930304i \(-0.619543\pi\)
−0.366789 + 0.930304i \(0.619543\pi\)
\(30\) 0 0
\(31\) −5.95044 −1.06873 −0.534366 0.845253i \(-0.679449\pi\)
−0.534366 + 0.845253i \(0.679449\pi\)
\(32\) 0 0
\(33\) 2.79231 0.486078
\(34\) 0 0
\(35\) −2.51882 −0.425758
\(36\) 0 0
\(37\) −7.55645 −1.24227 −0.621136 0.783703i \(-0.713329\pi\)
−0.621136 + 0.783703i \(0.713329\pi\)
\(38\) 0 0
\(39\) 7.70512 1.23381
\(40\) 0 0
\(41\) 6.81370 1.06412 0.532060 0.846706i \(-0.321418\pi\)
0.532060 + 0.846706i \(0.321418\pi\)
\(42\) 0 0
\(43\) 5.03763 0.768232 0.384116 0.923285i \(-0.374506\pi\)
0.384116 + 0.923285i \(0.374506\pi\)
\(44\) 0 0
\(45\) −2.39399 −0.356876
\(46\) 0 0
\(47\) −5.65556 −0.824949 −0.412474 0.910969i \(-0.635335\pi\)
−0.412474 + 0.910969i \(0.635335\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 5.65556 0.791937
\(52\) 0 0
\(53\) −11.4316 −1.57025 −0.785127 0.619334i \(-0.787403\pi\)
−0.785127 + 0.619334i \(0.787403\pi\)
\(54\) 0 0
\(55\) −4.91281 −0.662443
\(56\) 0 0
\(57\) 1.43163 0.189624
\(58\) 0 0
\(59\) 0.617929 0.0804475 0.0402238 0.999191i \(-0.487193\pi\)
0.0402238 + 0.999191i \(0.487193\pi\)
\(60\) 0 0
\(61\) −5.48118 −0.701794 −0.350897 0.936414i \(-0.614123\pi\)
−0.350897 + 0.936414i \(0.614123\pi\)
\(62\) 0 0
\(63\) 0.950444 0.119745
\(64\) 0 0
\(65\) −13.5565 −1.68147
\(66\) 0 0
\(67\) −0.223935 −0.0273581 −0.0136790 0.999906i \(-0.504354\pi\)
−0.0136790 + 0.999906i \(0.504354\pi\)
\(68\) 0 0
\(69\) −12.1958 −1.46820
\(70\) 0 0
\(71\) 13.5565 1.60885 0.804427 0.594051i \(-0.202472\pi\)
0.804427 + 0.594051i \(0.202472\pi\)
\(72\) 0 0
\(73\) 7.43163 0.869806 0.434903 0.900477i \(-0.356783\pi\)
0.434903 + 0.900477i \(0.356783\pi\)
\(74\) 0 0
\(75\) −1.92473 −0.222249
\(76\) 0 0
\(77\) 1.95044 0.222274
\(78\) 0 0
\(79\) 5.03763 0.566778 0.283389 0.959005i \(-0.408541\pi\)
0.283389 + 0.959005i \(0.408541\pi\)
\(80\) 0 0
\(81\) −5.24533 −0.582814
\(82\) 0 0
\(83\) −13.7804 −1.51259 −0.756297 0.654229i \(-0.772993\pi\)
−0.756297 + 0.654229i \(0.772993\pi\)
\(84\) 0 0
\(85\) −9.95044 −1.07928
\(86\) 0 0
\(87\) 5.65556 0.606340
\(88\) 0 0
\(89\) 10.9385 1.15948 0.579740 0.814801i \(-0.303154\pi\)
0.579740 + 0.814801i \(0.303154\pi\)
\(90\) 0 0
\(91\) 5.38207 0.564194
\(92\) 0 0
\(93\) 8.51882 0.883360
\(94\) 0 0
\(95\) −2.51882 −0.258425
\(96\) 0 0
\(97\) 4.69320 0.476522 0.238261 0.971201i \(-0.423423\pi\)
0.238261 + 0.971201i \(0.423423\pi\)
\(98\) 0 0
\(99\) 1.85379 0.186313
\(100\) 0 0
\(101\) −17.3821 −1.72958 −0.864790 0.502133i \(-0.832549\pi\)
−0.864790 + 0.502133i \(0.832549\pi\)
\(102\) 0 0
\(103\) 2.34444 0.231004 0.115502 0.993307i \(-0.463152\pi\)
0.115502 + 0.993307i \(0.463152\pi\)
\(104\) 0 0
\(105\) 3.60601 0.351910
\(106\) 0 0
\(107\) 15.2830 1.47746 0.738730 0.674002i \(-0.235426\pi\)
0.738730 + 0.674002i \(0.235426\pi\)
\(108\) 0 0
\(109\) 13.3821 1.28177 0.640885 0.767637i \(-0.278568\pi\)
0.640885 + 0.767637i \(0.278568\pi\)
\(110\) 0 0
\(111\) 10.8180 1.02680
\(112\) 0 0
\(113\) 14.6436 1.37756 0.688779 0.724971i \(-0.258147\pi\)
0.688779 + 0.724971i \(0.258147\pi\)
\(114\) 0 0
\(115\) 21.4573 2.00091
\(116\) 0 0
\(117\) 5.11536 0.472915
\(118\) 0 0
\(119\) 3.95044 0.362137
\(120\) 0 0
\(121\) −7.19577 −0.654161
\(122\) 0 0
\(123\) −9.75467 −0.879549
\(124\) 0 0
\(125\) −9.20769 −0.823561
\(126\) 0 0
\(127\) 18.1744 1.61272 0.806358 0.591428i \(-0.201436\pi\)
0.806358 + 0.591428i \(0.201436\pi\)
\(128\) 0 0
\(129\) −7.21201 −0.634982
\(130\) 0 0
\(131\) 4.81370 0.420575 0.210287 0.977640i \(-0.432560\pi\)
0.210287 + 0.977640i \(0.432560\pi\)
\(132\) 0 0
\(133\) 1.00000 0.0867110
\(134\) 0 0
\(135\) 14.2453 1.22604
\(136\) 0 0
\(137\) −11.7265 −1.00186 −0.500932 0.865487i \(-0.667009\pi\)
−0.500932 + 0.865487i \(0.667009\pi\)
\(138\) 0 0
\(139\) 9.65556 0.818974 0.409487 0.912316i \(-0.365708\pi\)
0.409487 + 0.912316i \(0.365708\pi\)
\(140\) 0 0
\(141\) 8.09666 0.681861
\(142\) 0 0
\(143\) 10.4974 0.877839
\(144\) 0 0
\(145\) −9.95044 −0.826339
\(146\) 0 0
\(147\) −1.43163 −0.118079
\(148\) 0 0
\(149\) −4.69320 −0.384482 −0.192241 0.981348i \(-0.561575\pi\)
−0.192241 + 0.981348i \(0.561575\pi\)
\(150\) 0 0
\(151\) −4.22394 −0.343739 −0.171869 0.985120i \(-0.554981\pi\)
−0.171869 + 0.985120i \(0.554981\pi\)
\(152\) 0 0
\(153\) 3.75467 0.303547
\(154\) 0 0
\(155\) −14.9881 −1.20387
\(156\) 0 0
\(157\) 20.8890 1.66712 0.833560 0.552428i \(-0.186299\pi\)
0.833560 + 0.552428i \(0.186299\pi\)
\(158\) 0 0
\(159\) 16.3658 1.29789
\(160\) 0 0
\(161\) −8.51882 −0.671377
\(162\) 0 0
\(163\) 15.1581 1.18728 0.593638 0.804732i \(-0.297691\pi\)
0.593638 + 0.804732i \(0.297691\pi\)
\(164\) 0 0
\(165\) 7.03331 0.547543
\(166\) 0 0
\(167\) −6.24533 −0.483278 −0.241639 0.970366i \(-0.577685\pi\)
−0.241639 + 0.970366i \(0.577685\pi\)
\(168\) 0 0
\(169\) 15.9667 1.22821
\(170\) 0 0
\(171\) 0.950444 0.0726823
\(172\) 0 0
\(173\) 10.9385 0.831640 0.415820 0.909447i \(-0.363495\pi\)
0.415820 + 0.909447i \(0.363495\pi\)
\(174\) 0 0
\(175\) −1.34444 −0.101630
\(176\) 0 0
\(177\) −0.884644 −0.0664939
\(178\) 0 0
\(179\) −15.4359 −1.15374 −0.576868 0.816837i \(-0.695725\pi\)
−0.576868 + 0.816837i \(0.695725\pi\)
\(180\) 0 0
\(181\) 2.12482 0.157937 0.0789684 0.996877i \(-0.474837\pi\)
0.0789684 + 0.996877i \(0.474837\pi\)
\(182\) 0 0
\(183\) 7.84701 0.580068
\(184\) 0 0
\(185\) −19.0333 −1.39936
\(186\) 0 0
\(187\) 7.70512 0.563454
\(188\) 0 0
\(189\) −5.65556 −0.411382
\(190\) 0 0
\(191\) −7.50689 −0.543180 −0.271590 0.962413i \(-0.587549\pi\)
−0.271590 + 0.962413i \(0.587549\pi\)
\(192\) 0 0
\(193\) −6.22394 −0.448009 −0.224004 0.974588i \(-0.571913\pi\)
−0.224004 + 0.974588i \(0.571913\pi\)
\(194\) 0 0
\(195\) 19.4078 1.38982
\(196\) 0 0
\(197\) 10.2949 0.733480 0.366740 0.930323i \(-0.380474\pi\)
0.366740 + 0.930323i \(0.380474\pi\)
\(198\) 0 0
\(199\) −19.3821 −1.37396 −0.686979 0.726677i \(-0.741064\pi\)
−0.686979 + 0.726677i \(0.741064\pi\)
\(200\) 0 0
\(201\) 0.320592 0.0226128
\(202\) 0 0
\(203\) 3.95044 0.277267
\(204\) 0 0
\(205\) 17.1625 1.19868
\(206\) 0 0
\(207\) −8.09666 −0.562757
\(208\) 0 0
\(209\) 1.95044 0.134915
\(210\) 0 0
\(211\) −4.39399 −0.302495 −0.151248 0.988496i \(-0.548329\pi\)
−0.151248 + 0.988496i \(0.548329\pi\)
\(212\) 0 0
\(213\) −19.4078 −1.32980
\(214\) 0 0
\(215\) 12.6889 0.865374
\(216\) 0 0
\(217\) 5.95044 0.403942
\(218\) 0 0
\(219\) −10.6393 −0.718939
\(220\) 0 0
\(221\) 21.2616 1.43021
\(222\) 0 0
\(223\) −11.8299 −0.792191 −0.396096 0.918209i \(-0.629635\pi\)
−0.396096 + 0.918209i \(0.629635\pi\)
\(224\) 0 0
\(225\) −1.27781 −0.0851875
\(226\) 0 0
\(227\) 14.2992 0.949071 0.474536 0.880236i \(-0.342616\pi\)
0.474536 + 0.880236i \(0.342616\pi\)
\(228\) 0 0
\(229\) 14.3488 0.948193 0.474096 0.880473i \(-0.342775\pi\)
0.474096 + 0.880473i \(0.342775\pi\)
\(230\) 0 0
\(231\) −2.79231 −0.183720
\(232\) 0 0
\(233\) −15.8513 −1.03846 −0.519228 0.854636i \(-0.673780\pi\)
−0.519228 + 0.854636i \(0.673780\pi\)
\(234\) 0 0
\(235\) −14.2453 −0.929263
\(236\) 0 0
\(237\) −7.21201 −0.468471
\(238\) 0 0
\(239\) 7.28296 0.471095 0.235548 0.971863i \(-0.424312\pi\)
0.235548 + 0.971863i \(0.424312\pi\)
\(240\) 0 0
\(241\) 7.82562 0.504093 0.252046 0.967715i \(-0.418896\pi\)
0.252046 + 0.967715i \(0.418896\pi\)
\(242\) 0 0
\(243\) −9.45734 −0.606688
\(244\) 0 0
\(245\) 2.51882 0.160921
\(246\) 0 0
\(247\) 5.38207 0.342453
\(248\) 0 0
\(249\) 19.7284 1.25023
\(250\) 0 0
\(251\) 30.1010 1.89996 0.949978 0.312316i \(-0.101105\pi\)
0.949978 + 0.312316i \(0.101105\pi\)
\(252\) 0 0
\(253\) −16.6155 −1.04461
\(254\) 0 0
\(255\) 14.2453 0.892077
\(256\) 0 0
\(257\) 3.43163 0.214059 0.107030 0.994256i \(-0.465866\pi\)
0.107030 + 0.994256i \(0.465866\pi\)
\(258\) 0 0
\(259\) 7.55645 0.469535
\(260\) 0 0
\(261\) 3.75467 0.232409
\(262\) 0 0
\(263\) 7.70512 0.475118 0.237559 0.971373i \(-0.423653\pi\)
0.237559 + 0.971373i \(0.423653\pi\)
\(264\) 0 0
\(265\) −28.7942 −1.76881
\(266\) 0 0
\(267\) −15.6599 −0.958369
\(268\) 0 0
\(269\) −28.8180 −1.75707 −0.878533 0.477682i \(-0.841477\pi\)
−0.878533 + 0.477682i \(0.841477\pi\)
\(270\) 0 0
\(271\) 19.3368 1.17463 0.587315 0.809359i \(-0.300185\pi\)
0.587315 + 0.809359i \(0.300185\pi\)
\(272\) 0 0
\(273\) −7.70512 −0.466335
\(274\) 0 0
\(275\) −2.62225 −0.158128
\(276\) 0 0
\(277\) −19.9762 −1.20025 −0.600125 0.799906i \(-0.704883\pi\)
−0.600125 + 0.799906i \(0.704883\pi\)
\(278\) 0 0
\(279\) 5.65556 0.338590
\(280\) 0 0
\(281\) 28.1462 1.67906 0.839531 0.543312i \(-0.182830\pi\)
0.839531 + 0.543312i \(0.182830\pi\)
\(282\) 0 0
\(283\) −6.56837 −0.390449 −0.195225 0.980759i \(-0.562544\pi\)
−0.195225 + 0.980759i \(0.562544\pi\)
\(284\) 0 0
\(285\) 3.60601 0.213601
\(286\) 0 0
\(287\) −6.81370 −0.402200
\(288\) 0 0
\(289\) −1.39399 −0.0819996
\(290\) 0 0
\(291\) −6.71891 −0.393869
\(292\) 0 0
\(293\) 13.4812 0.787579 0.393790 0.919201i \(-0.371164\pi\)
0.393790 + 0.919201i \(0.371164\pi\)
\(294\) 0 0
\(295\) 1.55645 0.0906200
\(296\) 0 0
\(297\) −11.0309 −0.640075
\(298\) 0 0
\(299\) −45.8489 −2.65151
\(300\) 0 0
\(301\) −5.03763 −0.290364
\(302\) 0 0
\(303\) 24.8846 1.42959
\(304\) 0 0
\(305\) −13.8061 −0.790535
\(306\) 0 0
\(307\) 0.323048 0.0184373 0.00921865 0.999958i \(-0.497066\pi\)
0.00921865 + 0.999958i \(0.497066\pi\)
\(308\) 0 0
\(309\) −3.35636 −0.190937
\(310\) 0 0
\(311\) −17.8513 −1.01226 −0.506128 0.862458i \(-0.668924\pi\)
−0.506128 + 0.862458i \(0.668924\pi\)
\(312\) 0 0
\(313\) −12.1744 −0.688137 −0.344068 0.938945i \(-0.611805\pi\)
−0.344068 + 0.938945i \(0.611805\pi\)
\(314\) 0 0
\(315\) 2.39399 0.134886
\(316\) 0 0
\(317\) 7.72651 0.433964 0.216982 0.976176i \(-0.430379\pi\)
0.216982 + 0.976176i \(0.430379\pi\)
\(318\) 0 0
\(319\) 7.70512 0.431404
\(320\) 0 0
\(321\) −21.8795 −1.22119
\(322\) 0 0
\(323\) 3.95044 0.219809
\(324\) 0 0
\(325\) −7.23586 −0.401373
\(326\) 0 0
\(327\) −19.1581 −1.05945
\(328\) 0 0
\(329\) 5.65556 0.311801
\(330\) 0 0
\(331\) 10.1205 0.556273 0.278137 0.960542i \(-0.410283\pi\)
0.278137 + 0.960542i \(0.410283\pi\)
\(332\) 0 0
\(333\) 7.18198 0.393570
\(334\) 0 0
\(335\) −0.564052 −0.0308175
\(336\) 0 0
\(337\) 33.2377 1.81057 0.905287 0.424800i \(-0.139656\pi\)
0.905287 + 0.424800i \(0.139656\pi\)
\(338\) 0 0
\(339\) −20.9642 −1.13862
\(340\) 0 0
\(341\) 11.6060 0.628500
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) −30.7189 −1.65385
\(346\) 0 0
\(347\) −3.84701 −0.206518 −0.103259 0.994654i \(-0.532927\pi\)
−0.103259 + 0.994654i \(0.532927\pi\)
\(348\) 0 0
\(349\) 37.2096 1.99178 0.995891 0.0905605i \(-0.0288659\pi\)
0.995891 + 0.0905605i \(0.0288659\pi\)
\(350\) 0 0
\(351\) −30.4386 −1.62469
\(352\) 0 0
\(353\) −15.2616 −0.812291 −0.406146 0.913808i \(-0.633127\pi\)
−0.406146 + 0.913808i \(0.633127\pi\)
\(354\) 0 0
\(355\) 34.1462 1.81229
\(356\) 0 0
\(357\) −5.65556 −0.299324
\(358\) 0 0
\(359\) −30.0019 −1.58344 −0.791719 0.610886i \(-0.790814\pi\)
−0.791719 + 0.610886i \(0.790814\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 10.3017 0.540697
\(364\) 0 0
\(365\) 18.7189 0.979792
\(366\) 0 0
\(367\) 0.717041 0.0374293 0.0187146 0.999825i \(-0.494043\pi\)
0.0187146 + 0.999825i \(0.494043\pi\)
\(368\) 0 0
\(369\) −6.47604 −0.337129
\(370\) 0 0
\(371\) 11.4316 0.593501
\(372\) 0 0
\(373\) −32.1719 −1.66580 −0.832900 0.553424i \(-0.813321\pi\)
−0.832900 + 0.553424i \(0.813321\pi\)
\(374\) 0 0
\(375\) 13.1820 0.680715
\(376\) 0 0
\(377\) 21.2616 1.09503
\(378\) 0 0
\(379\) −14.8351 −0.762027 −0.381014 0.924569i \(-0.624425\pi\)
−0.381014 + 0.924569i \(0.624425\pi\)
\(380\) 0 0
\(381\) −26.0189 −1.33299
\(382\) 0 0
\(383\) 25.1086 1.28299 0.641494 0.767128i \(-0.278315\pi\)
0.641494 + 0.767128i \(0.278315\pi\)
\(384\) 0 0
\(385\) 4.91281 0.250380
\(386\) 0 0
\(387\) −4.78799 −0.243387
\(388\) 0 0
\(389\) 1.77606 0.0900501 0.0450250 0.998986i \(-0.485663\pi\)
0.0450250 + 0.998986i \(0.485663\pi\)
\(390\) 0 0
\(391\) −33.6531 −1.70191
\(392\) 0 0
\(393\) −6.89142 −0.347626
\(394\) 0 0
\(395\) 12.6889 0.638447
\(396\) 0 0
\(397\) 10.5898 0.531485 0.265742 0.964044i \(-0.414383\pi\)
0.265742 + 0.964044i \(0.414383\pi\)
\(398\) 0 0
\(399\) −1.43163 −0.0716710
\(400\) 0 0
\(401\) 35.8513 1.79033 0.895165 0.445735i \(-0.147058\pi\)
0.895165 + 0.445735i \(0.147058\pi\)
\(402\) 0 0
\(403\) 32.0257 1.59531
\(404\) 0 0
\(405\) −13.2120 −0.656510
\(406\) 0 0
\(407\) 14.7384 0.730557
\(408\) 0 0
\(409\) −9.50689 −0.470086 −0.235043 0.971985i \(-0.575523\pi\)
−0.235043 + 0.971985i \(0.575523\pi\)
\(410\) 0 0
\(411\) 16.7880 0.828090
\(412\) 0 0
\(413\) −0.617929 −0.0304063
\(414\) 0 0
\(415\) −34.7103 −1.70386
\(416\) 0 0
\(417\) −13.8232 −0.676923
\(418\) 0 0
\(419\) −23.1838 −1.13261 −0.566303 0.824197i \(-0.691627\pi\)
−0.566303 + 0.824197i \(0.691627\pi\)
\(420\) 0 0
\(421\) −27.0095 −1.31636 −0.658180 0.752860i \(-0.728674\pi\)
−0.658180 + 0.752860i \(0.728674\pi\)
\(422\) 0 0
\(423\) 5.37529 0.261356
\(424\) 0 0
\(425\) −5.31112 −0.257627
\(426\) 0 0
\(427\) 5.48118 0.265253
\(428\) 0 0
\(429\) −15.0284 −0.725578
\(430\) 0 0
\(431\) −10.7641 −0.518490 −0.259245 0.965812i \(-0.583474\pi\)
−0.259245 + 0.965812i \(0.583474\pi\)
\(432\) 0 0
\(433\) 15.7547 0.757121 0.378561 0.925576i \(-0.376419\pi\)
0.378561 + 0.925576i \(0.376419\pi\)
\(434\) 0 0
\(435\) 14.2453 0.683011
\(436\) 0 0
\(437\) −8.51882 −0.407510
\(438\) 0 0
\(439\) 3.45302 0.164804 0.0824018 0.996599i \(-0.473741\pi\)
0.0824018 + 0.996599i \(0.473741\pi\)
\(440\) 0 0
\(441\) −0.950444 −0.0452592
\(442\) 0 0
\(443\) −19.5069 −0.926800 −0.463400 0.886149i \(-0.653371\pi\)
−0.463400 + 0.886149i \(0.653371\pi\)
\(444\) 0 0
\(445\) 27.5521 1.30610
\(446\) 0 0
\(447\) 6.71891 0.317793
\(448\) 0 0
\(449\) 7.43163 0.350720 0.175360 0.984504i \(-0.443891\pi\)
0.175360 + 0.984504i \(0.443891\pi\)
\(450\) 0 0
\(451\) −13.2897 −0.625789
\(452\) 0 0
\(453\) 6.04710 0.284118
\(454\) 0 0
\(455\) 13.5565 0.635536
\(456\) 0 0
\(457\) 1.50689 0.0704895 0.0352448 0.999379i \(-0.488779\pi\)
0.0352448 + 0.999379i \(0.488779\pi\)
\(458\) 0 0
\(459\) −22.3420 −1.04283
\(460\) 0 0
\(461\) −12.9171 −0.601611 −0.300805 0.953686i \(-0.597255\pi\)
−0.300805 + 0.953686i \(0.597255\pi\)
\(462\) 0 0
\(463\) 9.30680 0.432524 0.216262 0.976335i \(-0.430613\pi\)
0.216262 + 0.976335i \(0.430613\pi\)
\(464\) 0 0
\(465\) 21.4573 0.995060
\(466\) 0 0
\(467\) −4.29488 −0.198743 −0.0993717 0.995050i \(-0.531683\pi\)
−0.0993717 + 0.995050i \(0.531683\pi\)
\(468\) 0 0
\(469\) 0.223935 0.0103404
\(470\) 0 0
\(471\) −29.9052 −1.37796
\(472\) 0 0
\(473\) −9.82562 −0.451783
\(474\) 0 0
\(475\) −1.34444 −0.0616870
\(476\) 0 0
\(477\) 10.8651 0.497480
\(478\) 0 0
\(479\) −40.8651 −1.86717 −0.933587 0.358350i \(-0.883340\pi\)
−0.933587 + 0.358350i \(0.883340\pi\)
\(480\) 0 0
\(481\) 40.6694 1.85436
\(482\) 0 0
\(483\) 12.1958 0.554927
\(484\) 0 0
\(485\) 11.8213 0.536778
\(486\) 0 0
\(487\) 37.1600 1.68388 0.841940 0.539571i \(-0.181414\pi\)
0.841940 + 0.539571i \(0.181414\pi\)
\(488\) 0 0
\(489\) −21.7008 −0.981344
\(490\) 0 0
\(491\) 37.8770 1.70937 0.854683 0.519149i \(-0.173751\pi\)
0.854683 + 0.519149i \(0.173751\pi\)
\(492\) 0 0
\(493\) 15.6060 0.702859
\(494\) 0 0
\(495\) 4.66935 0.209872
\(496\) 0 0
\(497\) −13.5565 −0.608090
\(498\) 0 0
\(499\) 29.3325 1.31310 0.656552 0.754281i \(-0.272014\pi\)
0.656552 + 0.754281i \(0.272014\pi\)
\(500\) 0 0
\(501\) 8.94098 0.399453
\(502\) 0 0
\(503\) 32.0000 1.42681 0.713405 0.700752i \(-0.247152\pi\)
0.713405 + 0.700752i \(0.247152\pi\)
\(504\) 0 0
\(505\) −43.7823 −1.94828
\(506\) 0 0
\(507\) −22.8583 −1.01517
\(508\) 0 0
\(509\) 6.00000 0.265945 0.132973 0.991120i \(-0.457548\pi\)
0.132973 + 0.991120i \(0.457548\pi\)
\(510\) 0 0
\(511\) −7.43163 −0.328756
\(512\) 0 0
\(513\) −5.65556 −0.249699
\(514\) 0 0
\(515\) 5.90521 0.260215
\(516\) 0 0
\(517\) 11.0309 0.485137
\(518\) 0 0
\(519\) −15.6599 −0.687393
\(520\) 0 0
\(521\) 11.9052 0.521577 0.260788 0.965396i \(-0.416018\pi\)
0.260788 + 0.965396i \(0.416018\pi\)
\(522\) 0 0
\(523\) 25.0095 1.09359 0.546794 0.837267i \(-0.315848\pi\)
0.546794 + 0.837267i \(0.315848\pi\)
\(524\) 0 0
\(525\) 1.92473 0.0840022
\(526\) 0 0
\(527\) 23.5069 1.02398
\(528\) 0 0
\(529\) 49.5702 2.15523
\(530\) 0 0
\(531\) −0.587307 −0.0254869
\(532\) 0 0
\(533\) −36.6718 −1.58843
\(534\) 0 0
\(535\) 38.4950 1.66428
\(536\) 0 0
\(537\) 22.0985 0.953622
\(538\) 0 0
\(539\) −1.95044 −0.0840116
\(540\) 0 0
\(541\) −8.27349 −0.355705 −0.177853 0.984057i \(-0.556915\pi\)
−0.177853 + 0.984057i \(0.556915\pi\)
\(542\) 0 0
\(543\) −3.04195 −0.130543
\(544\) 0 0
\(545\) 33.7070 1.44385
\(546\) 0 0
\(547\) 31.0590 1.32799 0.663994 0.747738i \(-0.268860\pi\)
0.663994 + 0.747738i \(0.268860\pi\)
\(548\) 0 0
\(549\) 5.20956 0.222338
\(550\) 0 0
\(551\) 3.95044 0.168295
\(552\) 0 0
\(553\) −5.03763 −0.214222
\(554\) 0 0
\(555\) 27.2486 1.15664
\(556\) 0 0
\(557\) 19.0633 0.807740 0.403870 0.914816i \(-0.367665\pi\)
0.403870 + 0.914816i \(0.367665\pi\)
\(558\) 0 0
\(559\) −27.1129 −1.14675
\(560\) 0 0
\(561\) −11.0309 −0.465723
\(562\) 0 0
\(563\) 33.4573 1.41006 0.705029 0.709178i \(-0.250934\pi\)
0.705029 + 0.709178i \(0.250934\pi\)
\(564\) 0 0
\(565\) 36.8846 1.55175
\(566\) 0 0
\(567\) 5.24533 0.220283
\(568\) 0 0
\(569\) 18.3206 0.768039 0.384020 0.923325i \(-0.374540\pi\)
0.384020 + 0.923325i \(0.374540\pi\)
\(570\) 0 0
\(571\) 12.9667 0.542639 0.271319 0.962489i \(-0.412540\pi\)
0.271319 + 0.962489i \(0.412540\pi\)
\(572\) 0 0
\(573\) 10.7471 0.448965
\(574\) 0 0
\(575\) 11.4530 0.477624
\(576\) 0 0
\(577\) 6.39399 0.266185 0.133093 0.991104i \(-0.457509\pi\)
0.133093 + 0.991104i \(0.457509\pi\)
\(578\) 0 0
\(579\) 8.91035 0.370302
\(580\) 0 0
\(581\) 13.7804 0.571707
\(582\) 0 0
\(583\) 22.2967 0.923437
\(584\) 0 0
\(585\) 12.8846 0.532714
\(586\) 0 0
\(587\) −26.5659 −1.09649 −0.548246 0.836317i \(-0.684704\pi\)
−0.548246 + 0.836317i \(0.684704\pi\)
\(588\) 0 0
\(589\) 5.95044 0.245184
\(590\) 0 0
\(591\) −14.7384 −0.606258
\(592\) 0 0
\(593\) −17.3821 −0.713796 −0.356898 0.934143i \(-0.616166\pi\)
−0.356898 + 0.934143i \(0.616166\pi\)
\(594\) 0 0
\(595\) 9.95044 0.407928
\(596\) 0 0
\(597\) 27.7479 1.13565
\(598\) 0 0
\(599\) 24.8933 1.01711 0.508556 0.861029i \(-0.330179\pi\)
0.508556 + 0.861029i \(0.330179\pi\)
\(600\) 0 0
\(601\) 20.8608 0.850930 0.425465 0.904975i \(-0.360111\pi\)
0.425465 + 0.904975i \(0.360111\pi\)
\(602\) 0 0
\(603\) 0.212838 0.00866743
\(604\) 0 0
\(605\) −18.1248 −0.736879
\(606\) 0 0
\(607\) −40.7685 −1.65474 −0.827370 0.561657i \(-0.810164\pi\)
−0.827370 + 0.561657i \(0.810164\pi\)
\(608\) 0 0
\(609\) −5.65556 −0.229175
\(610\) 0 0
\(611\) 30.4386 1.23142
\(612\) 0 0
\(613\) 43.3839 1.75226 0.876130 0.482074i \(-0.160116\pi\)
0.876130 + 0.482074i \(0.160116\pi\)
\(614\) 0 0
\(615\) −24.5702 −0.990768
\(616\) 0 0
\(617\) −5.43595 −0.218843 −0.109422 0.993995i \(-0.534900\pi\)
−0.109422 + 0.993995i \(0.534900\pi\)
\(618\) 0 0
\(619\) −0.393994 −0.0158359 −0.00791797 0.999969i \(-0.502520\pi\)
−0.00791797 + 0.999969i \(0.502520\pi\)
\(620\) 0 0
\(621\) 48.1787 1.93334
\(622\) 0 0
\(623\) −10.9385 −0.438243
\(624\) 0 0
\(625\) −29.9147 −1.19659
\(626\) 0 0
\(627\) −2.79231 −0.111514
\(628\) 0 0
\(629\) 29.8513 1.19025
\(630\) 0 0
\(631\) 15.5326 0.618343 0.309172 0.951006i \(-0.399948\pi\)
0.309172 + 0.951006i \(0.399948\pi\)
\(632\) 0 0
\(633\) 6.29056 0.250027
\(634\) 0 0
\(635\) 45.7779 1.81664
\(636\) 0 0
\(637\) −5.38207 −0.213245
\(638\) 0 0
\(639\) −12.8846 −0.509709
\(640\) 0 0
\(641\) −1.92660 −0.0760961 −0.0380480 0.999276i \(-0.512114\pi\)
−0.0380480 + 0.999276i \(0.512114\pi\)
\(642\) 0 0
\(643\) 1.20769 0.0476267 0.0238134 0.999716i \(-0.492419\pi\)
0.0238134 + 0.999716i \(0.492419\pi\)
\(644\) 0 0
\(645\) −18.1657 −0.715275
\(646\) 0 0
\(647\) 26.3444 1.03571 0.517853 0.855469i \(-0.326731\pi\)
0.517853 + 0.855469i \(0.326731\pi\)
\(648\) 0 0
\(649\) −1.20524 −0.0473096
\(650\) 0 0
\(651\) −8.51882 −0.333879
\(652\) 0 0
\(653\) 2.85893 0.111879 0.0559394 0.998434i \(-0.482185\pi\)
0.0559394 + 0.998434i \(0.482185\pi\)
\(654\) 0 0
\(655\) 12.1248 0.473756
\(656\) 0 0
\(657\) −7.06334 −0.275567
\(658\) 0 0
\(659\) −31.3796 −1.22238 −0.611188 0.791485i \(-0.709308\pi\)
−0.611188 + 0.791485i \(0.709308\pi\)
\(660\) 0 0
\(661\) −34.6975 −1.34958 −0.674788 0.738011i \(-0.735765\pi\)
−0.674788 + 0.738011i \(0.735765\pi\)
\(662\) 0 0
\(663\) −30.4386 −1.18214
\(664\) 0 0
\(665\) 2.51882 0.0976755
\(666\) 0 0
\(667\) −33.6531 −1.30305
\(668\) 0 0
\(669\) 16.9361 0.654786
\(670\) 0 0
\(671\) 10.6907 0.412711
\(672\) 0 0
\(673\) −38.8846 −1.49889 −0.749446 0.662065i \(-0.769680\pi\)
−0.749446 + 0.662065i \(0.769680\pi\)
\(674\) 0 0
\(675\) 7.60355 0.292661
\(676\) 0 0
\(677\) −7.28974 −0.280167 −0.140084 0.990140i \(-0.544737\pi\)
−0.140084 + 0.990140i \(0.544737\pi\)
\(678\) 0 0
\(679\) −4.69320 −0.180108
\(680\) 0 0
\(681\) −20.4711 −0.784455
\(682\) 0 0
\(683\) 0.320592 0.0122671 0.00613355 0.999981i \(-0.498048\pi\)
0.00613355 + 0.999981i \(0.498048\pi\)
\(684\) 0 0
\(685\) −29.5369 −1.12855
\(686\) 0 0
\(687\) −20.5421 −0.783729
\(688\) 0 0
\(689\) 61.5258 2.34395
\(690\) 0 0
\(691\) 32.9385 1.25304 0.626520 0.779405i \(-0.284479\pi\)
0.626520 + 0.779405i \(0.284479\pi\)
\(692\) 0 0
\(693\) −1.85379 −0.0704196
\(694\) 0 0
\(695\) 24.3206 0.922533
\(696\) 0 0
\(697\) −26.9171 −1.01956
\(698\) 0 0
\(699\) 22.6932 0.858335
\(700\) 0 0
\(701\) 25.6599 0.969160 0.484580 0.874747i \(-0.338972\pi\)
0.484580 + 0.874747i \(0.338972\pi\)
\(702\) 0 0
\(703\) 7.55645 0.284997
\(704\) 0 0
\(705\) 20.3940 0.768082
\(706\) 0 0
\(707\) 17.3821 0.653720
\(708\) 0 0
\(709\) 3.55645 0.133565 0.0667826 0.997768i \(-0.478727\pi\)
0.0667826 + 0.997768i \(0.478727\pi\)
\(710\) 0 0
\(711\) −4.78799 −0.179564
\(712\) 0 0
\(713\) −50.6907 −1.89838
\(714\) 0 0
\(715\) 26.4411 0.988841
\(716\) 0 0
\(717\) −10.4265 −0.389384
\(718\) 0 0
\(719\) 5.92473 0.220955 0.110478 0.993879i \(-0.464762\pi\)
0.110478 + 0.993879i \(0.464762\pi\)
\(720\) 0 0
\(721\) −2.34444 −0.0873114
\(722\) 0 0
\(723\) −11.2034 −0.416658
\(724\) 0 0
\(725\) −5.31112 −0.197250
\(726\) 0 0
\(727\) −19.8299 −0.735452 −0.367726 0.929934i \(-0.619864\pi\)
−0.367726 + 0.929934i \(0.619864\pi\)
\(728\) 0 0
\(729\) 29.2754 1.08427
\(730\) 0 0
\(731\) −19.9009 −0.736061
\(732\) 0 0
\(733\) −11.3864 −0.420566 −0.210283 0.977641i \(-0.567439\pi\)
−0.210283 + 0.977641i \(0.567439\pi\)
\(734\) 0 0
\(735\) −3.60601 −0.133010
\(736\) 0 0
\(737\) 0.436773 0.0160888
\(738\) 0 0
\(739\) 29.2163 1.07474 0.537370 0.843347i \(-0.319418\pi\)
0.537370 + 0.843347i \(0.319418\pi\)
\(740\) 0 0
\(741\) −7.70512 −0.283055
\(742\) 0 0
\(743\) 15.8299 0.580744 0.290372 0.956914i \(-0.406221\pi\)
0.290372 + 0.956914i \(0.406221\pi\)
\(744\) 0 0
\(745\) −11.8213 −0.433099
\(746\) 0 0
\(747\) 13.0975 0.479212
\(748\) 0 0
\(749\) −15.2830 −0.558427
\(750\) 0 0
\(751\) −35.0590 −1.27932 −0.639661 0.768657i \(-0.720925\pi\)
−0.639661 + 0.768657i \(0.720925\pi\)
\(752\) 0 0
\(753\) −43.0934 −1.57041
\(754\) 0 0
\(755\) −10.6393 −0.387204
\(756\) 0 0
\(757\) −47.8770 −1.74012 −0.870060 0.492945i \(-0.835920\pi\)
−0.870060 + 0.492945i \(0.835920\pi\)
\(758\) 0 0
\(759\) 23.7872 0.863419
\(760\) 0 0
\(761\) 31.7070 1.14938 0.574689 0.818372i \(-0.305123\pi\)
0.574689 + 0.818372i \(0.305123\pi\)
\(762\) 0 0
\(763\) −13.3821 −0.484463
\(764\) 0 0
\(765\) 9.45734 0.341931
\(766\) 0 0
\(767\) −3.32574 −0.120085
\(768\) 0 0
\(769\) −36.7641 −1.32575 −0.662874 0.748731i \(-0.730664\pi\)
−0.662874 + 0.748731i \(0.730664\pi\)
\(770\) 0 0
\(771\) −4.91281 −0.176931
\(772\) 0 0
\(773\) 33.5044 1.20507 0.602535 0.798092i \(-0.294157\pi\)
0.602535 + 0.798092i \(0.294157\pi\)
\(774\) 0 0
\(775\) −8.00000 −0.287368
\(776\) 0 0
\(777\) −10.8180 −0.388094
\(778\) 0 0
\(779\) −6.81370 −0.244126
\(780\) 0 0
\(781\) −26.4411 −0.946137
\(782\) 0 0
\(783\) −22.3420 −0.798437
\(784\) 0 0
\(785\) 52.6155 1.87793
\(786\) 0 0
\(787\) 2.12296 0.0756753 0.0378376 0.999284i \(-0.487953\pi\)
0.0378376 + 0.999284i \(0.487953\pi\)
\(788\) 0 0
\(789\) −11.0309 −0.392709
\(790\) 0 0
\(791\) −14.6436 −0.520668
\(792\) 0 0
\(793\) 29.5001 1.04758
\(794\) 0 0
\(795\) 41.2225 1.46201
\(796\) 0 0
\(797\) −34.1676 −1.21028 −0.605139 0.796120i \(-0.706883\pi\)
−0.605139 + 0.796120i \(0.706883\pi\)
\(798\) 0 0
\(799\) 22.3420 0.790402
\(800\) 0 0
\(801\) −10.3964 −0.367340
\(802\) 0 0
\(803\) −14.4950 −0.511516
\(804\) 0 0
\(805\) −21.4573 −0.756272
\(806\) 0 0
\(807\) 41.2567 1.45230
\(808\) 0 0
\(809\) −1.63172 −0.0573681 −0.0286841 0.999589i \(-0.509132\pi\)
−0.0286841 + 0.999589i \(0.509132\pi\)
\(810\) 0 0
\(811\) 19.4617 0.683391 0.341696 0.939811i \(-0.388999\pi\)
0.341696 + 0.939811i \(0.388999\pi\)
\(812\) 0 0
\(813\) −27.6831 −0.970890
\(814\) 0 0
\(815\) 38.1806 1.33741
\(816\) 0 0
\(817\) −5.03763 −0.176244
\(818\) 0 0
\(819\) −5.11536 −0.178745
\(820\) 0 0
\(821\) −39.0376 −1.36242 −0.681211 0.732087i \(-0.738547\pi\)
−0.681211 + 0.732087i \(0.738547\pi\)
\(822\) 0 0
\(823\) 1.48550 0.0517814 0.0258907 0.999665i \(-0.491758\pi\)
0.0258907 + 0.999665i \(0.491758\pi\)
\(824\) 0 0
\(825\) 3.75408 0.130700
\(826\) 0 0
\(827\) 10.5941 0.368392 0.184196 0.982889i \(-0.441032\pi\)
0.184196 + 0.982889i \(0.441032\pi\)
\(828\) 0 0
\(829\) 38.8394 1.34895 0.674474 0.738298i \(-0.264370\pi\)
0.674474 + 0.738298i \(0.264370\pi\)
\(830\) 0 0
\(831\) 28.5984 0.992068
\(832\) 0 0
\(833\) −3.95044 −0.136875
\(834\) 0 0
\(835\) −15.7308 −0.544388
\(836\) 0 0
\(837\) −33.6531 −1.16322
\(838\) 0 0
\(839\) −40.4993 −1.39819 −0.699095 0.715028i \(-0.746414\pi\)
−0.699095 + 0.715028i \(0.746414\pi\)
\(840\) 0 0
\(841\) −13.3940 −0.461862
\(842\) 0 0
\(843\) −40.2949 −1.38783
\(844\) 0 0
\(845\) 40.2172 1.38351
\(846\) 0 0
\(847\) 7.19577 0.247250
\(848\) 0 0
\(849\) 9.40346 0.322726
\(850\) 0 0
\(851\) −64.3720 −2.20664
\(852\) 0 0
\(853\) −8.37015 −0.286588 −0.143294 0.989680i \(-0.545770\pi\)
−0.143294 + 0.989680i \(0.545770\pi\)
\(854\) 0 0
\(855\) 2.39399 0.0818729
\(856\) 0 0
\(857\) −14.3230 −0.489266 −0.244633 0.969616i \(-0.578667\pi\)
−0.244633 + 0.969616i \(0.578667\pi\)
\(858\) 0 0
\(859\) −0.912810 −0.0311447 −0.0155723 0.999879i \(-0.504957\pi\)
−0.0155723 + 0.999879i \(0.504957\pi\)
\(860\) 0 0
\(861\) 9.75467 0.332438
\(862\) 0 0
\(863\) 24.1958 0.823634 0.411817 0.911267i \(-0.364894\pi\)
0.411817 + 0.911267i \(0.364894\pi\)
\(864\) 0 0
\(865\) 27.5521 0.936801
\(866\) 0 0
\(867\) 1.99568 0.0677768
\(868\) 0 0
\(869\) −9.82562 −0.333311
\(870\) 0 0
\(871\) 1.20524 0.0408379
\(872\) 0 0
\(873\) −4.46062 −0.150969
\(874\) 0 0
\(875\) 9.20769 0.311277
\(876\) 0 0
\(877\) 4.86325 0.164220 0.0821102 0.996623i \(-0.473834\pi\)
0.0821102 + 0.996623i \(0.473834\pi\)
\(878\) 0 0
\(879\) −19.3000 −0.650974
\(880\) 0 0
\(881\) −36.8608 −1.24187 −0.620936 0.783861i \(-0.713247\pi\)
−0.620936 + 0.783861i \(0.713247\pi\)
\(882\) 0 0
\(883\) −17.2077 −0.579085 −0.289542 0.957165i \(-0.593503\pi\)
−0.289542 + 0.957165i \(0.593503\pi\)
\(884\) 0 0
\(885\) −2.22826 −0.0749020
\(886\) 0 0
\(887\) −18.3959 −0.617672 −0.308836 0.951115i \(-0.599940\pi\)
−0.308836 + 0.951115i \(0.599940\pi\)
\(888\) 0 0
\(889\) −18.1744 −0.609549
\(890\) 0 0
\(891\) 10.2307 0.342742
\(892\) 0 0
\(893\) 5.65556 0.189256
\(894\) 0 0
\(895\) −38.8803 −1.29963
\(896\) 0 0
\(897\) 65.6385 2.19161
\(898\) 0 0
\(899\) 23.5069 0.783999
\(900\) 0 0
\(901\) 45.1600 1.50450
\(902\) 0 0
\(903\) 7.21201 0.240001
\(904\) 0 0
\(905\) 5.35204 0.177908
\(906\) 0 0
\(907\) −31.7308 −1.05360 −0.526802 0.849988i \(-0.676609\pi\)
−0.526802 + 0.849988i \(0.676609\pi\)
\(908\) 0 0
\(909\) 16.5207 0.547956
\(910\) 0 0
\(911\) 10.9624 0.363199 0.181600 0.983373i \(-0.441872\pi\)
0.181600 + 0.983373i \(0.441872\pi\)
\(912\) 0 0
\(913\) 26.8779 0.889528
\(914\) 0 0
\(915\) 19.7652 0.653417
\(916\) 0 0
\(917\) −4.81370 −0.158962
\(918\) 0 0
\(919\) 33.1086 1.09215 0.546076 0.837736i \(-0.316121\pi\)
0.546076 + 0.837736i \(0.316121\pi\)
\(920\) 0 0
\(921\) −0.462484 −0.0152394
\(922\) 0 0
\(923\) −72.9618 −2.40157
\(924\) 0 0
\(925\) −10.1592 −0.334032
\(926\) 0 0
\(927\) −2.22826 −0.0731855
\(928\) 0 0
\(929\) 2.74275 0.0899868 0.0449934 0.998987i \(-0.485673\pi\)
0.0449934 + 0.998987i \(0.485673\pi\)
\(930\) 0 0
\(931\) −1.00000 −0.0327737
\(932\) 0 0
\(933\) 25.5565 0.836681
\(934\) 0 0
\(935\) 19.4078 0.634702
\(936\) 0 0
\(937\) 21.2291 0.693524 0.346762 0.937953i \(-0.387281\pi\)
0.346762 + 0.937953i \(0.387281\pi\)
\(938\) 0 0
\(939\) 17.4292 0.568780
\(940\) 0 0
\(941\) −37.9523 −1.23721 −0.618605 0.785702i \(-0.712302\pi\)
−0.618605 + 0.785702i \(0.712302\pi\)
\(942\) 0 0
\(943\) 58.0446 1.89019
\(944\) 0 0
\(945\) −14.2453 −0.463400
\(946\) 0 0
\(947\) 21.7241 0.705937 0.352968 0.935635i \(-0.385172\pi\)
0.352968 + 0.935635i \(0.385172\pi\)
\(948\) 0 0
\(949\) −39.9975 −1.29838
\(950\) 0 0
\(951\) −11.0615 −0.358693
\(952\) 0 0
\(953\) −4.39831 −0.142475 −0.0712377 0.997459i \(-0.522695\pi\)
−0.0712377 + 0.997459i \(0.522695\pi\)
\(954\) 0 0
\(955\) −18.9085 −0.611864
\(956\) 0 0
\(957\) −11.0309 −0.356577
\(958\) 0 0
\(959\) 11.7265 0.378669
\(960\) 0 0
\(961\) 4.40778 0.142187
\(962\) 0 0
\(963\) −14.5256 −0.468081
\(964\) 0 0
\(965\) −15.6770 −0.504659
\(966\) 0 0
\(967\) 59.5865 1.91617 0.958086 0.286481i \(-0.0924854\pi\)
0.958086 + 0.286481i \(0.0924854\pi\)
\(968\) 0 0
\(969\) −5.65556 −0.181683
\(970\) 0 0
\(971\) −6.14621 −0.197241 −0.0986207 0.995125i \(-0.531443\pi\)
−0.0986207 + 0.995125i \(0.531443\pi\)
\(972\) 0 0
\(973\) −9.65556 −0.309543
\(974\) 0 0
\(975\) 10.3591 0.331755
\(976\) 0 0
\(977\) −13.3539 −0.427229 −0.213615 0.976918i \(-0.568524\pi\)
−0.213615 + 0.976918i \(0.568524\pi\)
\(978\) 0 0
\(979\) −21.3350 −0.681869
\(980\) 0 0
\(981\) −12.7189 −0.406083
\(982\) 0 0
\(983\) 29.7975 0.950391 0.475196 0.879880i \(-0.342377\pi\)
0.475196 + 0.879880i \(0.342377\pi\)
\(984\) 0 0
\(985\) 25.9309 0.826228
\(986\) 0 0
\(987\) −8.09666 −0.257719
\(988\) 0 0
\(989\) 42.9147 1.36461
\(990\) 0 0
\(991\) 43.0138 1.36638 0.683189 0.730242i \(-0.260593\pi\)
0.683189 + 0.730242i \(0.260593\pi\)
\(992\) 0 0
\(993\) −14.4888 −0.459788
\(994\) 0 0
\(995\) −48.8199 −1.54769
\(996\) 0 0
\(997\) 39.0352 1.23626 0.618128 0.786077i \(-0.287891\pi\)
0.618128 + 0.786077i \(0.287891\pi\)
\(998\) 0 0
\(999\) −42.7360 −1.35211
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8512.2.a.bk.1.2 3
4.3 odd 2 8512.2.a.bo.1.2 3
8.3 odd 2 1064.2.a.f.1.2 3
8.5 even 2 2128.2.a.q.1.2 3
24.11 even 2 9576.2.a.ca.1.3 3
56.27 even 2 7448.2.a.bi.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1064.2.a.f.1.2 3 8.3 odd 2
2128.2.a.q.1.2 3 8.5 even 2
7448.2.a.bi.1.2 3 56.27 even 2
8512.2.a.bk.1.2 3 1.1 even 1 trivial
8512.2.a.bo.1.2 3 4.3 odd 2
9576.2.a.ca.1.3 3 24.11 even 2