Properties

Label 862.2.a.c
Level $862$
Weight $2$
Character orbit 862.a
Self dual yes
Analytic conductor $6.883$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [862,2,Mod(1,862)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(862, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("862.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 862 = 2 \cdot 431 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 862.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.88310465423\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{2} - q^{3} + q^{4} - 3 q^{5} - q^{6} + 2 q^{7} + q^{8} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{2} - q^{3} + q^{4} - 3 q^{5} - q^{6} + 2 q^{7} + q^{8} - 2 q^{9} - 3 q^{10} + 5 q^{11} - q^{12} - 6 q^{13} + 2 q^{14} + 3 q^{15} + q^{16} - 6 q^{17} - 2 q^{18} - 5 q^{19} - 3 q^{20} - 2 q^{21} + 5 q^{22} - 3 q^{23} - q^{24} + 4 q^{25} - 6 q^{26} + 5 q^{27} + 2 q^{28} + q^{29} + 3 q^{30} + 8 q^{31} + q^{32} - 5 q^{33} - 6 q^{34} - 6 q^{35} - 2 q^{36} - 8 q^{37} - 5 q^{38} + 6 q^{39} - 3 q^{40} - 6 q^{41} - 2 q^{42} - 6 q^{43} + 5 q^{44} + 6 q^{45} - 3 q^{46} - 10 q^{47} - q^{48} - 3 q^{49} + 4 q^{50} + 6 q^{51} - 6 q^{52} - 13 q^{53} + 5 q^{54} - 15 q^{55} + 2 q^{56} + 5 q^{57} + q^{58} + 9 q^{59} + 3 q^{60} + 2 q^{61} + 8 q^{62} - 4 q^{63} + q^{64} + 18 q^{65} - 5 q^{66} + 2 q^{67} - 6 q^{68} + 3 q^{69} - 6 q^{70} + 10 q^{71} - 2 q^{72} + 2 q^{73} - 8 q^{74} - 4 q^{75} - 5 q^{76} + 10 q^{77} + 6 q^{78} + 12 q^{79} - 3 q^{80} + q^{81} - 6 q^{82} - 2 q^{84} + 18 q^{85} - 6 q^{86} - q^{87} + 5 q^{88} - 14 q^{89} + 6 q^{90} - 12 q^{91} - 3 q^{92} - 8 q^{93} - 10 q^{94} + 15 q^{95} - q^{96} + 19 q^{97} - 3 q^{98} - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 −1.00000 1.00000 −3.00000 −1.00000 2.00000 1.00000 −2.00000 −3.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(431\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 862.2.a.c 1
3.b odd 2 1 7758.2.a.g 1
4.b odd 2 1 6896.2.a.h 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
862.2.a.c 1 1.a even 1 1 trivial
6896.2.a.h 1 4.b odd 2 1
7758.2.a.g 1 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(862))\):

\( T_{3} + 1 \) Copy content Toggle raw display
\( T_{5} + 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 1 \) Copy content Toggle raw display
$3$ \( T + 1 \) Copy content Toggle raw display
$5$ \( T + 3 \) Copy content Toggle raw display
$7$ \( T - 2 \) Copy content Toggle raw display
$11$ \( T - 5 \) Copy content Toggle raw display
$13$ \( T + 6 \) Copy content Toggle raw display
$17$ \( T + 6 \) Copy content Toggle raw display
$19$ \( T + 5 \) Copy content Toggle raw display
$23$ \( T + 3 \) Copy content Toggle raw display
$29$ \( T - 1 \) Copy content Toggle raw display
$31$ \( T - 8 \) Copy content Toggle raw display
$37$ \( T + 8 \) Copy content Toggle raw display
$41$ \( T + 6 \) Copy content Toggle raw display
$43$ \( T + 6 \) Copy content Toggle raw display
$47$ \( T + 10 \) Copy content Toggle raw display
$53$ \( T + 13 \) Copy content Toggle raw display
$59$ \( T - 9 \) Copy content Toggle raw display
$61$ \( T - 2 \) Copy content Toggle raw display
$67$ \( T - 2 \) Copy content Toggle raw display
$71$ \( T - 10 \) Copy content Toggle raw display
$73$ \( T - 2 \) Copy content Toggle raw display
$79$ \( T - 12 \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T + 14 \) Copy content Toggle raw display
$97$ \( T - 19 \) Copy content Toggle raw display
show more
show less