Properties

Label 855.2.c.a
Level 855855
Weight 22
Character orbit 855.c
Analytic conductor 6.8276.827
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [855,2,Mod(514,855)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(855, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("855.514");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 855=32519 855 = 3^{2} \cdot 5 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 855.c (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 6.827209372826.82720937282
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+iq2+q4+(i2)q5+2iq7+3iq8+(2i+1)q102q11+2iq132q14q16+2iq17q19+(i2)q202iq22+(4i+3)q25++3iq98+O(q100) q + i q^{2} + q^{4} + ( - i - 2) q^{5} + 2 i q^{7} + 3 i q^{8} + ( - 2 i + 1) q^{10} - 2 q^{11} + 2 i q^{13} - 2 q^{14} - q^{16} + 2 i q^{17} - q^{19} + ( - i - 2) q^{20} - 2 i q^{22} + (4 i + 3) q^{25} + \cdots + 3 i q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+2q44q5+2q104q114q142q162q194q20+6q254q2612q298q314q34+4q35+6q404q414q44+6q498q50++4q95+O(q100) 2 q + 2 q^{4} - 4 q^{5} + 2 q^{10} - 4 q^{11} - 4 q^{14} - 2 q^{16} - 2 q^{19} - 4 q^{20} + 6 q^{25} - 4 q^{26} - 12 q^{29} - 8 q^{31} - 4 q^{34} + 4 q^{35} + 6 q^{40} - 4 q^{41} - 4 q^{44} + 6 q^{49} - 8 q^{50}+ \cdots + 4 q^{95}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/855Z)×\left(\mathbb{Z}/855\mathbb{Z}\right)^\times.

nn 172172 191191 496496
χ(n)\chi(n) 1-1 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
514.1
1.00000i
1.00000i
1.00000i 0 1.00000 −2.00000 + 1.00000i 0 2.00000i 3.00000i 0 1.00000 + 2.00000i
514.2 1.00000i 0 1.00000 −2.00000 1.00000i 0 2.00000i 3.00000i 0 1.00000 2.00000i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 855.2.c.a 2
3.b odd 2 1 855.2.c.c yes 2
5.b even 2 1 inner 855.2.c.a 2
5.c odd 4 1 4275.2.a.d 1
5.c odd 4 1 4275.2.a.n 1
15.d odd 2 1 855.2.c.c yes 2
15.e even 4 1 4275.2.a.g 1
15.e even 4 1 4275.2.a.k 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
855.2.c.a 2 1.a even 1 1 trivial
855.2.c.a 2 5.b even 2 1 inner
855.2.c.c yes 2 3.b odd 2 1
855.2.c.c yes 2 15.d odd 2 1
4275.2.a.d 1 5.c odd 4 1
4275.2.a.g 1 15.e even 4 1
4275.2.a.k 1 15.e even 4 1
4275.2.a.n 1 5.c odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(855,[χ])S_{2}^{\mathrm{new}}(855, [\chi]):

T22+1 T_{2}^{2} + 1 Copy content Toggle raw display
T11+2 T_{11} + 2 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+1 T^{2} + 1 Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2+4T+5 T^{2} + 4T + 5 Copy content Toggle raw display
77 T2+4 T^{2} + 4 Copy content Toggle raw display
1111 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
1313 T2+4 T^{2} + 4 Copy content Toggle raw display
1717 T2+4 T^{2} + 4 Copy content Toggle raw display
1919 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
3131 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
3737 T2+4 T^{2} + 4 Copy content Toggle raw display
4141 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
4343 T2+100 T^{2} + 100 Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T2+100 T^{2} + 100 Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 (T+10)2 (T + 10)^{2} Copy content Toggle raw display
6767 T2+16 T^{2} + 16 Copy content Toggle raw display
7171 (T8)2 (T - 8)^{2} Copy content Toggle raw display
7373 T2+16 T^{2} + 16 Copy content Toggle raw display
7979 (T8)2 (T - 8)^{2} Copy content Toggle raw display
8383 T2+144 T^{2} + 144 Copy content Toggle raw display
8989 (T10)2 (T - 10)^{2} Copy content Toggle raw display
9797 T2+324 T^{2} + 324 Copy content Toggle raw display
show more
show less