Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [859,2,Mod(100,859)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(859, base_ring=CyclotomicField(26))
chi = DirichletCharacter(H, H._module([22]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("859.100");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 859 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 859.f (of order \(13\), degree \(12\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(6.85914953363\) |
Analytic rank: | \(0\) |
Dimension: | \(840\) |
Relative dimension: | \(70\) over \(\Q(\zeta_{13})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{13}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
100.1 | −2.48316 | + | 1.30326i | −0.107649 | + | 0.155957i | 3.33145 | − | 4.82644i | 0.315645 | + | 0.457291i | 0.0640574 | − | 0.527560i | −0.162393 | − | 1.33743i | −1.30634 | + | 10.7587i | 1.05108 | + | 2.77147i | −1.37977 | − | 0.724157i |
100.2 | −2.33911 | + | 1.22766i | 1.03151 | − | 1.49440i | 2.82816 | − | 4.09729i | −2.42491 | − | 3.51309i | −0.578201 | + | 4.76191i | 0.415688 | + | 3.42350i | −0.948446 | + | 7.81115i | −0.105405 | − | 0.277931i | 9.98501 | + | 5.24054i |
100.3 | −2.32231 | + | 1.21884i | −1.57145 | + | 2.27663i | 2.77143 | − | 4.01511i | 1.33663 | + | 1.93644i | 0.874530 | − | 7.20240i | −0.169976 | − | 1.39987i | −0.910065 | + | 7.49506i | −1.64980 | − | 4.35017i | −5.46428 | − | 2.86788i |
100.4 | −2.20441 | + | 1.15696i | 1.29739 | − | 1.87959i | 2.38474 | − | 3.45489i | −0.179952 | − | 0.260706i | −0.685356 | + | 5.64442i | 0.00469214 | + | 0.0386433i | −0.659588 | + | 5.43220i | −0.785826 | − | 2.07205i | 0.698316 | + | 0.366504i |
100.5 | −2.15874 | + | 1.13300i | −0.194366 | + | 0.281587i | 2.24036 | − | 3.24573i | 0.305534 | + | 0.442643i | 0.100548 | − | 0.828091i | 0.433769 | + | 3.57241i | −0.571237 | + | 4.70456i | 1.02230 | + | 2.69559i | −1.16108 | − | 0.609383i |
100.6 | −2.15192 | + | 1.12941i | −0.589027 | + | 0.853353i | 2.21904 | − | 3.21484i | −0.851299 | − | 1.23332i | 0.303749 | − | 2.50160i | −0.487978 | − | 4.01886i | −0.558435 | + | 4.59913i | 0.682556 | + | 1.79975i | 3.22485 | + | 1.69253i |
100.7 | −2.07491 | + | 1.08900i | 0.871263 | − | 1.26224i | 1.98321 | − | 2.87317i | 1.93783 | + | 2.80743i | −0.433214 | + | 3.56784i | −0.369958 | − | 3.04688i | −0.421190 | + | 3.46881i | 0.229659 | + | 0.605561i | −7.07810 | − | 3.71488i |
100.8 | −2.05140 | + | 1.07666i | −1.67977 | + | 2.43357i | 1.91291 | − | 2.77132i | −1.51519 | − | 2.19513i | 0.825761 | − | 6.80075i | −0.0387319 | − | 0.318985i | −0.381856 | + | 3.14487i | −2.03682 | − | 5.37064i | 5.47165 | + | 2.87174i |
100.9 | −2.04140 | + | 1.07141i | −1.39826 | + | 2.02573i | 1.88326 | − | 2.72837i | −0.257120 | − | 0.372503i | 0.684023 | − | 5.63344i | 0.629477 | + | 5.18421i | −0.365492 | + | 3.01010i | −1.08464 | − | 2.85997i | 0.923988 | + | 0.484946i |
100.10 | −1.96210 | + | 1.02979i | −0.0513722 | + | 0.0744255i | 1.65324 | − | 2.39513i | −1.35574 | − | 1.96412i | 0.0241548 | − | 0.198933i | 0.0102623 | + | 0.0845172i | −0.243141 | + | 2.00245i | 1.06091 | + | 2.79740i | 4.68272 | + | 2.45768i |
100.11 | −1.87296 | + | 0.983006i | −1.03794 | + | 1.50372i | 1.40555 | − | 2.03629i | 2.19485 | + | 3.17979i | 0.465860 | − | 3.83670i | 0.0206728 | + | 0.170256i | −0.120925 | + | 0.995909i | −0.120026 | − | 0.316484i | −7.23662 | − | 3.79807i |
100.12 | −1.74565 | + | 0.916187i | −0.487732 | + | 0.706602i | 1.07176 | − | 1.55271i | −2.01300 | − | 2.91634i | 0.204029 | − | 1.68033i | −0.327841 | − | 2.70001i | 0.0269275 | − | 0.221768i | 0.802411 | + | 2.11578i | 6.18590 | + | 3.24661i |
100.13 | −1.74103 | + | 0.913764i | 0.895484 | − | 1.29733i | 1.06010 | − | 1.53582i | 1.65604 | + | 2.39919i | −0.373610 | + | 3.07696i | 0.380352 | + | 3.13248i | 0.0317215 | − | 0.261250i | 0.182634 | + | 0.481567i | −5.07552 | − | 2.66384i |
100.14 | −1.70030 | + | 0.892384i | 1.83435 | − | 2.65752i | 0.958526 | − | 1.38866i | −0.866259 | − | 1.25499i | −0.747414 | + | 6.15551i | −0.526271 | − | 4.33423i | 0.0723652 | − | 0.595981i | −2.63374 | − | 6.94460i | 2.59283 | + | 1.36082i |
100.15 | −1.63364 | + | 0.857399i | 1.08831 | − | 1.57669i | 0.797506 | − | 1.15539i | −0.352636 | − | 0.510881i | −0.426053 | + | 3.50886i | −0.0548376 | − | 0.451628i | 0.132564 | − | 1.09177i | −0.237723 | − | 0.626824i | 1.01411 | + | 0.532244i |
100.16 | −1.45273 | + | 0.762453i | −1.72610 | + | 2.50069i | 0.392967 | − | 0.569310i | −0.441076 | − | 0.639009i | 0.600905 | − | 4.94890i | −0.419640 | − | 3.45605i | 0.258716 | − | 2.13072i | −2.21020 | − | 5.82783i | 1.12798 | + | 0.592009i |
100.17 | −1.42855 | + | 0.749761i | 1.40492 | − | 2.03538i | 0.342484 | − | 0.496173i | 1.21140 | + | 1.75502i | −0.480952 | + | 3.96099i | 0.541445 | + | 4.45920i | 0.271692 | − | 2.23758i | −1.10515 | − | 2.91404i | −3.04640 | − | 1.59887i |
100.18 | −1.42185 | + | 0.746244i | 1.80935 | − | 2.62130i | 0.328646 | − | 0.476126i | −1.98586 | − | 2.87701i | −0.616497 | + | 5.07731i | 0.446566 | + | 3.67780i | 0.275132 | − | 2.26592i | −2.53364 | − | 6.68065i | 4.97054 | + | 2.60874i |
100.19 | −1.40677 | + | 0.738332i | −0.456049 | + | 0.660700i | 0.297748 | − | 0.431363i | 2.02811 | + | 2.93823i | 0.153741 | − | 1.26617i | −0.0376523 | − | 0.310095i | 0.282631 | − | 2.32768i | 0.835270 | + | 2.20243i | −5.02248 | − | 2.63600i |
100.20 | −1.37011 | + | 0.719088i | −0.554289 | + | 0.803027i | 0.223979 | − | 0.324490i | 0.478083 | + | 0.692622i | 0.181989 | − | 1.49882i | 0.117665 | + | 0.969059i | 0.299485 | − | 2.46648i | 0.726199 | + | 1.91483i | −1.15308 | − | 0.605184i |
See next 80 embeddings (of 840 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
859.f | even | 13 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 859.2.f.a | ✓ | 840 |
859.f | even | 13 | 1 | inner | 859.2.f.a | ✓ | 840 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
859.2.f.a | ✓ | 840 | 1.a | even | 1 | 1 | trivial |
859.2.f.a | ✓ | 840 | 859.f | even | 13 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(859, [\chi])\).