Properties

Label 8512.2.a.ce
Level $8512$
Weight $2$
Character orbit 8512.a
Self dual yes
Analytic conductor $67.969$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8512,2,Mod(1,8512)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8512, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8512.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8512 = 2^{6} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8512.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.9686622005\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 14x^{4} + 9x^{3} + 52x^{2} - 19x - 27 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 4256)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} + (\beta_{4} + 1) q^{5} - q^{7} + (\beta_{2} + 2) q^{9} + ( - \beta_{5} + 1) q^{11} + (\beta_{5} + \beta_{2} - 1) q^{13} + (\beta_{5} + \beta_{4} + \beta_{3} + \cdots - 1) q^{15} + ( - \beta_{5} + \beta_{4} + 1) q^{17}+ \cdots + ( - 2 \beta_{5} + 3 \beta_{4} + \cdots + 7) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{3} + 5 q^{5} - 6 q^{7} + 11 q^{9} + 7 q^{11} - 8 q^{13} - 8 q^{15} + 6 q^{17} + 6 q^{19} - q^{21} + 2 q^{23} + 9 q^{25} + 10 q^{27} + 17 q^{29} - 18 q^{31} + 9 q^{33} - 5 q^{35} + 3 q^{37} + 2 q^{39}+ \cdots + 43 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} - 14x^{4} + 9x^{3} + 52x^{2} - 19x - 27 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 7\nu + 3 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{4} - 2\nu^{3} - 7\nu^{2} + 10\nu + 3 ) / 2 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{5} - 3\nu^{4} - 7\nu^{3} + 19\nu^{2} + 5\nu - 7 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 5 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + \beta_{2} + 7\beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 2\beta_{4} + 2\beta_{3} + 9\beta_{2} + 4\beta _1 + 36 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 2\beta_{5} + 6\beta_{4} + 13\beta_{3} + 15\beta_{2} + 56\beta _1 + 34 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.51085
−2.39702
−0.608457
0.982453
2.37796
3.15591
0 −2.51085 0 3.58240 0 −1.00000 0 3.30438 0
1.2 0 −2.39702 0 0.684008 0 −1.00000 0 2.74569 0
1.3 0 −0.608457 0 −1.54426 0 −1.00000 0 −2.62978 0
1.4 0 0.982453 0 3.55156 0 −1.00000 0 −2.03479 0
1.5 0 2.37796 0 −2.86049 0 −1.00000 0 2.65470 0
1.6 0 3.15591 0 1.58678 0 −1.00000 0 6.95979 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(7\) \( +1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8512.2.a.ce 6
4.b odd 2 1 8512.2.a.cc 6
8.b even 2 1 4256.2.a.j 6
8.d odd 2 1 4256.2.a.l yes 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4256.2.a.j 6 8.b even 2 1
4256.2.a.l yes 6 8.d odd 2 1
8512.2.a.cc 6 4.b odd 2 1
8512.2.a.ce 6 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8512))\):

\( T_{3}^{6} - T_{3}^{5} - 14T_{3}^{4} + 9T_{3}^{3} + 52T_{3}^{2} - 19T_{3} - 27 \) Copy content Toggle raw display
\( T_{5}^{6} - 5T_{5}^{5} - 7T_{5}^{4} + 54T_{5}^{3} - 15T_{5}^{2} - 101T_{5} + 61 \) Copy content Toggle raw display
\( T_{11}^{6} - 7T_{11}^{5} - 10T_{11}^{4} + 131T_{11}^{3} - 66T_{11}^{2} - 587T_{11} + 711 \) Copy content Toggle raw display
\( T_{23}^{6} - 2T_{23}^{5} - 58T_{23}^{4} - 32T_{23}^{3} + 657T_{23}^{2} + 1442T_{23} + 796 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} - T^{5} + \cdots - 27 \) Copy content Toggle raw display
$5$ \( T^{6} - 5 T^{5} + \cdots + 61 \) Copy content Toggle raw display
$7$ \( (T + 1)^{6} \) Copy content Toggle raw display
$11$ \( T^{6} - 7 T^{5} + \cdots + 711 \) Copy content Toggle raw display
$13$ \( T^{6} + 8 T^{5} + \cdots + 92 \) Copy content Toggle raw display
$17$ \( T^{6} - 6 T^{5} + \cdots + 48 \) Copy content Toggle raw display
$19$ \( (T - 1)^{6} \) Copy content Toggle raw display
$23$ \( T^{6} - 2 T^{5} + \cdots + 796 \) Copy content Toggle raw display
$29$ \( T^{6} - 17 T^{5} + \cdots - 21 \) Copy content Toggle raw display
$31$ \( T^{6} + 18 T^{5} + \cdots + 2828 \) Copy content Toggle raw display
$37$ \( T^{6} - 3 T^{5} + \cdots - 3589 \) Copy content Toggle raw display
$41$ \( T^{6} - T^{5} + \cdots + 1701 \) Copy content Toggle raw display
$43$ \( T^{6} - 11 T^{5} + \cdots + 2576 \) Copy content Toggle raw display
$47$ \( T^{6} + T^{5} + \cdots - 7291 \) Copy content Toggle raw display
$53$ \( T^{6} - 7 T^{5} + \cdots + 6383 \) Copy content Toggle raw display
$59$ \( T^{6} + 15 T^{5} + \cdots + 1587 \) Copy content Toggle raw display
$61$ \( T^{6} - 7 T^{5} + \cdots - 57779 \) Copy content Toggle raw display
$67$ \( T^{6} - 18 T^{5} + \cdots + 45148 \) Copy content Toggle raw display
$71$ \( T^{6} - 3 T^{5} + \cdots - 49 \) Copy content Toggle raw display
$73$ \( T^{6} - 18 T^{5} + \cdots - 9212 \) Copy content Toggle raw display
$79$ \( T^{6} + 15 T^{5} + \cdots + 128848 \) Copy content Toggle raw display
$83$ \( T^{6} + 2 T^{5} + \cdots + 144384 \) Copy content Toggle raw display
$89$ \( T^{6} - 13 T^{5} + \cdots - 576 \) Copy content Toggle raw display
$97$ \( T^{6} - 21 T^{5} + \cdots + 597249 \) Copy content Toggle raw display
show more
show less