Properties

Label 859.2.f.a
Level $859$
Weight $2$
Character orbit 859.f
Analytic conductor $6.859$
Analytic rank $0$
Dimension $840$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [859,2,Mod(100,859)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(859, base_ring=CyclotomicField(26))
 
chi = DirichletCharacter(H, H._module([22]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("859.100");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 859 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 859.f (of order \(13\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.85914953363\)
Analytic rank: \(0\)
Dimension: \(840\)
Relative dimension: \(70\) over \(\Q(\zeta_{13})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{13}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 840 q - 10 q^{2} - 5 q^{3} - 74 q^{4} - 20 q^{5} + 5 q^{6} - 3 q^{7} + 2 q^{8} - 69 q^{9}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 840 q - 10 q^{2} - 5 q^{3} - 74 q^{4} - 20 q^{5} + 5 q^{6} - 3 q^{7} + 2 q^{8} - 69 q^{9} + 7 q^{10} - 25 q^{11} - 58 q^{12} - 10 q^{13} + 9 q^{14} - 148 q^{15} - 40 q^{16} - q^{17} + 5 q^{18} - 38 q^{19} - 92 q^{20} + 17 q^{21} + 15 q^{22} - 18 q^{23} + 27 q^{24} - 66 q^{25} + 7 q^{26} - 17 q^{27} + 29 q^{28} + 7 q^{29} - 5 q^{30} + 27 q^{31} + 20 q^{32} + 49 q^{33} + 5 q^{34} + 43 q^{35} + 32 q^{36} - 86 q^{37} - 13 q^{38} + 2 q^{39} + 59 q^{40} + 9 q^{41} + 72 q^{42} + 40 q^{43} + 44 q^{44} - 49 q^{45} + 52 q^{46} - 22 q^{47} + 159 q^{48} - 11 q^{49} - 73 q^{50} + 65 q^{51} + 73 q^{52} + 25 q^{53} + 11 q^{54} + 81 q^{55} - 302 q^{56} - 192 q^{57} + 27 q^{58} - 23 q^{59} - 62 q^{60} + 26 q^{61} + 79 q^{62} + 93 q^{63} - 78 q^{64} + 10 q^{65} + 74 q^{66} + 65 q^{67} + 69 q^{68} - 57 q^{69} + 19 q^{70} + 21 q^{71} - 234 q^{72} - 95 q^{73} + 25 q^{74} - 120 q^{75} - 18 q^{76} - 95 q^{77} - 3 q^{78} - 13 q^{79} - 244 q^{80} - 95 q^{81} - 19 q^{82} - 16 q^{83} - 48 q^{84} + 99 q^{85} + 45 q^{86} - 123 q^{87} + 110 q^{88} + 49 q^{89} + 217 q^{90} - 82 q^{91} + 3 q^{92} - 57 q^{93} - 77 q^{94} - 12 q^{95} + 56 q^{96} + 5 q^{97} + 5 q^{98} - 121 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
100.1 −2.48316 + 1.30326i −0.107649 + 0.155957i 3.33145 4.82644i 0.315645 + 0.457291i 0.0640574 0.527560i −0.162393 1.33743i −1.30634 + 10.7587i 1.05108 + 2.77147i −1.37977 0.724157i
100.2 −2.33911 + 1.22766i 1.03151 1.49440i 2.82816 4.09729i −2.42491 3.51309i −0.578201 + 4.76191i 0.415688 + 3.42350i −0.948446 + 7.81115i −0.105405 0.277931i 9.98501 + 5.24054i
100.3 −2.32231 + 1.21884i −1.57145 + 2.27663i 2.77143 4.01511i 1.33663 + 1.93644i 0.874530 7.20240i −0.169976 1.39987i −0.910065 + 7.49506i −1.64980 4.35017i −5.46428 2.86788i
100.4 −2.20441 + 1.15696i 1.29739 1.87959i 2.38474 3.45489i −0.179952 0.260706i −0.685356 + 5.64442i 0.00469214 + 0.0386433i −0.659588 + 5.43220i −0.785826 2.07205i 0.698316 + 0.366504i
100.5 −2.15874 + 1.13300i −0.194366 + 0.281587i 2.24036 3.24573i 0.305534 + 0.442643i 0.100548 0.828091i 0.433769 + 3.57241i −0.571237 + 4.70456i 1.02230 + 2.69559i −1.16108 0.609383i
100.6 −2.15192 + 1.12941i −0.589027 + 0.853353i 2.21904 3.21484i −0.851299 1.23332i 0.303749 2.50160i −0.487978 4.01886i −0.558435 + 4.59913i 0.682556 + 1.79975i 3.22485 + 1.69253i
100.7 −2.07491 + 1.08900i 0.871263 1.26224i 1.98321 2.87317i 1.93783 + 2.80743i −0.433214 + 3.56784i −0.369958 3.04688i −0.421190 + 3.46881i 0.229659 + 0.605561i −7.07810 3.71488i
100.8 −2.05140 + 1.07666i −1.67977 + 2.43357i 1.91291 2.77132i −1.51519 2.19513i 0.825761 6.80075i −0.0387319 0.318985i −0.381856 + 3.14487i −2.03682 5.37064i 5.47165 + 2.87174i
100.9 −2.04140 + 1.07141i −1.39826 + 2.02573i 1.88326 2.72837i −0.257120 0.372503i 0.684023 5.63344i 0.629477 + 5.18421i −0.365492 + 3.01010i −1.08464 2.85997i 0.923988 + 0.484946i
100.10 −1.96210 + 1.02979i −0.0513722 + 0.0744255i 1.65324 2.39513i −1.35574 1.96412i 0.0241548 0.198933i 0.0102623 + 0.0845172i −0.243141 + 2.00245i 1.06091 + 2.79740i 4.68272 + 2.45768i
100.11 −1.87296 + 0.983006i −1.03794 + 1.50372i 1.40555 2.03629i 2.19485 + 3.17979i 0.465860 3.83670i 0.0206728 + 0.170256i −0.120925 + 0.995909i −0.120026 0.316484i −7.23662 3.79807i
100.12 −1.74565 + 0.916187i −0.487732 + 0.706602i 1.07176 1.55271i −2.01300 2.91634i 0.204029 1.68033i −0.327841 2.70001i 0.0269275 0.221768i 0.802411 + 2.11578i 6.18590 + 3.24661i
100.13 −1.74103 + 0.913764i 0.895484 1.29733i 1.06010 1.53582i 1.65604 + 2.39919i −0.373610 + 3.07696i 0.380352 + 3.13248i 0.0317215 0.261250i 0.182634 + 0.481567i −5.07552 2.66384i
100.14 −1.70030 + 0.892384i 1.83435 2.65752i 0.958526 1.38866i −0.866259 1.25499i −0.747414 + 6.15551i −0.526271 4.33423i 0.0723652 0.595981i −2.63374 6.94460i 2.59283 + 1.36082i
100.15 −1.63364 + 0.857399i 1.08831 1.57669i 0.797506 1.15539i −0.352636 0.510881i −0.426053 + 3.50886i −0.0548376 0.451628i 0.132564 1.09177i −0.237723 0.626824i 1.01411 + 0.532244i
100.16 −1.45273 + 0.762453i −1.72610 + 2.50069i 0.392967 0.569310i −0.441076 0.639009i 0.600905 4.94890i −0.419640 3.45605i 0.258716 2.13072i −2.21020 5.82783i 1.12798 + 0.592009i
100.17 −1.42855 + 0.749761i 1.40492 2.03538i 0.342484 0.496173i 1.21140 + 1.75502i −0.480952 + 3.96099i 0.541445 + 4.45920i 0.271692 2.23758i −1.10515 2.91404i −3.04640 1.59887i
100.18 −1.42185 + 0.746244i 1.80935 2.62130i 0.328646 0.476126i −1.98586 2.87701i −0.616497 + 5.07731i 0.446566 + 3.67780i 0.275132 2.26592i −2.53364 6.68065i 4.97054 + 2.60874i
100.19 −1.40677 + 0.738332i −0.456049 + 0.660700i 0.297748 0.431363i 2.02811 + 2.93823i 0.153741 1.26617i −0.0376523 0.310095i 0.282631 2.32768i 0.835270 + 2.20243i −5.02248 2.63600i
100.20 −1.37011 + 0.719088i −0.554289 + 0.803027i 0.223979 0.324490i 0.478083 + 0.692622i 0.181989 1.49882i 0.117665 + 0.969059i 0.299485 2.46648i 0.726199 + 1.91483i −1.15308 0.605184i
See next 80 embeddings (of 840 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 100.70
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
859.f even 13 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 859.2.f.a 840
859.f even 13 1 inner 859.2.f.a 840
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
859.2.f.a 840 1.a even 1 1 trivial
859.2.f.a 840 859.f even 13 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(859, [\chi])\).