Properties

Label 8575.2.a.a.1.3
Level $8575$
Weight $2$
Character 8575.1
Self dual yes
Analytic conductor $68.472$
Analytic rank $1$
Dimension $3$
CM discriminant -7
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8575,2,Mod(1,8575)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8575, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8575.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8575 = 5^{2} \cdot 7^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8575.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(68.4717197332\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 343)
Fricke sign: \(+1\)
Sato-Tate group: $N(\mathrm{U}(1))$

Embedding invariants

Embedding label 1.3
Root \(1.80194\) of defining polynomial
Character \(\chi\) \(=\) 8575.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.04892 q^{2} +2.19806 q^{4} +0.405813 q^{8} -3.00000 q^{9} +O(q^{10})\) \(q+2.04892 q^{2} +2.19806 q^{4} +0.405813 q^{8} -3.00000 q^{9} +4.26875 q^{11} -3.56465 q^{16} -6.14675 q^{18} +8.74632 q^{22} -9.12498 q^{23} +9.52111 q^{29} -8.11529 q^{32} -6.59419 q^{36} -11.6528 q^{37} -8.51573 q^{43} +9.38298 q^{44} -18.6963 q^{46} -4.41789 q^{53} +19.5080 q^{58} -9.49827 q^{64} +9.91723 q^{67} -16.7114 q^{71} -1.21744 q^{72} -23.8756 q^{74} -0.320060 q^{79} +9.00000 q^{81} -17.4480 q^{86} +1.73232 q^{88} -20.0573 q^{92} -12.8062 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} + 11 q^{4} - 12 q^{8} - 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - 3 q^{2} + 11 q^{4} - 12 q^{8} - 9 q^{9} + 5 q^{11} + 11 q^{16} + 9 q^{18} + 9 q^{22} - 3 q^{23} + 13 q^{29} - 22 q^{32} - 33 q^{36} - 17 q^{37} - 13 q^{43} + 2 q^{44} - 32 q^{46} - 19 q^{53} + 8 q^{58} + 23 q^{67} - q^{71} + 36 q^{72} - 11 q^{74} - 25 q^{79} + 27 q^{81} - 8 q^{86} + 29 q^{88} - 4 q^{92} - 15 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.04892 1.44880 0.724402 0.689378i \(-0.242116\pi\)
0.724402 + 0.689378i \(0.242116\pi\)
\(3\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(4\) 2.19806 1.09903
\(5\) 0 0
\(6\) 0 0
\(7\) 0 0
\(8\) 0.405813 0.143477
\(9\) −3.00000 −1.00000
\(10\) 0 0
\(11\) 4.26875 1.28708 0.643538 0.765414i \(-0.277466\pi\)
0.643538 + 0.765414i \(0.277466\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −3.56465 −0.891162
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) −6.14675 −1.44880
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 8.74632 1.86472
\(23\) −9.12498 −1.90269 −0.951345 0.308127i \(-0.900298\pi\)
−0.951345 + 0.308127i \(0.900298\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 9.52111 1.76803 0.884013 0.467463i \(-0.154832\pi\)
0.884013 + 0.467463i \(0.154832\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) −8.11529 −1.43459
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) −6.59419 −1.09903
\(37\) −11.6528 −1.91571 −0.957854 0.287257i \(-0.907257\pi\)
−0.957854 + 0.287257i \(0.907257\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) −8.51573 −1.29864 −0.649318 0.760517i \(-0.724946\pi\)
−0.649318 + 0.760517i \(0.724946\pi\)
\(44\) 9.38298 1.41454
\(45\) 0 0
\(46\) −18.6963 −2.75662
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −4.41789 −0.606845 −0.303422 0.952856i \(-0.598129\pi\)
−0.303422 + 0.952856i \(0.598129\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 19.5080 2.56152
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −9.49827 −1.18728
\(65\) 0 0
\(66\) 0 0
\(67\) 9.91723 1.21158 0.605791 0.795624i \(-0.292857\pi\)
0.605791 + 0.795624i \(0.292857\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −16.7114 −1.98328 −0.991639 0.129042i \(-0.958810\pi\)
−0.991639 + 0.129042i \(0.958810\pi\)
\(72\) −1.21744 −0.143477
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) −23.8756 −2.77548
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −0.320060 −0.0360096 −0.0180048 0.999838i \(-0.505731\pi\)
−0.0180048 + 0.999838i \(0.505731\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −17.4480 −1.88147
\(87\) 0 0
\(88\) 1.73232 0.184665
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −20.0573 −2.09112
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) 0 0
\(99\) −12.8062 −1.28708
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −9.05190 −0.879198
\(107\) 8.33273 0.805556 0.402778 0.915298i \(-0.368045\pi\)
0.402778 + 0.915298i \(0.368045\pi\)
\(108\) 0 0
\(109\) −20.8092 −1.99316 −0.996582 0.0826150i \(-0.973673\pi\)
−0.996582 + 0.0826150i \(0.973673\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −20.1903 −1.89934 −0.949671 0.313248i \(-0.898583\pi\)
−0.949671 + 0.313248i \(0.898583\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 20.9280 1.94311
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 7.22223 0.656566
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 19.0368 1.68925 0.844623 0.535362i \(-0.179825\pi\)
0.844623 + 0.535362i \(0.179825\pi\)
\(128\) −3.23059 −0.285546
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 20.3196 1.75534
\(135\) 0 0
\(136\) 0 0
\(137\) −10.3134 −0.881129 −0.440565 0.897721i \(-0.645222\pi\)
−0.440565 + 0.897721i \(0.645222\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −34.2403 −2.87338
\(143\) 0 0
\(144\) 10.6939 0.891162
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) −25.6136 −2.10542
\(149\) 5.42221 0.444204 0.222102 0.975023i \(-0.428708\pi\)
0.222102 + 0.975023i \(0.428708\pi\)
\(150\) 0 0
\(151\) 10.4993 0.854424 0.427212 0.904152i \(-0.359496\pi\)
0.427212 + 0.904152i \(0.359496\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) −0.655777 −0.0521708
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 18.4403 1.44880
\(163\) −24.9071 −1.95087 −0.975436 0.220283i \(-0.929302\pi\)
−0.975436 + 0.220283i \(0.929302\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) −18.7181 −1.42724
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −15.2166 −1.14699
\(177\) 0 0
\(178\) 0 0
\(179\) 7.87561 0.588651 0.294325 0.955705i \(-0.404905\pi\)
0.294325 + 0.955705i \(0.404905\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −3.70304 −0.272992
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −27.5743 −1.99521 −0.997604 0.0691764i \(-0.977963\pi\)
−0.997604 + 0.0691764i \(0.977963\pi\)
\(192\) 0 0
\(193\) −27.7711 −1.99901 −0.999503 0.0315342i \(-0.989961\pi\)
−0.999503 + 0.0315342i \(0.989961\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 7.93661 0.565460 0.282730 0.959200i \(-0.408760\pi\)
0.282730 + 0.959200i \(0.408760\pi\)
\(198\) −26.2389 −1.86472
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 27.3749 1.90269
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −28.1672 −1.93911 −0.969555 0.244874i \(-0.921253\pi\)
−0.969555 + 0.244874i \(0.921253\pi\)
\(212\) −9.71081 −0.666941
\(213\) 0 0
\(214\) 17.0731 1.16709
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) −42.6364 −2.88770
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −41.3682 −2.75177
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 3.86379 0.253670
\(233\) 29.0049 1.90017 0.950087 0.311985i \(-0.100994\pi\)
0.950087 + 0.311985i \(0.100994\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −10.7095 −0.692739 −0.346369 0.938098i \(-0.612586\pi\)
−0.346369 + 0.938098i \(0.612586\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) 14.7977 0.951235
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) −38.9523 −2.44891
\(254\) 39.0049 2.44739
\(255\) 0 0
\(256\) 12.3773 0.773584
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −28.5633 −1.76803
\(262\) 0 0
\(263\) 1.96184 0.120972 0.0604860 0.998169i \(-0.480735\pi\)
0.0604860 + 0.998169i \(0.480735\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 21.7987 1.33157
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −21.1312 −1.27658
\(275\) 0 0
\(276\) 0 0
\(277\) 28.7278 1.72609 0.863043 0.505131i \(-0.168556\pi\)
0.863043 + 0.505131i \(0.168556\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 26.4209 1.57614 0.788069 0.615587i \(-0.211081\pi\)
0.788069 + 0.615587i \(0.211081\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) −36.7327 −2.17968
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 24.3459 1.43459
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −4.72886 −0.274859
\(297\) 0 0
\(298\) 11.1097 0.643565
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 21.5123 1.23789
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −0.703512 −0.0395756
\(317\) −17.8834 −1.00443 −0.502215 0.864743i \(-0.667482\pi\)
−0.502215 + 0.864743i \(0.667482\pi\)
\(318\) 0 0
\(319\) 40.6432 2.27558
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 19.7826 1.09903
\(325\) 0 0
\(326\) −51.0325 −2.82643
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 26.5827 1.46112 0.730559 0.682850i \(-0.239260\pi\)
0.730559 + 0.682850i \(0.239260\pi\)
\(332\) 0 0
\(333\) 34.9584 1.91571
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −13.9597 −0.760434 −0.380217 0.924897i \(-0.624151\pi\)
−0.380217 + 0.924897i \(0.624151\pi\)
\(338\) −26.6359 −1.44880
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) −3.45580 −0.186324
\(345\) 0 0
\(346\) 0 0
\(347\) −4.00000 −0.214731 −0.107366 0.994220i \(-0.534242\pi\)
−0.107366 + 0.994220i \(0.534242\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −34.6422 −1.84643
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 16.1365 0.852839
\(359\) 8.00000 0.422224 0.211112 0.977462i \(-0.432292\pi\)
0.211112 + 0.977462i \(0.432292\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 32.5273 1.69560
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 11.1056 0.575026 0.287513 0.957777i \(-0.407171\pi\)
0.287513 + 0.957777i \(0.407171\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −12.0000 −0.616399 −0.308199 0.951322i \(-0.599726\pi\)
−0.308199 + 0.951322i \(0.599726\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −56.4975 −2.89067
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −56.9006 −2.89617
\(387\) 25.5472 1.29864
\(388\) 0 0
\(389\) 29.6450 1.50306 0.751531 0.659698i \(-0.229316\pi\)
0.751531 + 0.659698i \(0.229316\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 16.2615 0.819240
\(395\) 0 0
\(396\) −28.1489 −1.41454
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 21.4494 1.07113 0.535565 0.844494i \(-0.320099\pi\)
0.535565 + 0.844494i \(0.320099\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −49.7429 −2.46566
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 56.0890 2.75662
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 37.2006 1.81304 0.906522 0.422158i \(-0.138727\pi\)
0.906522 + 0.422158i \(0.138727\pi\)
\(422\) −57.7123 −2.80939
\(423\) 0 0
\(424\) −1.79284 −0.0870680
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 18.3159 0.885331
\(429\) 0 0
\(430\) 0 0
\(431\) −17.3515 −0.835793 −0.417897 0.908495i \(-0.637233\pi\)
−0.417897 + 0.908495i \(0.637233\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −45.7400 −2.19055
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 20.0000 0.950229 0.475114 0.879924i \(-0.342407\pi\)
0.475114 + 0.879924i \(0.342407\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −20.1691 −0.951839 −0.475920 0.879489i \(-0.657885\pi\)
−0.475920 + 0.879489i \(0.657885\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −44.3795 −2.08744
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −29.3556 −1.37320 −0.686598 0.727037i \(-0.740897\pi\)
−0.686598 + 0.727037i \(0.740897\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 6.57566 0.305597 0.152798 0.988257i \(-0.451171\pi\)
0.152798 + 0.988257i \(0.451171\pi\)
\(464\) −33.9394 −1.57560
\(465\) 0 0
\(466\) 59.4286 2.75298
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −36.3515 −1.67144
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 13.2537 0.606845
\(478\) −21.9428 −1.00364
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 15.8749 0.721586
\(485\) 0 0
\(486\) 0 0
\(487\) 24.0000 1.08754 0.543772 0.839233i \(-0.316996\pi\)
0.543772 + 0.839233i \(0.316996\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −41.9385 −1.89266 −0.946330 0.323203i \(-0.895240\pi\)
−0.946330 + 0.323203i \(0.895240\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −33.8049 −1.51332 −0.756658 0.653811i \(-0.773169\pi\)
−0.756658 + 0.653811i \(0.773169\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −79.8100 −3.54799
\(507\) 0 0
\(508\) 41.8442 1.85653
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 31.8213 1.40632
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) −58.5239 −2.56152
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 4.01964 0.175265
\(527\) 0 0
\(528\) 0 0
\(529\) 60.2653 2.62023
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 4.02454 0.173834
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −46.0210 −1.97860 −0.989299 0.145900i \(-0.953392\pi\)
−0.989299 + 0.145900i \(0.953392\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 25.2674 1.08036 0.540178 0.841550i \(-0.318357\pi\)
0.540178 + 0.841550i \(0.318357\pi\)
\(548\) −22.6694 −0.968389
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 58.8609 2.50076
\(555\) 0 0
\(556\) 0 0
\(557\) 46.0364 1.95062 0.975312 0.220833i \(-0.0708776\pi\)
0.975312 + 0.220833i \(0.0708776\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 54.1342 2.28351
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) −6.78171 −0.284554
\(569\) 46.8133 1.96251 0.981257 0.192701i \(-0.0617249\pi\)
0.981257 + 0.192701i \(0.0617249\pi\)
\(570\) 0 0
\(571\) −24.2669 −1.01554 −0.507770 0.861493i \(-0.669530\pi\)
−0.507770 + 0.861493i \(0.669530\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 28.4948 1.18728
\(577\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(578\) −34.8316 −1.44880
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −18.8589 −0.781055
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 41.5381 1.70721
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 11.9183 0.488195
\(597\) 0 0
\(598\) 0 0
\(599\) 32.0000 1.30748 0.653742 0.756717i \(-0.273198\pi\)
0.653742 + 0.756717i \(0.273198\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(602\) 0 0
\(603\) −29.7517 −1.21158
\(604\) 23.0782 0.939038
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 22.4972 0.908654 0.454327 0.890835i \(-0.349880\pi\)
0.454327 + 0.890835i \(0.349880\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −5.05802 −0.203628 −0.101814 0.994803i \(-0.532465\pi\)
−0.101814 + 0.994803i \(0.532465\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 47.2094 1.87938 0.939688 0.342032i \(-0.111115\pi\)
0.939688 + 0.342032i \(0.111115\pi\)
\(632\) −0.129885 −0.00516653
\(633\) 0 0
\(634\) −36.6416 −1.45522
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 83.2746 3.29687
\(639\) 50.1342 1.98328
\(640\) 0 0
\(641\) 45.2288 1.78643 0.893215 0.449630i \(-0.148444\pi\)
0.893215 + 0.449630i \(0.148444\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 3.65232 0.143477
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −54.7473 −2.14407
\(653\) 0.808379 0.0316343 0.0158172 0.999875i \(-0.494965\pi\)
0.0158172 + 0.999875i \(0.494965\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 6.74823 0.262874 0.131437 0.991325i \(-0.458041\pi\)
0.131437 + 0.991325i \(0.458041\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) 54.4657 2.11687
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 71.6268 2.77548
\(667\) −86.8799 −3.36400
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 45.3962 1.74990 0.874948 0.484216i \(-0.160895\pi\)
0.874948 + 0.484216i \(0.160895\pi\)
\(674\) −28.6023 −1.10172
\(675\) 0 0
\(676\) −28.5748 −1.09903
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −16.7299 −0.640153 −0.320076 0.947392i \(-0.603709\pi\)
−0.320076 + 0.947392i \(0.603709\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 30.3556 1.15730
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −8.19567 −0.311103
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −52.0334 −1.96527 −0.982637 0.185540i \(-0.940597\pi\)
−0.982637 + 0.185540i \(0.940597\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −40.5457 −1.52813
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 28.3648 1.06526 0.532631 0.846348i \(-0.321203\pi\)
0.532631 + 0.846348i \(0.321203\pi\)
\(710\) 0 0
\(711\) 0.960180 0.0360096
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 17.3111 0.646945
\(717\) 0 0
\(718\) 16.3913 0.611719
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −38.9294 −1.44880
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 74.0519 2.72959
\(737\) 42.3342 1.55940
\(738\) 0 0
\(739\) −44.8327 −1.64920 −0.824598 0.565719i \(-0.808599\pi\)
−0.824598 + 0.565719i \(0.808599\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 40.0000 1.46746 0.733729 0.679442i \(-0.237778\pi\)
0.733729 + 0.679442i \(0.237778\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 22.7545 0.833100
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −15.1132 −0.551487 −0.275744 0.961231i \(-0.588924\pi\)
−0.275744 + 0.961231i \(0.588924\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 25.3943 0.922972 0.461486 0.887147i \(-0.347316\pi\)
0.461486 + 0.887147i \(0.347316\pi\)
\(758\) −24.5870 −0.893040
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −60.6101 −2.19280
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −61.0425 −2.19697
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 52.3441 1.88147
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 60.7402 2.17764
\(779\) 0 0
\(780\) 0 0
\(781\) −71.3368 −2.55263
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 17.4452 0.621458
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −5.19695 −0.184665
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 43.9480 1.55186
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 49.7265 1.74829 0.874145 0.485666i \(-0.161423\pi\)
0.874145 + 0.485666i \(0.161423\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −101.919 −3.57226
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 3.13765 0.109505 0.0547524 0.998500i \(-0.482563\pi\)
0.0547524 + 0.998500i \(0.482563\pi\)
\(822\) 0 0
\(823\) 49.4941 1.72526 0.862628 0.505840i \(-0.168817\pi\)
0.862628 + 0.505840i \(0.168817\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −44.0000 −1.53003 −0.765015 0.644013i \(-0.777268\pi\)
−0.765015 + 0.644013i \(0.777268\pi\)
\(828\) 60.1718 2.09112
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 61.6515 2.12591
\(842\) 76.2209 2.62675
\(843\) 0 0
\(844\) −61.9132 −2.13114
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 15.7482 0.540797
\(849\) 0 0
\(850\) 0 0
\(851\) 106.332 3.64500
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 3.38153 0.115578
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −35.5518 −1.21090
\(863\) 32.4626 1.10504 0.552520 0.833500i \(-0.313666\pi\)
0.552520 + 0.833500i \(0.313666\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −1.36626 −0.0463471
\(870\) 0 0
\(871\) 0 0
\(872\) −8.44466 −0.285972
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −6.35211 −0.214496 −0.107248 0.994232i \(-0.534204\pi\)
−0.107248 + 0.994232i \(0.534204\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) −59.4174 −1.99956 −0.999778 0.0210840i \(-0.993288\pi\)
−0.999778 + 0.0210840i \(0.993288\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 40.9783 1.37669
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 38.4187 1.28708
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −41.3248 −1.37903
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) −8.19349 −0.272511
\(905\) 0 0
\(906\) 0 0
\(907\) 8.19242 0.272025 0.136012 0.990707i \(-0.456571\pi\)
0.136012 + 0.990707i \(0.456571\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 53.1868 1.76216 0.881079 0.472969i \(-0.156818\pi\)
0.881079 + 0.472969i \(0.156818\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −60.1471 −1.98949
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −48.0000 −1.58337 −0.791687 0.610927i \(-0.790797\pi\)
−0.791687 + 0.610927i \(0.790797\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 13.4730 0.442750
\(927\) 0 0
\(928\) −77.2666 −2.53640
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 63.7546 2.08835
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) −74.4813 −2.42159
\(947\) 7.23549 0.235122 0.117561 0.993066i \(-0.462492\pi\)
0.117561 + 0.993066i \(0.462492\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −7.72912 −0.250371 −0.125185 0.992133i \(-0.539953\pi\)
−0.125185 + 0.992133i \(0.539953\pi\)
\(954\) 27.1557 0.879198
\(955\) 0 0
\(956\) −23.5401 −0.761341
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) −24.9982 −0.805556
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −12.2940 −0.395348 −0.197674 0.980268i \(-0.563339\pi\)
−0.197674 + 0.980268i \(0.563339\pi\)
\(968\) 2.93087 0.0942019
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 49.1740 1.57564
\(975\) 0 0
\(976\) 0 0
\(977\) −31.0347 −0.992888 −0.496444 0.868069i \(-0.665361\pi\)
−0.496444 + 0.868069i \(0.665361\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 62.4277 1.99316
\(982\) −85.9286 −2.74209
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 77.7059 2.47090
\(990\) 0 0
\(991\) 30.5439 0.970260 0.485130 0.874442i \(-0.338772\pi\)
0.485130 + 0.874442i \(0.338772\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) −69.2635 −2.19250
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8575.2.a.a.1.3 3
5.4 even 2 343.2.a.b.1.1 3
7.6 odd 2 CM 8575.2.a.a.1.3 3
15.14 odd 2 3087.2.a.a.1.3 3
20.19 odd 2 5488.2.a.c.1.2 3
35.4 even 6 343.2.c.a.324.3 6
35.9 even 6 343.2.c.a.18.3 6
35.19 odd 6 343.2.c.a.18.3 6
35.24 odd 6 343.2.c.a.324.3 6
35.34 odd 2 343.2.a.b.1.1 3
105.104 even 2 3087.2.a.a.1.3 3
140.139 even 2 5488.2.a.c.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
343.2.a.b.1.1 3 5.4 even 2
343.2.a.b.1.1 3 35.34 odd 2
343.2.c.a.18.3 6 35.9 even 6
343.2.c.a.18.3 6 35.19 odd 6
343.2.c.a.324.3 6 35.4 even 6
343.2.c.a.324.3 6 35.24 odd 6
3087.2.a.a.1.3 3 15.14 odd 2
3087.2.a.a.1.3 3 105.104 even 2
5488.2.a.c.1.2 3 20.19 odd 2
5488.2.a.c.1.2 3 140.139 even 2
8575.2.a.a.1.3 3 1.1 even 1 trivial
8575.2.a.a.1.3 3 7.6 odd 2 CM