Properties

Label 862.2.a.i.1.2
Level $862$
Weight $2$
Character 862.1
Self dual yes
Analytic conductor $6.883$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [862,2,Mod(1,862)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(862, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("862.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 862 = 2 \cdot 431 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 862.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.88310465423\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.11017801.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 6x^{4} + 13x^{3} + 3x^{2} - 10x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.74564\) of defining polynomial
Character \(\chi\) \(=\) 862.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -1.74564 q^{3} +1.00000 q^{4} +2.20488 q^{5} +1.74564 q^{6} +0.156662 q^{7} -1.00000 q^{8} +0.0472515 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} -1.74564 q^{3} +1.00000 q^{4} +2.20488 q^{5} +1.74564 q^{6} +0.156662 q^{7} -1.00000 q^{8} +0.0472515 q^{9} -2.20488 q^{10} +0.652346 q^{11} -1.74564 q^{12} -6.50126 q^{13} -0.156662 q^{14} -3.84892 q^{15} +1.00000 q^{16} -0.464467 q^{17} -0.0472515 q^{18} +5.83491 q^{19} +2.20488 q^{20} -0.273476 q^{21} -0.652346 q^{22} -8.89828 q^{23} +1.74564 q^{24} -0.138513 q^{25} +6.50126 q^{26} +5.15443 q^{27} +0.156662 q^{28} +0.0633705 q^{29} +3.84892 q^{30} +1.92051 q^{31} -1.00000 q^{32} -1.13876 q^{33} +0.464467 q^{34} +0.345421 q^{35} +0.0472515 q^{36} -2.74863 q^{37} -5.83491 q^{38} +11.3489 q^{39} -2.20488 q^{40} +0.948733 q^{41} +0.273476 q^{42} -5.66437 q^{43} +0.652346 q^{44} +0.104184 q^{45} +8.89828 q^{46} +13.3339 q^{47} -1.74564 q^{48} -6.97546 q^{49} +0.138513 q^{50} +0.810792 q^{51} -6.50126 q^{52} -12.5025 q^{53} -5.15443 q^{54} +1.43834 q^{55} -0.156662 q^{56} -10.1856 q^{57} -0.0633705 q^{58} -11.7901 q^{59} -3.84892 q^{60} -0.890281 q^{61} -1.92051 q^{62} +0.00740252 q^{63} +1.00000 q^{64} -14.3345 q^{65} +1.13876 q^{66} -11.0627 q^{67} -0.464467 q^{68} +15.5332 q^{69} -0.345421 q^{70} -0.438915 q^{71} -0.0472515 q^{72} +3.32578 q^{73} +2.74863 q^{74} +0.241794 q^{75} +5.83491 q^{76} +0.102198 q^{77} -11.3489 q^{78} -6.31109 q^{79} +2.20488 q^{80} -9.13952 q^{81} -0.948733 q^{82} -10.4609 q^{83} -0.273476 q^{84} -1.02409 q^{85} +5.66437 q^{86} -0.110622 q^{87} -0.652346 q^{88} -15.7312 q^{89} -0.104184 q^{90} -1.01850 q^{91} -8.89828 q^{92} -3.35252 q^{93} -13.3339 q^{94} +12.8653 q^{95} +1.74564 q^{96} -2.07690 q^{97} +6.97546 q^{98} +0.0308243 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{2} - 2 q^{3} + 6 q^{4} - 2 q^{5} + 2 q^{6} + 3 q^{7} - 6 q^{8} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 6 q^{2} - 2 q^{3} + 6 q^{4} - 2 q^{5} + 2 q^{6} + 3 q^{7} - 6 q^{8} - 2 q^{9} + 2 q^{10} - 6 q^{11} - 2 q^{12} - 9 q^{13} - 3 q^{14} - 3 q^{15} + 6 q^{16} - 17 q^{17} + 2 q^{18} + q^{19} - 2 q^{20} - 8 q^{21} + 6 q^{22} - 20 q^{23} + 2 q^{24} + 10 q^{25} + 9 q^{26} + 7 q^{27} + 3 q^{28} + q^{29} + 3 q^{30} + 8 q^{31} - 6 q^{32} - 5 q^{33} + 17 q^{34} - 14 q^{35} - 2 q^{36} - 3 q^{37} - q^{38} - 13 q^{39} + 2 q^{40} - 19 q^{41} + 8 q^{42} - 21 q^{43} - 6 q^{44} - 16 q^{45} + 20 q^{46} - 10 q^{47} - 2 q^{48} - 7 q^{49} - 10 q^{50} - 2 q^{51} - 9 q^{52} - q^{53} - 7 q^{54} + 3 q^{55} - 3 q^{56} - 11 q^{57} - q^{58} + 11 q^{59} - 3 q^{60} - 2 q^{61} - 8 q^{62} + 6 q^{64} - 30 q^{65} + 5 q^{66} + 4 q^{67} - 17 q^{68} + 16 q^{69} + 14 q^{70} - 4 q^{71} + 2 q^{72} - 39 q^{73} + 3 q^{74} - 21 q^{75} + q^{76} - 33 q^{77} + 13 q^{78} - 16 q^{79} - 2 q^{80} - 22 q^{81} + 19 q^{82} - 20 q^{83} - 8 q^{84} - 16 q^{85} + 21 q^{86} + q^{87} + 6 q^{88} - 17 q^{89} + 16 q^{90} + 20 q^{91} - 20 q^{92} - 5 q^{93} + 10 q^{94} - 16 q^{95} + 2 q^{96} - 29 q^{97} + 7 q^{98} - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −1.74564 −1.00784 −0.503922 0.863749i \(-0.668110\pi\)
−0.503922 + 0.863749i \(0.668110\pi\)
\(4\) 1.00000 0.500000
\(5\) 2.20488 0.986051 0.493026 0.870015i \(-0.335891\pi\)
0.493026 + 0.870015i \(0.335891\pi\)
\(6\) 1.74564 0.712654
\(7\) 0.156662 0.0592128 0.0296064 0.999562i \(-0.490575\pi\)
0.0296064 + 0.999562i \(0.490575\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0.0472515 0.0157505
\(10\) −2.20488 −0.697244
\(11\) 0.652346 0.196690 0.0983449 0.995152i \(-0.468645\pi\)
0.0983449 + 0.995152i \(0.468645\pi\)
\(12\) −1.74564 −0.503922
\(13\) −6.50126 −1.80313 −0.901563 0.432647i \(-0.857579\pi\)
−0.901563 + 0.432647i \(0.857579\pi\)
\(14\) −0.156662 −0.0418698
\(15\) −3.84892 −0.993786
\(16\) 1.00000 0.250000
\(17\) −0.464467 −0.112650 −0.0563249 0.998412i \(-0.517938\pi\)
−0.0563249 + 0.998412i \(0.517938\pi\)
\(18\) −0.0472515 −0.0111373
\(19\) 5.83491 1.33862 0.669311 0.742983i \(-0.266590\pi\)
0.669311 + 0.742983i \(0.266590\pi\)
\(20\) 2.20488 0.493026
\(21\) −0.273476 −0.0596773
\(22\) −0.652346 −0.139081
\(23\) −8.89828 −1.85542 −0.927710 0.373301i \(-0.878226\pi\)
−0.927710 + 0.373301i \(0.878226\pi\)
\(24\) 1.74564 0.356327
\(25\) −0.138513 −0.0277026
\(26\) 6.50126 1.27500
\(27\) 5.15443 0.991970
\(28\) 0.156662 0.0296064
\(29\) 0.0633705 0.0117676 0.00588381 0.999983i \(-0.498127\pi\)
0.00588381 + 0.999983i \(0.498127\pi\)
\(30\) 3.84892 0.702713
\(31\) 1.92051 0.344934 0.172467 0.985015i \(-0.444826\pi\)
0.172467 + 0.985015i \(0.444826\pi\)
\(32\) −1.00000 −0.176777
\(33\) −1.13876 −0.198233
\(34\) 0.464467 0.0796555
\(35\) 0.345421 0.0583868
\(36\) 0.0472515 0.00787525
\(37\) −2.74863 −0.451872 −0.225936 0.974142i \(-0.572544\pi\)
−0.225936 + 0.974142i \(0.572544\pi\)
\(38\) −5.83491 −0.946548
\(39\) 11.3489 1.81727
\(40\) −2.20488 −0.348622
\(41\) 0.948733 0.148167 0.0740836 0.997252i \(-0.476397\pi\)
0.0740836 + 0.997252i \(0.476397\pi\)
\(42\) 0.273476 0.0421982
\(43\) −5.66437 −0.863808 −0.431904 0.901920i \(-0.642158\pi\)
−0.431904 + 0.901920i \(0.642158\pi\)
\(44\) 0.652346 0.0983449
\(45\) 0.104184 0.0155308
\(46\) 8.89828 1.31198
\(47\) 13.3339 1.94496 0.972478 0.232995i \(-0.0748526\pi\)
0.972478 + 0.232995i \(0.0748526\pi\)
\(48\) −1.74564 −0.251961
\(49\) −6.97546 −0.996494
\(50\) 0.138513 0.0195887
\(51\) 0.810792 0.113534
\(52\) −6.50126 −0.901563
\(53\) −12.5025 −1.71735 −0.858677 0.512518i \(-0.828713\pi\)
−0.858677 + 0.512518i \(0.828713\pi\)
\(54\) −5.15443 −0.701429
\(55\) 1.43834 0.193946
\(56\) −0.156662 −0.0209349
\(57\) −10.1856 −1.34912
\(58\) −0.0633705 −0.00832096
\(59\) −11.7901 −1.53494 −0.767472 0.641082i \(-0.778486\pi\)
−0.767472 + 0.641082i \(0.778486\pi\)
\(60\) −3.84892 −0.496893
\(61\) −0.890281 −0.113989 −0.0569944 0.998374i \(-0.518152\pi\)
−0.0569944 + 0.998374i \(0.518152\pi\)
\(62\) −1.92051 −0.243905
\(63\) 0.00740252 0.000932630 0
\(64\) 1.00000 0.125000
\(65\) −14.3345 −1.77798
\(66\) 1.13876 0.140172
\(67\) −11.0627 −1.35152 −0.675762 0.737120i \(-0.736185\pi\)
−0.675762 + 0.737120i \(0.736185\pi\)
\(68\) −0.464467 −0.0563249
\(69\) 15.5332 1.86998
\(70\) −0.345421 −0.0412857
\(71\) −0.438915 −0.0520897 −0.0260448 0.999661i \(-0.508291\pi\)
−0.0260448 + 0.999661i \(0.508291\pi\)
\(72\) −0.0472515 −0.00556864
\(73\) 3.32578 0.389253 0.194627 0.980877i \(-0.437650\pi\)
0.194627 + 0.980877i \(0.437650\pi\)
\(74\) 2.74863 0.319522
\(75\) 0.241794 0.0279199
\(76\) 5.83491 0.669311
\(77\) 0.102198 0.0116465
\(78\) −11.3489 −1.28500
\(79\) −6.31109 −0.710053 −0.355027 0.934856i \(-0.615528\pi\)
−0.355027 + 0.934856i \(0.615528\pi\)
\(80\) 2.20488 0.246513
\(81\) −9.13952 −1.01550
\(82\) −0.948733 −0.104770
\(83\) −10.4609 −1.14823 −0.574117 0.818773i \(-0.694654\pi\)
−0.574117 + 0.818773i \(0.694654\pi\)
\(84\) −0.273476 −0.0298386
\(85\) −1.02409 −0.111079
\(86\) 5.66437 0.610804
\(87\) −0.110622 −0.0118599
\(88\) −0.652346 −0.0695403
\(89\) −15.7312 −1.66750 −0.833750 0.552142i \(-0.813811\pi\)
−0.833750 + 0.552142i \(0.813811\pi\)
\(90\) −0.104184 −0.0109819
\(91\) −1.01850 −0.106768
\(92\) −8.89828 −0.927710
\(93\) −3.35252 −0.347640
\(94\) −13.3339 −1.37529
\(95\) 12.8653 1.31995
\(96\) 1.74564 0.178163
\(97\) −2.07690 −0.210878 −0.105439 0.994426i \(-0.533625\pi\)
−0.105439 + 0.994426i \(0.533625\pi\)
\(98\) 6.97546 0.704628
\(99\) 0.0308243 0.00309796
\(100\) −0.138513 −0.0138513
\(101\) −8.98620 −0.894160 −0.447080 0.894494i \(-0.647536\pi\)
−0.447080 + 0.894494i \(0.647536\pi\)
\(102\) −0.810792 −0.0802803
\(103\) 13.3915 1.31950 0.659751 0.751484i \(-0.270662\pi\)
0.659751 + 0.751484i \(0.270662\pi\)
\(104\) 6.50126 0.637501
\(105\) −0.602980 −0.0588448
\(106\) 12.5025 1.21435
\(107\) 10.8383 1.04778 0.523888 0.851787i \(-0.324481\pi\)
0.523888 + 0.851787i \(0.324481\pi\)
\(108\) 5.15443 0.495985
\(109\) 14.8775 1.42501 0.712504 0.701669i \(-0.247561\pi\)
0.712504 + 0.701669i \(0.247561\pi\)
\(110\) −1.43834 −0.137141
\(111\) 4.79812 0.455417
\(112\) 0.156662 0.0148032
\(113\) −5.37446 −0.505587 −0.252793 0.967520i \(-0.581349\pi\)
−0.252793 + 0.967520i \(0.581349\pi\)
\(114\) 10.1856 0.953973
\(115\) −19.6196 −1.82954
\(116\) 0.0633705 0.00588381
\(117\) −0.307194 −0.0284001
\(118\) 11.7901 1.08537
\(119\) −0.0727645 −0.00667031
\(120\) 3.84892 0.351357
\(121\) −10.5744 −0.961313
\(122\) 0.890281 0.0806023
\(123\) −1.65614 −0.149329
\(124\) 1.92051 0.172467
\(125\) −11.3298 −1.01337
\(126\) −0.00740252 −0.000659469 0
\(127\) 0.993847 0.0881897 0.0440948 0.999027i \(-0.485960\pi\)
0.0440948 + 0.999027i \(0.485960\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 9.88793 0.870584
\(130\) 14.3345 1.25722
\(131\) 12.1959 1.06556 0.532782 0.846252i \(-0.321146\pi\)
0.532782 + 0.846252i \(0.321146\pi\)
\(132\) −1.13876 −0.0991163
\(133\) 0.914111 0.0792635
\(134\) 11.0627 0.955672
\(135\) 11.3649 0.978134
\(136\) 0.464467 0.0398277
\(137\) −14.1885 −1.21220 −0.606102 0.795387i \(-0.707268\pi\)
−0.606102 + 0.795387i \(0.707268\pi\)
\(138\) −15.5332 −1.32227
\(139\) 10.4139 0.883292 0.441646 0.897189i \(-0.354395\pi\)
0.441646 + 0.897189i \(0.354395\pi\)
\(140\) 0.345421 0.0291934
\(141\) −23.2762 −1.96021
\(142\) 0.438915 0.0368330
\(143\) −4.24107 −0.354656
\(144\) 0.0472515 0.00393762
\(145\) 0.139724 0.0116035
\(146\) −3.32578 −0.275244
\(147\) 12.1766 1.00431
\(148\) −2.74863 −0.225936
\(149\) −16.5280 −1.35402 −0.677012 0.735972i \(-0.736726\pi\)
−0.677012 + 0.735972i \(0.736726\pi\)
\(150\) −0.241794 −0.0197424
\(151\) 1.02621 0.0835116 0.0417558 0.999128i \(-0.486705\pi\)
0.0417558 + 0.999128i \(0.486705\pi\)
\(152\) −5.83491 −0.473274
\(153\) −0.0219468 −0.00177429
\(154\) −0.102198 −0.00823535
\(155\) 4.23449 0.340123
\(156\) 11.3489 0.908635
\(157\) 23.6676 1.88888 0.944441 0.328682i \(-0.106604\pi\)
0.944441 + 0.328682i \(0.106604\pi\)
\(158\) 6.31109 0.502084
\(159\) 21.8249 1.73083
\(160\) −2.20488 −0.174311
\(161\) −1.39403 −0.109865
\(162\) 9.13952 0.718069
\(163\) 24.9066 1.95083 0.975417 0.220367i \(-0.0707254\pi\)
0.975417 + 0.220367i \(0.0707254\pi\)
\(164\) 0.948733 0.0740836
\(165\) −2.51083 −0.195468
\(166\) 10.4609 0.811924
\(167\) −20.9722 −1.62288 −0.811439 0.584437i \(-0.801315\pi\)
−0.811439 + 0.584437i \(0.801315\pi\)
\(168\) 0.273476 0.0210991
\(169\) 29.2664 2.25126
\(170\) 1.02409 0.0785444
\(171\) 0.275708 0.0210839
\(172\) −5.66437 −0.431904
\(173\) −19.9984 −1.52045 −0.760226 0.649659i \(-0.774912\pi\)
−0.760226 + 0.649659i \(0.774912\pi\)
\(174\) 0.110622 0.00838623
\(175\) −0.0216998 −0.00164035
\(176\) 0.652346 0.0491724
\(177\) 20.5813 1.54699
\(178\) 15.7312 1.17910
\(179\) 10.8889 0.813871 0.406935 0.913457i \(-0.366597\pi\)
0.406935 + 0.913457i \(0.366597\pi\)
\(180\) 0.104184 0.00776540
\(181\) 0.428557 0.0318544 0.0159272 0.999873i \(-0.494930\pi\)
0.0159272 + 0.999873i \(0.494930\pi\)
\(182\) 1.01850 0.0754965
\(183\) 1.55411 0.114883
\(184\) 8.89828 0.655990
\(185\) −6.06040 −0.445569
\(186\) 3.35252 0.245818
\(187\) −0.302993 −0.0221571
\(188\) 13.3339 0.972478
\(189\) 0.807505 0.0587373
\(190\) −12.8653 −0.933345
\(191\) 18.9964 1.37453 0.687266 0.726406i \(-0.258811\pi\)
0.687266 + 0.726406i \(0.258811\pi\)
\(192\) −1.74564 −0.125981
\(193\) 4.16406 0.299736 0.149868 0.988706i \(-0.452115\pi\)
0.149868 + 0.988706i \(0.452115\pi\)
\(194\) 2.07690 0.149113
\(195\) 25.0228 1.79192
\(196\) −6.97546 −0.498247
\(197\) 14.3473 1.02220 0.511101 0.859520i \(-0.329238\pi\)
0.511101 + 0.859520i \(0.329238\pi\)
\(198\) −0.0308243 −0.00219059
\(199\) −9.42430 −0.668071 −0.334036 0.942560i \(-0.608411\pi\)
−0.334036 + 0.942560i \(0.608411\pi\)
\(200\) 0.138513 0.00979435
\(201\) 19.3115 1.36213
\(202\) 8.98620 0.632267
\(203\) 0.00992777 0.000696793 0
\(204\) 0.810792 0.0567668
\(205\) 2.09184 0.146100
\(206\) −13.3915 −0.933029
\(207\) −0.420457 −0.0292238
\(208\) −6.50126 −0.450782
\(209\) 3.80638 0.263293
\(210\) 0.602980 0.0416096
\(211\) −0.781632 −0.0538098 −0.0269049 0.999638i \(-0.508565\pi\)
−0.0269049 + 0.999638i \(0.508565\pi\)
\(212\) −12.5025 −0.858677
\(213\) 0.766187 0.0524983
\(214\) −10.8383 −0.740890
\(215\) −12.4892 −0.851759
\(216\) −5.15443 −0.350715
\(217\) 0.300872 0.0204245
\(218\) −14.8775 −1.00763
\(219\) −5.80561 −0.392307
\(220\) 1.43834 0.0969731
\(221\) 3.01962 0.203122
\(222\) −4.79812 −0.322028
\(223\) −1.70500 −0.114175 −0.0570876 0.998369i \(-0.518181\pi\)
−0.0570876 + 0.998369i \(0.518181\pi\)
\(224\) −0.156662 −0.0104674
\(225\) −0.00654495 −0.000436330 0
\(226\) 5.37446 0.357504
\(227\) −20.5767 −1.36573 −0.682863 0.730547i \(-0.739265\pi\)
−0.682863 + 0.730547i \(0.739265\pi\)
\(228\) −10.1856 −0.674561
\(229\) 20.5148 1.35566 0.677828 0.735221i \(-0.262921\pi\)
0.677828 + 0.735221i \(0.262921\pi\)
\(230\) 19.6196 1.29368
\(231\) −0.178401 −0.0117379
\(232\) −0.0633705 −0.00416048
\(233\) −13.9158 −0.911652 −0.455826 0.890069i \(-0.650656\pi\)
−0.455826 + 0.890069i \(0.650656\pi\)
\(234\) 0.307194 0.0200819
\(235\) 29.3997 1.91783
\(236\) −11.7901 −0.767472
\(237\) 11.0169 0.715623
\(238\) 0.0727645 0.00471662
\(239\) −29.5089 −1.90877 −0.954387 0.298572i \(-0.903490\pi\)
−0.954387 + 0.298572i \(0.903490\pi\)
\(240\) −3.84892 −0.248447
\(241\) −8.99428 −0.579372 −0.289686 0.957122i \(-0.593551\pi\)
−0.289686 + 0.957122i \(0.593551\pi\)
\(242\) 10.5744 0.679751
\(243\) 0.491006 0.0314981
\(244\) −0.890281 −0.0569944
\(245\) −15.3800 −0.982594
\(246\) 1.65614 0.105592
\(247\) −37.9343 −2.41370
\(248\) −1.92051 −0.121953
\(249\) 18.2610 1.15724
\(250\) 11.3298 0.716559
\(251\) −5.35945 −0.338285 −0.169143 0.985592i \(-0.554100\pi\)
−0.169143 + 0.985592i \(0.554100\pi\)
\(252\) 0.00740252 0.000466315 0
\(253\) −5.80476 −0.364942
\(254\) −0.993847 −0.0623595
\(255\) 1.78770 0.111950
\(256\) 1.00000 0.0625000
\(257\) −10.2059 −0.636626 −0.318313 0.947986i \(-0.603116\pi\)
−0.318313 + 0.947986i \(0.603116\pi\)
\(258\) −9.88793 −0.615596
\(259\) −0.430607 −0.0267566
\(260\) −14.3345 −0.888988
\(261\) 0.00299435 0.000185346 0
\(262\) −12.1959 −0.753468
\(263\) 19.0954 1.17747 0.588736 0.808325i \(-0.299626\pi\)
0.588736 + 0.808325i \(0.299626\pi\)
\(264\) 1.13876 0.0700858
\(265\) −27.5665 −1.69340
\(266\) −0.914111 −0.0560477
\(267\) 27.4609 1.68058
\(268\) −11.0627 −0.675762
\(269\) 18.4709 1.12619 0.563095 0.826392i \(-0.309611\pi\)
0.563095 + 0.826392i \(0.309611\pi\)
\(270\) −11.3649 −0.691645
\(271\) −6.62313 −0.402327 −0.201163 0.979558i \(-0.564472\pi\)
−0.201163 + 0.979558i \(0.564472\pi\)
\(272\) −0.464467 −0.0281625
\(273\) 1.77794 0.107606
\(274\) 14.1885 0.857157
\(275\) −0.0903585 −0.00544882
\(276\) 15.5332 0.934988
\(277\) 15.6367 0.939521 0.469760 0.882794i \(-0.344340\pi\)
0.469760 + 0.882794i \(0.344340\pi\)
\(278\) −10.4139 −0.624582
\(279\) 0.0907469 0.00543288
\(280\) −0.345421 −0.0206429
\(281\) 24.6991 1.47342 0.736711 0.676208i \(-0.236378\pi\)
0.736711 + 0.676208i \(0.236378\pi\)
\(282\) 23.2762 1.38608
\(283\) 6.03169 0.358547 0.179273 0.983799i \(-0.442625\pi\)
0.179273 + 0.983799i \(0.442625\pi\)
\(284\) −0.438915 −0.0260448
\(285\) −22.4581 −1.33030
\(286\) 4.24107 0.250780
\(287\) 0.148631 0.00877339
\(288\) −0.0472515 −0.00278432
\(289\) −16.7843 −0.987310
\(290\) −0.139724 −0.00820489
\(291\) 3.62552 0.212532
\(292\) 3.32578 0.194627
\(293\) −2.26491 −0.132317 −0.0661586 0.997809i \(-0.521074\pi\)
−0.0661586 + 0.997809i \(0.521074\pi\)
\(294\) −12.1766 −0.710155
\(295\) −25.9958 −1.51353
\(296\) 2.74863 0.159761
\(297\) 3.36247 0.195110
\(298\) 16.5280 0.957440
\(299\) 57.8501 3.34556
\(300\) 0.241794 0.0139600
\(301\) −0.887392 −0.0511484
\(302\) −1.02621 −0.0590516
\(303\) 15.6866 0.901174
\(304\) 5.83491 0.334655
\(305\) −1.96296 −0.112399
\(306\) 0.0219468 0.00125461
\(307\) −7.37287 −0.420792 −0.210396 0.977616i \(-0.567475\pi\)
−0.210396 + 0.977616i \(0.567475\pi\)
\(308\) 0.102198 0.00582327
\(309\) −23.3767 −1.32985
\(310\) −4.23449 −0.240503
\(311\) 8.74208 0.495718 0.247859 0.968796i \(-0.420273\pi\)
0.247859 + 0.968796i \(0.420273\pi\)
\(312\) −11.3489 −0.642502
\(313\) 9.08282 0.513391 0.256696 0.966492i \(-0.417366\pi\)
0.256696 + 0.966492i \(0.417366\pi\)
\(314\) −23.6676 −1.33564
\(315\) 0.0163217 0.000919621 0
\(316\) −6.31109 −0.355027
\(317\) 13.8119 0.775753 0.387877 0.921711i \(-0.373209\pi\)
0.387877 + 0.921711i \(0.373209\pi\)
\(318\) −21.8249 −1.22388
\(319\) 0.0413395 0.00231457
\(320\) 2.20488 0.123256
\(321\) −18.9197 −1.05600
\(322\) 1.39403 0.0776860
\(323\) −2.71013 −0.150795
\(324\) −9.13952 −0.507751
\(325\) 0.900510 0.0499513
\(326\) −24.9066 −1.37945
\(327\) −25.9707 −1.43619
\(328\) −0.948733 −0.0523850
\(329\) 2.08893 0.115166
\(330\) 2.51083 0.138216
\(331\) −6.17996 −0.339681 −0.169841 0.985472i \(-0.554325\pi\)
−0.169841 + 0.985472i \(0.554325\pi\)
\(332\) −10.4609 −0.574117
\(333\) −0.129877 −0.00711721
\(334\) 20.9722 1.14755
\(335\) −24.3919 −1.33267
\(336\) −0.273476 −0.0149193
\(337\) 1.84183 0.100331 0.0501654 0.998741i \(-0.484025\pi\)
0.0501654 + 0.998741i \(0.484025\pi\)
\(338\) −29.2664 −1.59188
\(339\) 9.38186 0.509553
\(340\) −1.02409 −0.0555393
\(341\) 1.25284 0.0678450
\(342\) −0.275708 −0.0149086
\(343\) −2.18943 −0.118218
\(344\) 5.66437 0.305402
\(345\) 34.2488 1.84389
\(346\) 19.9984 1.07512
\(347\) 9.65504 0.518310 0.259155 0.965836i \(-0.416556\pi\)
0.259155 + 0.965836i \(0.416556\pi\)
\(348\) −0.110622 −0.00592996
\(349\) 4.04766 0.216666 0.108333 0.994115i \(-0.465449\pi\)
0.108333 + 0.994115i \(0.465449\pi\)
\(350\) 0.0216998 0.00115990
\(351\) −33.5103 −1.78865
\(352\) −0.652346 −0.0347702
\(353\) 18.1060 0.963684 0.481842 0.876258i \(-0.339968\pi\)
0.481842 + 0.876258i \(0.339968\pi\)
\(354\) −20.5813 −1.09388
\(355\) −0.967755 −0.0513631
\(356\) −15.7312 −0.833750
\(357\) 0.127020 0.00672263
\(358\) −10.8889 −0.575494
\(359\) −6.25537 −0.330146 −0.165073 0.986281i \(-0.552786\pi\)
−0.165073 + 0.986281i \(0.552786\pi\)
\(360\) −0.104184 −0.00549097
\(361\) 15.0462 0.791906
\(362\) −0.428557 −0.0225245
\(363\) 18.4592 0.968854
\(364\) −1.01850 −0.0533841
\(365\) 7.33294 0.383824
\(366\) −1.55411 −0.0812345
\(367\) 9.55570 0.498804 0.249402 0.968400i \(-0.419766\pi\)
0.249402 + 0.968400i \(0.419766\pi\)
\(368\) −8.89828 −0.463855
\(369\) 0.0448290 0.00233371
\(370\) 6.06040 0.315065
\(371\) −1.95867 −0.101689
\(372\) −3.35252 −0.173820
\(373\) 16.1010 0.833676 0.416838 0.908981i \(-0.363138\pi\)
0.416838 + 0.908981i \(0.363138\pi\)
\(374\) 0.302993 0.0156674
\(375\) 19.7777 1.02132
\(376\) −13.3339 −0.687646
\(377\) −0.411989 −0.0212185
\(378\) −0.807505 −0.0415336
\(379\) 24.3896 1.25281 0.626405 0.779497i \(-0.284525\pi\)
0.626405 + 0.779497i \(0.284525\pi\)
\(380\) 12.8653 0.659975
\(381\) −1.73490 −0.0888815
\(382\) −18.9964 −0.971940
\(383\) −28.5792 −1.46033 −0.730164 0.683272i \(-0.760556\pi\)
−0.730164 + 0.683272i \(0.760556\pi\)
\(384\) 1.74564 0.0890817
\(385\) 0.225334 0.0114841
\(386\) −4.16406 −0.211945
\(387\) −0.267650 −0.0136054
\(388\) −2.07690 −0.105439
\(389\) 28.3934 1.43960 0.719801 0.694180i \(-0.244233\pi\)
0.719801 + 0.694180i \(0.244233\pi\)
\(390\) −25.0228 −1.26708
\(391\) 4.13296 0.209013
\(392\) 6.97546 0.352314
\(393\) −21.2897 −1.07392
\(394\) −14.3473 −0.722807
\(395\) −13.9152 −0.700149
\(396\) 0.0308243 0.00154898
\(397\) 14.9933 0.752491 0.376246 0.926520i \(-0.377215\pi\)
0.376246 + 0.926520i \(0.377215\pi\)
\(398\) 9.42430 0.472398
\(399\) −1.59571 −0.0798852
\(400\) −0.138513 −0.00692565
\(401\) 27.9414 1.39533 0.697663 0.716426i \(-0.254223\pi\)
0.697663 + 0.716426i \(0.254223\pi\)
\(402\) −19.3115 −0.963169
\(403\) −12.4857 −0.621959
\(404\) −8.98620 −0.447080
\(405\) −20.1515 −1.00134
\(406\) −0.00992777 −0.000492707 0
\(407\) −1.79306 −0.0888787
\(408\) −0.810792 −0.0401402
\(409\) −16.2981 −0.805888 −0.402944 0.915225i \(-0.632013\pi\)
−0.402944 + 0.915225i \(0.632013\pi\)
\(410\) −2.09184 −0.103309
\(411\) 24.7679 1.22171
\(412\) 13.3915 0.659751
\(413\) −1.84707 −0.0908883
\(414\) 0.420457 0.0206643
\(415\) −23.0650 −1.13222
\(416\) 6.50126 0.318751
\(417\) −18.1788 −0.890221
\(418\) −3.80638 −0.186176
\(419\) 6.30919 0.308224 0.154112 0.988053i \(-0.450748\pi\)
0.154112 + 0.988053i \(0.450748\pi\)
\(420\) −0.602980 −0.0294224
\(421\) 5.89283 0.287199 0.143600 0.989636i \(-0.454132\pi\)
0.143600 + 0.989636i \(0.454132\pi\)
\(422\) 0.781632 0.0380492
\(423\) 0.630049 0.0306340
\(424\) 12.5025 0.607176
\(425\) 0.0643348 0.00312070
\(426\) −0.766187 −0.0371219
\(427\) −0.139473 −0.00674959
\(428\) 10.8383 0.523888
\(429\) 7.40338 0.357439
\(430\) 12.4892 0.602284
\(431\) −1.00000 −0.0481683
\(432\) 5.15443 0.247993
\(433\) −31.6288 −1.51998 −0.759990 0.649934i \(-0.774796\pi\)
−0.759990 + 0.649934i \(0.774796\pi\)
\(434\) −0.300872 −0.0144423
\(435\) −0.243908 −0.0116945
\(436\) 14.8775 0.712504
\(437\) −51.9207 −2.48370
\(438\) 5.80561 0.277403
\(439\) −18.3571 −0.876138 −0.438069 0.898941i \(-0.644337\pi\)
−0.438069 + 0.898941i \(0.644337\pi\)
\(440\) −1.43834 −0.0685703
\(441\) −0.329601 −0.0156953
\(442\) −3.01962 −0.143629
\(443\) 27.1503 1.28995 0.644975 0.764203i \(-0.276868\pi\)
0.644975 + 0.764203i \(0.276868\pi\)
\(444\) 4.79812 0.227709
\(445\) −34.6853 −1.64424
\(446\) 1.70500 0.0807340
\(447\) 28.8519 1.36465
\(448\) 0.156662 0.00740160
\(449\) 0.862033 0.0406818 0.0203409 0.999793i \(-0.493525\pi\)
0.0203409 + 0.999793i \(0.493525\pi\)
\(450\) 0.00654495 0.000308532 0
\(451\) 0.618902 0.0291430
\(452\) −5.37446 −0.252793
\(453\) −1.79139 −0.0841667
\(454\) 20.5767 0.965714
\(455\) −2.24567 −0.105279
\(456\) 10.1856 0.476987
\(457\) −23.1644 −1.08358 −0.541792 0.840512i \(-0.682254\pi\)
−0.541792 + 0.840512i \(0.682254\pi\)
\(458\) −20.5148 −0.958593
\(459\) −2.39406 −0.111745
\(460\) −19.6196 −0.914770
\(461\) −3.81137 −0.177513 −0.0887566 0.996053i \(-0.528289\pi\)
−0.0887566 + 0.996053i \(0.528289\pi\)
\(462\) 0.178401 0.00829995
\(463\) 7.93945 0.368978 0.184489 0.982835i \(-0.440937\pi\)
0.184489 + 0.982835i \(0.440937\pi\)
\(464\) 0.0633705 0.00294190
\(465\) −7.39189 −0.342791
\(466\) 13.9158 0.644635
\(467\) −24.4002 −1.12911 −0.564554 0.825396i \(-0.690952\pi\)
−0.564554 + 0.825396i \(0.690952\pi\)
\(468\) −0.307194 −0.0142001
\(469\) −1.73311 −0.0800275
\(470\) −29.3997 −1.35611
\(471\) −41.3151 −1.90370
\(472\) 11.7901 0.542685
\(473\) −3.69513 −0.169902
\(474\) −11.0169 −0.506022
\(475\) −0.808212 −0.0370833
\(476\) −0.0727645 −0.00333515
\(477\) −0.590763 −0.0270492
\(478\) 29.5089 1.34971
\(479\) 35.3294 1.61424 0.807120 0.590387i \(-0.201025\pi\)
0.807120 + 0.590387i \(0.201025\pi\)
\(480\) 3.84892 0.175678
\(481\) 17.8696 0.814783
\(482\) 8.99428 0.409678
\(483\) 2.43346 0.110726
\(484\) −10.5744 −0.480657
\(485\) −4.57932 −0.207936
\(486\) −0.491006 −0.0222725
\(487\) 27.2982 1.23700 0.618500 0.785785i \(-0.287741\pi\)
0.618500 + 0.785785i \(0.287741\pi\)
\(488\) 0.890281 0.0403011
\(489\) −43.4779 −1.96614
\(490\) 15.3800 0.694799
\(491\) −14.0711 −0.635019 −0.317510 0.948255i \(-0.602847\pi\)
−0.317510 + 0.948255i \(0.602847\pi\)
\(492\) −1.65614 −0.0746647
\(493\) −0.0294335 −0.00132562
\(494\) 37.9343 1.70675
\(495\) 0.0679639 0.00305475
\(496\) 1.92051 0.0862335
\(497\) −0.0687615 −0.00308437
\(498\) −18.2610 −0.818293
\(499\) −43.5032 −1.94747 −0.973736 0.227681i \(-0.926886\pi\)
−0.973736 + 0.227681i \(0.926886\pi\)
\(500\) −11.3298 −0.506684
\(501\) 36.6099 1.63561
\(502\) 5.35945 0.239204
\(503\) −25.8081 −1.15073 −0.575364 0.817898i \(-0.695139\pi\)
−0.575364 + 0.817898i \(0.695139\pi\)
\(504\) −0.00740252 −0.000329735 0
\(505\) −19.8135 −0.881688
\(506\) 5.80476 0.258053
\(507\) −51.0886 −2.26892
\(508\) 0.993847 0.0440948
\(509\) −3.13398 −0.138911 −0.0694557 0.997585i \(-0.522126\pi\)
−0.0694557 + 0.997585i \(0.522126\pi\)
\(510\) −1.78770 −0.0791605
\(511\) 0.521024 0.0230488
\(512\) −1.00000 −0.0441942
\(513\) 30.0757 1.32787
\(514\) 10.2059 0.450162
\(515\) 29.5266 1.30110
\(516\) 9.88793 0.435292
\(517\) 8.69835 0.382553
\(518\) 0.430607 0.0189198
\(519\) 34.9100 1.53238
\(520\) 14.3345 0.628609
\(521\) −33.6451 −1.47402 −0.737010 0.675882i \(-0.763763\pi\)
−0.737010 + 0.675882i \(0.763763\pi\)
\(522\) −0.00299435 −0.000131059 0
\(523\) −4.34015 −0.189782 −0.0948908 0.995488i \(-0.530250\pi\)
−0.0948908 + 0.995488i \(0.530250\pi\)
\(524\) 12.1959 0.532782
\(525\) 0.0378799 0.00165322
\(526\) −19.0954 −0.832599
\(527\) −0.892014 −0.0388567
\(528\) −1.13876 −0.0495582
\(529\) 56.1795 2.44259
\(530\) 27.5665 1.19741
\(531\) −0.557101 −0.0241761
\(532\) 0.914111 0.0396317
\(533\) −6.16796 −0.267164
\(534\) −27.4609 −1.18835
\(535\) 23.8971 1.03316
\(536\) 11.0627 0.477836
\(537\) −19.0080 −0.820255
\(538\) −18.4709 −0.796336
\(539\) −4.55041 −0.196000
\(540\) 11.3649 0.489067
\(541\) −35.9399 −1.54518 −0.772589 0.634906i \(-0.781039\pi\)
−0.772589 + 0.634906i \(0.781039\pi\)
\(542\) 6.62313 0.284488
\(543\) −0.748106 −0.0321043
\(544\) 0.464467 0.0199139
\(545\) 32.8031 1.40513
\(546\) −1.77794 −0.0760887
\(547\) −14.7702 −0.631528 −0.315764 0.948838i \(-0.602261\pi\)
−0.315764 + 0.948838i \(0.602261\pi\)
\(548\) −14.1885 −0.606102
\(549\) −0.0420671 −0.00179538
\(550\) 0.0903585 0.00385290
\(551\) 0.369762 0.0157524
\(552\) −15.5332 −0.661136
\(553\) −0.988710 −0.0420442
\(554\) −15.6367 −0.664341
\(555\) 10.5793 0.449065
\(556\) 10.4139 0.441646
\(557\) 16.0324 0.679315 0.339658 0.940549i \(-0.389689\pi\)
0.339658 + 0.940549i \(0.389689\pi\)
\(558\) −0.0907469 −0.00384162
\(559\) 36.8255 1.55755
\(560\) 0.345421 0.0145967
\(561\) 0.528917 0.0223309
\(562\) −24.6991 −1.04187
\(563\) −5.84799 −0.246463 −0.123232 0.992378i \(-0.539326\pi\)
−0.123232 + 0.992378i \(0.539326\pi\)
\(564\) −23.2762 −0.980107
\(565\) −11.8500 −0.498535
\(566\) −6.03169 −0.253531
\(567\) −1.43182 −0.0601307
\(568\) 0.438915 0.0184165
\(569\) 3.06263 0.128392 0.0641960 0.997937i \(-0.479552\pi\)
0.0641960 + 0.997937i \(0.479552\pi\)
\(570\) 22.4581 0.940667
\(571\) 46.9297 1.96395 0.981974 0.189018i \(-0.0605306\pi\)
0.981974 + 0.189018i \(0.0605306\pi\)
\(572\) −4.24107 −0.177328
\(573\) −33.1608 −1.38531
\(574\) −0.148631 −0.00620372
\(575\) 1.23253 0.0514000
\(576\) 0.0472515 0.00196881
\(577\) −14.3249 −0.596355 −0.298177 0.954510i \(-0.596379\pi\)
−0.298177 + 0.954510i \(0.596379\pi\)
\(578\) 16.7843 0.698134
\(579\) −7.26895 −0.302087
\(580\) 0.139724 0.00580174
\(581\) −1.63883 −0.0679901
\(582\) −3.62552 −0.150283
\(583\) −8.15597 −0.337786
\(584\) −3.32578 −0.137622
\(585\) −0.677326 −0.0280040
\(586\) 2.26491 0.0935624
\(587\) −26.9205 −1.11113 −0.555565 0.831473i \(-0.687498\pi\)
−0.555565 + 0.831473i \(0.687498\pi\)
\(588\) 12.1766 0.502155
\(589\) 11.2060 0.461736
\(590\) 25.9958 1.07023
\(591\) −25.0452 −1.03022
\(592\) −2.74863 −0.112968
\(593\) 9.48794 0.389623 0.194811 0.980841i \(-0.437591\pi\)
0.194811 + 0.980841i \(0.437591\pi\)
\(594\) −3.36247 −0.137964
\(595\) −0.160437 −0.00657727
\(596\) −16.5280 −0.677012
\(597\) 16.4514 0.673312
\(598\) −57.8501 −2.36567
\(599\) −25.1443 −1.02737 −0.513684 0.857979i \(-0.671720\pi\)
−0.513684 + 0.857979i \(0.671720\pi\)
\(600\) −0.241794 −0.00987119
\(601\) 8.28149 0.337809 0.168905 0.985632i \(-0.445977\pi\)
0.168905 + 0.985632i \(0.445977\pi\)
\(602\) 0.887392 0.0361674
\(603\) −0.522729 −0.0212872
\(604\) 1.02621 0.0417558
\(605\) −23.3154 −0.947904
\(606\) −15.6866 −0.637226
\(607\) 27.3851 1.11153 0.555763 0.831340i \(-0.312426\pi\)
0.555763 + 0.831340i \(0.312426\pi\)
\(608\) −5.83491 −0.236637
\(609\) −0.0173303 −0.000702259 0
\(610\) 1.96296 0.0794780
\(611\) −86.6875 −3.50700
\(612\) −0.0219468 −0.000887145 0
\(613\) −3.30066 −0.133312 −0.0666562 0.997776i \(-0.521233\pi\)
−0.0666562 + 0.997776i \(0.521233\pi\)
\(614\) 7.37287 0.297545
\(615\) −3.65159 −0.147247
\(616\) −0.102198 −0.00411768
\(617\) −20.3991 −0.821238 −0.410619 0.911807i \(-0.634687\pi\)
−0.410619 + 0.911807i \(0.634687\pi\)
\(618\) 23.3767 0.940348
\(619\) −2.14567 −0.0862416 −0.0431208 0.999070i \(-0.513730\pi\)
−0.0431208 + 0.999070i \(0.513730\pi\)
\(620\) 4.23449 0.170061
\(621\) −45.8656 −1.84052
\(622\) −8.74208 −0.350525
\(623\) −2.46448 −0.0987373
\(624\) 11.3489 0.454318
\(625\) −24.2882 −0.971530
\(626\) −9.08282 −0.363022
\(627\) −6.64457 −0.265358
\(628\) 23.6676 0.944441
\(629\) 1.27665 0.0509033
\(630\) −0.0163217 −0.000650271 0
\(631\) 44.3696 1.76632 0.883162 0.469068i \(-0.155410\pi\)
0.883162 + 0.469068i \(0.155410\pi\)
\(632\) 6.31109 0.251042
\(633\) 1.36445 0.0542319
\(634\) −13.8119 −0.548540
\(635\) 2.19131 0.0869596
\(636\) 21.8249 0.865413
\(637\) 45.3493 1.79680
\(638\) −0.0413395 −0.00163665
\(639\) −0.0207394 −0.000820438 0
\(640\) −2.20488 −0.0871555
\(641\) 24.6478 0.973531 0.486766 0.873533i \(-0.338177\pi\)
0.486766 + 0.873533i \(0.338177\pi\)
\(642\) 18.9197 0.746702
\(643\) 25.9806 1.02457 0.512287 0.858814i \(-0.328798\pi\)
0.512287 + 0.858814i \(0.328798\pi\)
\(644\) −1.39403 −0.0549323
\(645\) 21.8017 0.858440
\(646\) 2.71013 0.106628
\(647\) 0.751480 0.0295437 0.0147719 0.999891i \(-0.495298\pi\)
0.0147719 + 0.999891i \(0.495298\pi\)
\(648\) 9.13952 0.359034
\(649\) −7.69125 −0.301908
\(650\) −0.900510 −0.0353209
\(651\) −0.525213 −0.0205847
\(652\) 24.9066 0.975417
\(653\) 38.1197 1.49174 0.745869 0.666093i \(-0.232035\pi\)
0.745869 + 0.666093i \(0.232035\pi\)
\(654\) 25.9707 1.01554
\(655\) 26.8906 1.05070
\(656\) 0.948733 0.0370418
\(657\) 0.157148 0.00613093
\(658\) −2.08893 −0.0814348
\(659\) −12.9150 −0.503096 −0.251548 0.967845i \(-0.580940\pi\)
−0.251548 + 0.967845i \(0.580940\pi\)
\(660\) −2.51083 −0.0977338
\(661\) 22.5406 0.876728 0.438364 0.898797i \(-0.355558\pi\)
0.438364 + 0.898797i \(0.355558\pi\)
\(662\) 6.17996 0.240191
\(663\) −5.27117 −0.204715
\(664\) 10.4609 0.405962
\(665\) 2.01550 0.0781578
\(666\) 0.129877 0.00503263
\(667\) −0.563889 −0.0218339
\(668\) −20.9722 −0.811439
\(669\) 2.97631 0.115071
\(670\) 24.3919 0.942342
\(671\) −0.580771 −0.0224204
\(672\) 0.273476 0.0105495
\(673\) −41.7604 −1.60975 −0.804873 0.593447i \(-0.797767\pi\)
−0.804873 + 0.593447i \(0.797767\pi\)
\(674\) −1.84183 −0.0709446
\(675\) −0.713956 −0.0274802
\(676\) 29.2664 1.12563
\(677\) −10.3065 −0.396111 −0.198055 0.980191i \(-0.563463\pi\)
−0.198055 + 0.980191i \(0.563463\pi\)
\(678\) −9.38186 −0.360308
\(679\) −0.325372 −0.0124866
\(680\) 1.02409 0.0392722
\(681\) 35.9195 1.37644
\(682\) −1.25284 −0.0479736
\(683\) 34.8815 1.33470 0.667351 0.744743i \(-0.267428\pi\)
0.667351 + 0.744743i \(0.267428\pi\)
\(684\) 0.275708 0.0105420
\(685\) −31.2839 −1.19530
\(686\) 2.18943 0.0835927
\(687\) −35.8114 −1.36629
\(688\) −5.66437 −0.215952
\(689\) 81.2822 3.09661
\(690\) −34.2488 −1.30383
\(691\) −10.0208 −0.381211 −0.190605 0.981667i \(-0.561045\pi\)
−0.190605 + 0.981667i \(0.561045\pi\)
\(692\) −19.9984 −0.760226
\(693\) 0.00482901 0.000183439 0
\(694\) −9.65504 −0.366500
\(695\) 22.9613 0.870971
\(696\) 0.110622 0.00419312
\(697\) −0.440655 −0.0166910
\(698\) −4.04766 −0.153206
\(699\) 24.2919 0.918804
\(700\) −0.0216998 −0.000820174 0
\(701\) −22.6094 −0.853946 −0.426973 0.904264i \(-0.640420\pi\)
−0.426973 + 0.904264i \(0.640420\pi\)
\(702\) 33.5103 1.26477
\(703\) −16.0380 −0.604886
\(704\) 0.652346 0.0245862
\(705\) −51.3213 −1.93287
\(706\) −18.1060 −0.681427
\(707\) −1.40780 −0.0529457
\(708\) 20.5813 0.773493
\(709\) 20.6029 0.773758 0.386879 0.922130i \(-0.373553\pi\)
0.386879 + 0.922130i \(0.373553\pi\)
\(710\) 0.967755 0.0363192
\(711\) −0.298208 −0.0111837
\(712\) 15.7312 0.589550
\(713\) −17.0892 −0.639997
\(714\) −0.127020 −0.00475362
\(715\) −9.35105 −0.349710
\(716\) 10.8889 0.406935
\(717\) 51.5119 1.92375
\(718\) 6.25537 0.233448
\(719\) 27.3996 1.02183 0.510917 0.859630i \(-0.329306\pi\)
0.510917 + 0.859630i \(0.329306\pi\)
\(720\) 0.104184 0.00388270
\(721\) 2.09794 0.0781314
\(722\) −15.0462 −0.559962
\(723\) 15.7008 0.583917
\(724\) 0.428557 0.0159272
\(725\) −0.00877765 −0.000325994 0
\(726\) −18.4592 −0.685083
\(727\) 2.77657 0.102977 0.0514887 0.998674i \(-0.483603\pi\)
0.0514887 + 0.998674i \(0.483603\pi\)
\(728\) 1.01850 0.0377482
\(729\) 26.5614 0.983757
\(730\) −7.33294 −0.271404
\(731\) 2.63091 0.0973078
\(732\) 1.55411 0.0574415
\(733\) −14.6613 −0.541526 −0.270763 0.962646i \(-0.587276\pi\)
−0.270763 + 0.962646i \(0.587276\pi\)
\(734\) −9.55570 −0.352707
\(735\) 26.8480 0.990302
\(736\) 8.89828 0.327995
\(737\) −7.21671 −0.265831
\(738\) −0.0448290 −0.00165018
\(739\) −41.0890 −1.51148 −0.755742 0.654869i \(-0.772724\pi\)
−0.755742 + 0.654869i \(0.772724\pi\)
\(740\) −6.06040 −0.222785
\(741\) 66.2196 2.43264
\(742\) 1.95867 0.0719052
\(743\) −30.4819 −1.11827 −0.559136 0.829076i \(-0.688867\pi\)
−0.559136 + 0.829076i \(0.688867\pi\)
\(744\) 3.35252 0.122909
\(745\) −36.4422 −1.33514
\(746\) −16.1010 −0.589498
\(747\) −0.494293 −0.0180852
\(748\) −0.302993 −0.0110785
\(749\) 1.69795 0.0620418
\(750\) −19.7777 −0.722180
\(751\) −45.8869 −1.67444 −0.837219 0.546868i \(-0.815820\pi\)
−0.837219 + 0.546868i \(0.815820\pi\)
\(752\) 13.3339 0.486239
\(753\) 9.35565 0.340939
\(754\) 0.411989 0.0150037
\(755\) 2.26266 0.0823467
\(756\) 0.807505 0.0293687
\(757\) 2.64634 0.0961827 0.0480913 0.998843i \(-0.484686\pi\)
0.0480913 + 0.998843i \(0.484686\pi\)
\(758\) −24.3896 −0.885871
\(759\) 10.1330 0.367805
\(760\) −12.8653 −0.466672
\(761\) −46.3450 −1.68000 −0.840002 0.542583i \(-0.817446\pi\)
−0.840002 + 0.542583i \(0.817446\pi\)
\(762\) 1.73490 0.0628487
\(763\) 2.33074 0.0843786
\(764\) 18.9964 0.687266
\(765\) −0.0483899 −0.00174954
\(766\) 28.5792 1.03261
\(767\) 76.6508 2.76770
\(768\) −1.74564 −0.0629903
\(769\) −13.0789 −0.471636 −0.235818 0.971797i \(-0.575777\pi\)
−0.235818 + 0.971797i \(0.575777\pi\)
\(770\) −0.225334 −0.00812048
\(771\) 17.8158 0.641620
\(772\) 4.16406 0.149868
\(773\) −19.8118 −0.712579 −0.356290 0.934376i \(-0.615958\pi\)
−0.356290 + 0.934376i \(0.615958\pi\)
\(774\) 0.267650 0.00962047
\(775\) −0.266016 −0.00955557
\(776\) 2.07690 0.0745565
\(777\) 0.751684 0.0269665
\(778\) −28.3934 −1.01795
\(779\) 5.53577 0.198340
\(780\) 25.0228 0.895961
\(781\) −0.286325 −0.0102455
\(782\) −4.13296 −0.147794
\(783\) 0.326639 0.0116731
\(784\) −6.97546 −0.249123
\(785\) 52.1842 1.86253
\(786\) 21.2897 0.759378
\(787\) 39.7402 1.41659 0.708293 0.705919i \(-0.249466\pi\)
0.708293 + 0.705919i \(0.249466\pi\)
\(788\) 14.3473 0.511101
\(789\) −33.3336 −1.18671
\(790\) 13.9152 0.495080
\(791\) −0.841975 −0.0299372
\(792\) −0.0308243 −0.00109529
\(793\) 5.78795 0.205536
\(794\) −14.9933 −0.532091
\(795\) 48.1212 1.70668
\(796\) −9.42430 −0.334036
\(797\) 2.95456 0.104656 0.0523279 0.998630i \(-0.483336\pi\)
0.0523279 + 0.998630i \(0.483336\pi\)
\(798\) 1.59571 0.0564874
\(799\) −6.19318 −0.219099
\(800\) 0.138513 0.00489718
\(801\) −0.743321 −0.0262640
\(802\) −27.9414 −0.986645
\(803\) 2.16956 0.0765621
\(804\) 19.3115 0.681063
\(805\) −3.07366 −0.108332
\(806\) 12.4857 0.439792
\(807\) −32.2435 −1.13502
\(808\) 8.98620 0.316133
\(809\) −34.8978 −1.22694 −0.613470 0.789718i \(-0.710227\pi\)
−0.613470 + 0.789718i \(0.710227\pi\)
\(810\) 20.1515 0.708053
\(811\) 16.5904 0.582567 0.291284 0.956637i \(-0.405918\pi\)
0.291284 + 0.956637i \(0.405918\pi\)
\(812\) 0.00992777 0.000348397 0
\(813\) 11.5616 0.405483
\(814\) 1.79306 0.0628467
\(815\) 54.9160 1.92362
\(816\) 0.810792 0.0283834
\(817\) −33.0511 −1.15631
\(818\) 16.2981 0.569849
\(819\) −0.0481258 −0.00168165
\(820\) 2.09184 0.0730502
\(821\) 21.2733 0.742443 0.371221 0.928544i \(-0.378939\pi\)
0.371221 + 0.928544i \(0.378939\pi\)
\(822\) −24.7679 −0.863881
\(823\) −41.2205 −1.43686 −0.718429 0.695601i \(-0.755138\pi\)
−0.718429 + 0.695601i \(0.755138\pi\)
\(824\) −13.3915 −0.466515
\(825\) 0.157733 0.00549156
\(826\) 1.84707 0.0642677
\(827\) −33.1469 −1.15263 −0.576316 0.817227i \(-0.695510\pi\)
−0.576316 + 0.817227i \(0.695510\pi\)
\(828\) −0.420457 −0.0146119
\(829\) 18.4481 0.640731 0.320365 0.947294i \(-0.396194\pi\)
0.320365 + 0.947294i \(0.396194\pi\)
\(830\) 23.0650 0.800598
\(831\) −27.2961 −0.946891
\(832\) −6.50126 −0.225391
\(833\) 3.23987 0.112255
\(834\) 18.1788 0.629481
\(835\) −46.2411 −1.60024
\(836\) 3.80638 0.131647
\(837\) 9.89914 0.342164
\(838\) −6.30919 −0.217947
\(839\) 19.4048 0.669929 0.334965 0.942231i \(-0.391276\pi\)
0.334965 + 0.942231i \(0.391276\pi\)
\(840\) 0.602980 0.0208048
\(841\) −28.9960 −0.999862
\(842\) −5.89283 −0.203080
\(843\) −43.1156 −1.48498
\(844\) −0.781632 −0.0269049
\(845\) 64.5289 2.21986
\(846\) −0.630049 −0.0216615
\(847\) −1.65662 −0.0569220
\(848\) −12.5025 −0.429338
\(849\) −10.5291 −0.361359
\(850\) −0.0643348 −0.00220666
\(851\) 24.4581 0.838413
\(852\) 0.766187 0.0262492
\(853\) 12.5100 0.428335 0.214167 0.976797i \(-0.431296\pi\)
0.214167 + 0.976797i \(0.431296\pi\)
\(854\) 0.139473 0.00477268
\(855\) 0.607903 0.0207898
\(856\) −10.8383 −0.370445
\(857\) 17.0216 0.581446 0.290723 0.956807i \(-0.406104\pi\)
0.290723 + 0.956807i \(0.406104\pi\)
\(858\) −7.40338 −0.252747
\(859\) 18.7774 0.640676 0.320338 0.947303i \(-0.396204\pi\)
0.320338 + 0.947303i \(0.396204\pi\)
\(860\) −12.4892 −0.425879
\(861\) −0.259455 −0.00884221
\(862\) 1.00000 0.0340601
\(863\) 18.8828 0.642778 0.321389 0.946947i \(-0.395850\pi\)
0.321389 + 0.946947i \(0.395850\pi\)
\(864\) −5.15443 −0.175357
\(865\) −44.0941 −1.49924
\(866\) 31.6288 1.07479
\(867\) 29.2993 0.995055
\(868\) 0.300872 0.0102122
\(869\) −4.11702 −0.139660
\(870\) 0.243908 0.00826926
\(871\) 71.9216 2.43697
\(872\) −14.8775 −0.503816
\(873\) −0.0981367 −0.00332143
\(874\) 51.9207 1.75624
\(875\) −1.77495 −0.0600043
\(876\) −5.80561 −0.196153
\(877\) −33.5075 −1.13147 −0.565734 0.824588i \(-0.691407\pi\)
−0.565734 + 0.824588i \(0.691407\pi\)
\(878\) 18.3571 0.619523
\(879\) 3.95371 0.133355
\(880\) 1.43834 0.0484866
\(881\) 56.5883 1.90651 0.953254 0.302169i \(-0.0977106\pi\)
0.953254 + 0.302169i \(0.0977106\pi\)
\(882\) 0.329601 0.0110982
\(883\) 28.0681 0.944565 0.472283 0.881447i \(-0.343430\pi\)
0.472283 + 0.881447i \(0.343430\pi\)
\(884\) 3.01962 0.101561
\(885\) 45.3792 1.52541
\(886\) −27.1503 −0.912133
\(887\) −8.23335 −0.276449 −0.138224 0.990401i \(-0.544139\pi\)
−0.138224 + 0.990401i \(0.544139\pi\)
\(888\) −4.79812 −0.161014
\(889\) 0.155698 0.00522196
\(890\) 34.6853 1.16265
\(891\) −5.96213 −0.199739
\(892\) −1.70500 −0.0570876
\(893\) 77.8024 2.60356
\(894\) −28.8519 −0.964951
\(895\) 24.0086 0.802519
\(896\) −0.156662 −0.00523372
\(897\) −100.985 −3.37180
\(898\) −0.862033 −0.0287664
\(899\) 0.121704 0.00405905
\(900\) −0.00654495 −0.000218165 0
\(901\) 5.80701 0.193460
\(902\) −0.618902 −0.0206072
\(903\) 1.54907 0.0515497
\(904\) 5.37446 0.178752
\(905\) 0.944917 0.0314101
\(906\) 1.79139 0.0595149
\(907\) −8.92366 −0.296305 −0.148153 0.988965i \(-0.547333\pi\)
−0.148153 + 0.988965i \(0.547333\pi\)
\(908\) −20.5767 −0.682863
\(909\) −0.424611 −0.0140835
\(910\) 2.24567 0.0744434
\(911\) −2.76378 −0.0915682 −0.0457841 0.998951i \(-0.514579\pi\)
−0.0457841 + 0.998951i \(0.514579\pi\)
\(912\) −10.1856 −0.337280
\(913\) −6.82413 −0.225846
\(914\) 23.1644 0.766210
\(915\) 3.42662 0.113281
\(916\) 20.5148 0.677828
\(917\) 1.91064 0.0630950
\(918\) 2.39406 0.0790159
\(919\) −41.1042 −1.35590 −0.677950 0.735108i \(-0.737132\pi\)
−0.677950 + 0.735108i \(0.737132\pi\)
\(920\) 19.6196 0.646840
\(921\) 12.8704 0.424093
\(922\) 3.81137 0.125521
\(923\) 2.85351 0.0939243
\(924\) −0.178401 −0.00586895
\(925\) 0.380722 0.0125180
\(926\) −7.93945 −0.260907
\(927\) 0.632768 0.0207828
\(928\) −0.0633705 −0.00208024
\(929\) 25.2162 0.827318 0.413659 0.910432i \(-0.364251\pi\)
0.413659 + 0.910432i \(0.364251\pi\)
\(930\) 7.39189 0.242390
\(931\) −40.7012 −1.33393
\(932\) −13.9158 −0.455826
\(933\) −15.2605 −0.499606
\(934\) 24.4002 0.798400
\(935\) −0.668063 −0.0218480
\(936\) 0.307194 0.0100410
\(937\) −0.681892 −0.0222765 −0.0111382 0.999938i \(-0.503545\pi\)
−0.0111382 + 0.999938i \(0.503545\pi\)
\(938\) 1.73311 0.0565880
\(939\) −15.8553 −0.517419
\(940\) 29.3997 0.958913
\(941\) −27.8038 −0.906379 −0.453190 0.891414i \(-0.649714\pi\)
−0.453190 + 0.891414i \(0.649714\pi\)
\(942\) 41.3151 1.34612
\(943\) −8.44209 −0.274912
\(944\) −11.7901 −0.383736
\(945\) 1.78045 0.0579180
\(946\) 3.69513 0.120139
\(947\) −14.1900 −0.461112 −0.230556 0.973059i \(-0.574054\pi\)
−0.230556 + 0.973059i \(0.574054\pi\)
\(948\) 11.0169 0.357812
\(949\) −21.6218 −0.701873
\(950\) 0.808212 0.0262219
\(951\) −24.1106 −0.781838
\(952\) 0.0727645 0.00235831
\(953\) −34.1073 −1.10484 −0.552422 0.833565i \(-0.686296\pi\)
−0.552422 + 0.833565i \(0.686296\pi\)
\(954\) 0.590763 0.0191266
\(955\) 41.8847 1.35536
\(956\) −29.5089 −0.954387
\(957\) −0.0721638 −0.00233273
\(958\) −35.3294 −1.14144
\(959\) −2.22280 −0.0717779
\(960\) −3.84892 −0.124223
\(961\) −27.3116 −0.881021
\(962\) −17.8696 −0.576139
\(963\) 0.512125 0.0165030
\(964\) −8.99428 −0.289686
\(965\) 9.18125 0.295555
\(966\) −2.43346 −0.0782954
\(967\) −52.1206 −1.67609 −0.838043 0.545605i \(-0.816300\pi\)
−0.838043 + 0.545605i \(0.816300\pi\)
\(968\) 10.5744 0.339876
\(969\) 4.73090 0.151978
\(970\) 4.57932 0.147033
\(971\) 12.6660 0.406470 0.203235 0.979130i \(-0.434854\pi\)
0.203235 + 0.979130i \(0.434854\pi\)
\(972\) 0.491006 0.0157490
\(973\) 1.63146 0.0523022
\(974\) −27.2982 −0.874691
\(975\) −1.57196 −0.0503432
\(976\) −0.890281 −0.0284972
\(977\) −29.5467 −0.945284 −0.472642 0.881255i \(-0.656700\pi\)
−0.472642 + 0.881255i \(0.656700\pi\)
\(978\) 43.4779 1.39027
\(979\) −10.2622 −0.327980
\(980\) −15.3800 −0.491297
\(981\) 0.702984 0.0224446
\(982\) 14.0711 0.449026
\(983\) 43.4813 1.38684 0.693420 0.720534i \(-0.256103\pi\)
0.693420 + 0.720534i \(0.256103\pi\)
\(984\) 1.65614 0.0527959
\(985\) 31.6340 1.00794
\(986\) 0.0294335 0.000937355 0
\(987\) −3.64651 −0.116070
\(988\) −37.9343 −1.20685
\(989\) 50.4031 1.60273
\(990\) −0.0679639 −0.00216003
\(991\) −31.5743 −1.00299 −0.501496 0.865160i \(-0.667217\pi\)
−0.501496 + 0.865160i \(0.667217\pi\)
\(992\) −1.92051 −0.0609763
\(993\) 10.7880 0.342346
\(994\) 0.0687615 0.00218098
\(995\) −20.7794 −0.658753
\(996\) 18.2610 0.578620
\(997\) 39.9641 1.26568 0.632838 0.774284i \(-0.281890\pi\)
0.632838 + 0.774284i \(0.281890\pi\)
\(998\) 43.5032 1.37707
\(999\) −14.1676 −0.448244
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 862.2.a.i.1.2 6
3.2 odd 2 7758.2.a.t.1.2 6
4.3 odd 2 6896.2.a.q.1.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
862.2.a.i.1.2 6 1.1 even 1 trivial
6896.2.a.q.1.5 6 4.3 odd 2
7758.2.a.t.1.2 6 3.2 odd 2