Properties

Label 862.2.a.j.1.6
Level 862862
Weight 22
Character 862.1
Self dual yes
Analytic conductor 6.8836.883
Analytic rank 11
Dimension 66
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [862,2,Mod(1,862)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(862, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("862.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 862=2431 862 = 2 \cdot 431
Weight: k k == 2 2
Character orbit: [χ][\chi] == 862.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 6.883104654236.88310465423
Analytic rank: 11
Dimension: 66
Coefficient field: 6.6.9783113.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x6x58x4+7x3+11x29x+1 x^{6} - x^{5} - 8x^{4} + 7x^{3} + 11x^{2} - 9x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.6
Root 1.34828-1.34828 of defining polynomial
Character χ\chi == 862.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+1.00000q2+1.63132q3+1.00000q43.84124q5+1.63132q64.15570q7+1.00000q80.338810q93.84124q100.276147q11+1.63132q121.67873q134.15570q146.26627q15+1.00000q165.94165q170.338810q18+4.04484q193.84124q206.77925q210.276147q22+4.98236q23+1.63132q24+9.75511q251.67873q265.44665q274.15570q288.14390q296.26627q304.97939q31+1.00000q320.450483q335.94165q34+15.9630q350.338810q36+6.04809q37+4.04484q382.73854q393.84124q405.16989q416.77925q42+5.45886q430.276147q44+1.30145q45+4.98236q469.49305q47+1.63132q48+10.2698q49+9.75511q509.69271q511.67873q52+5.04713q535.44665q54+1.06075q554.15570q56+6.59842q578.14390q58+0.0328732q596.26627q6015.2993q614.97939q62+1.40799q63+1.00000q64+6.44841q650.450483q66+8.68500q675.94165q68+8.12781q69+15.9630q70+12.8570q710.338810q728.66551q73+6.04809q74+15.9137q75+4.04484q76+1.14758q772.73854q780.311274q793.84124q807.86878q815.16989q82+12.4146q836.77925q84+22.8233q85+5.45886q8613.2853q870.276147q88+17.1312q89+1.30145q90+6.97630q91+4.98236q928.12296q939.49305q9415.5372q95+1.63132q96+8.80436q97+10.2698q98+0.0935612q99+O(q100)q+1.00000 q^{2} +1.63132 q^{3} +1.00000 q^{4} -3.84124 q^{5} +1.63132 q^{6} -4.15570 q^{7} +1.00000 q^{8} -0.338810 q^{9} -3.84124 q^{10} -0.276147 q^{11} +1.63132 q^{12} -1.67873 q^{13} -4.15570 q^{14} -6.26627 q^{15} +1.00000 q^{16} -5.94165 q^{17} -0.338810 q^{18} +4.04484 q^{19} -3.84124 q^{20} -6.77925 q^{21} -0.276147 q^{22} +4.98236 q^{23} +1.63132 q^{24} +9.75511 q^{25} -1.67873 q^{26} -5.44665 q^{27} -4.15570 q^{28} -8.14390 q^{29} -6.26627 q^{30} -4.97939 q^{31} +1.00000 q^{32} -0.450483 q^{33} -5.94165 q^{34} +15.9630 q^{35} -0.338810 q^{36} +6.04809 q^{37} +4.04484 q^{38} -2.73854 q^{39} -3.84124 q^{40} -5.16989 q^{41} -6.77925 q^{42} +5.45886 q^{43} -0.276147 q^{44} +1.30145 q^{45} +4.98236 q^{46} -9.49305 q^{47} +1.63132 q^{48} +10.2698 q^{49} +9.75511 q^{50} -9.69271 q^{51} -1.67873 q^{52} +5.04713 q^{53} -5.44665 q^{54} +1.06075 q^{55} -4.15570 q^{56} +6.59842 q^{57} -8.14390 q^{58} +0.0328732 q^{59} -6.26627 q^{60} -15.2993 q^{61} -4.97939 q^{62} +1.40799 q^{63} +1.00000 q^{64} +6.44841 q^{65} -0.450483 q^{66} +8.68500 q^{67} -5.94165 q^{68} +8.12781 q^{69} +15.9630 q^{70} +12.8570 q^{71} -0.338810 q^{72} -8.66551 q^{73} +6.04809 q^{74} +15.9137 q^{75} +4.04484 q^{76} +1.14758 q^{77} -2.73854 q^{78} -0.311274 q^{79} -3.84124 q^{80} -7.86878 q^{81} -5.16989 q^{82} +12.4146 q^{83} -6.77925 q^{84} +22.8233 q^{85} +5.45886 q^{86} -13.2853 q^{87} -0.276147 q^{88} +17.1312 q^{89} +1.30145 q^{90} +6.97630 q^{91} +4.98236 q^{92} -8.12296 q^{93} -9.49305 q^{94} -15.5372 q^{95} +1.63132 q^{96} +8.80436 q^{97} +10.2698 q^{98} +0.0935612 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q+6q28q3+6q48q58q69q7+6q8+14q98q1010q118q12+3q139q14q15+6q1611q17+14q183q198q20++18q99+O(q100) 6 q + 6 q^{2} - 8 q^{3} + 6 q^{4} - 8 q^{5} - 8 q^{6} - 9 q^{7} + 6 q^{8} + 14 q^{9} - 8 q^{10} - 10 q^{11} - 8 q^{12} + 3 q^{13} - 9 q^{14} - q^{15} + 6 q^{16} - 11 q^{17} + 14 q^{18} - 3 q^{19} - 8 q^{20}+ \cdots + 18 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 1.00000 0.707107
33 1.63132 0.941840 0.470920 0.882176i 0.343922π-0.343922\pi
0.470920 + 0.882176i 0.343922π0.343922\pi
44 1.00000 0.500000
55 −3.84124 −1.71785 −0.858927 0.512098i 0.828868π-0.828868\pi
−0.858927 + 0.512098i 0.828868π0.828868\pi
66 1.63132 0.665982
77 −4.15570 −1.57071 −0.785353 0.619049i 0.787518π-0.787518\pi
−0.785353 + 0.619049i 0.787518π0.787518\pi
88 1.00000 0.353553
99 −0.338810 −0.112937
1010 −3.84124 −1.21471
1111 −0.276147 −0.0832614 −0.0416307 0.999133i 0.513255π-0.513255\pi
−0.0416307 + 0.999133i 0.513255π0.513255\pi
1212 1.63132 0.470920
1313 −1.67873 −0.465596 −0.232798 0.972525i 0.574788π-0.574788\pi
−0.232798 + 0.972525i 0.574788π0.574788\pi
1414 −4.15570 −1.11066
1515 −6.26627 −1.61794
1616 1.00000 0.250000
1717 −5.94165 −1.44106 −0.720531 0.693422i 0.756102π-0.756102\pi
−0.720531 + 0.693422i 0.756102π0.756102\pi
1818 −0.338810 −0.0798582
1919 4.04484 0.927951 0.463976 0.885848i 0.346423π-0.346423\pi
0.463976 + 0.885848i 0.346423π0.346423\pi
2020 −3.84124 −0.858927
2121 −6.77925 −1.47935
2222 −0.276147 −0.0588747
2323 4.98236 1.03889 0.519447 0.854503i 0.326138π-0.326138\pi
0.519447 + 0.854503i 0.326138π0.326138\pi
2424 1.63132 0.332991
2525 9.75511 1.95102
2626 −1.67873 −0.329226
2727 −5.44665 −1.04821
2828 −4.15570 −0.785353
2929 −8.14390 −1.51228 −0.756142 0.654407i 0.772918π-0.772918\pi
−0.756142 + 0.654407i 0.772918π0.772918\pi
3030 −6.26627 −1.14406
3131 −4.97939 −0.894325 −0.447163 0.894453i 0.647565π-0.647565\pi
−0.447163 + 0.894453i 0.647565π0.647565\pi
3232 1.00000 0.176777
3333 −0.450483 −0.0784190
3434 −5.94165 −1.01899
3535 15.9630 2.69824
3636 −0.338810 −0.0564683
3737 6.04809 0.994300 0.497150 0.867665i 0.334380π-0.334380\pi
0.497150 + 0.867665i 0.334380π0.334380\pi
3838 4.04484 0.656160
3939 −2.73854 −0.438518
4040 −3.84124 −0.607353
4141 −5.16989 −0.807401 −0.403700 0.914891i 0.632276π-0.632276\pi
−0.403700 + 0.914891i 0.632276π0.632276\pi
4242 −6.77925 −1.04606
4343 5.45886 0.832468 0.416234 0.909258i 0.363350π-0.363350\pi
0.416234 + 0.909258i 0.363350π0.363350\pi
4444 −0.276147 −0.0416307
4545 1.30145 0.194008
4646 4.98236 0.734609
4747 −9.49305 −1.38470 −0.692352 0.721560i 0.743425π-0.743425\pi
−0.692352 + 0.721560i 0.743425π0.743425\pi
4848 1.63132 0.235460
4949 10.2698 1.46712
5050 9.75511 1.37958
5151 −9.69271 −1.35725
5252 −1.67873 −0.232798
5353 5.04713 0.693276 0.346638 0.937999i 0.387323π-0.387323\pi
0.346638 + 0.937999i 0.387323π0.387323\pi
5454 −5.44665 −0.741195
5555 1.06075 0.143031
5656 −4.15570 −0.555328
5757 6.59842 0.873982
5858 −8.14390 −1.06935
5959 0.0328732 0.00427973 0.00213986 0.999998i 0.499319π-0.499319\pi
0.00213986 + 0.999998i 0.499319π0.499319\pi
6060 −6.26627 −0.808972
6161 −15.2993 −1.95888 −0.979439 0.201742i 0.935340π-0.935340\pi
−0.979439 + 0.201742i 0.935340π0.935340\pi
6262 −4.97939 −0.632383
6363 1.40799 0.177390
6464 1.00000 0.125000
6565 6.44841 0.799826
6666 −0.450483 −0.0554506
6767 8.68500 1.06104 0.530521 0.847672i 0.321996π-0.321996\pi
0.530521 + 0.847672i 0.321996π0.321996\pi
6868 −5.94165 −0.720531
6969 8.12781 0.978473
7070 15.9630 1.90795
7171 12.8570 1.52585 0.762924 0.646488i 0.223763π-0.223763\pi
0.762924 + 0.646488i 0.223763π0.223763\pi
7272 −0.338810 −0.0399291
7373 −8.66551 −1.01422 −0.507110 0.861881i 0.669286π-0.669286\pi
−0.507110 + 0.861881i 0.669286π0.669286\pi
7474 6.04809 0.703076
7575 15.9137 1.83755
7676 4.04484 0.463976
7777 1.14758 0.130779
7878 −2.73854 −0.310079
7979 −0.311274 −0.0350210 −0.0175105 0.999847i 0.505574π-0.505574\pi
−0.0175105 + 0.999847i 0.505574π0.505574\pi
8080 −3.84124 −0.429463
8181 −7.86878 −0.874309
8282 −5.16989 −0.570919
8383 12.4146 1.36268 0.681338 0.731969i 0.261398π-0.261398\pi
0.681338 + 0.731969i 0.261398π0.261398\pi
8484 −6.77925 −0.739677
8585 22.8233 2.47553
8686 5.45886 0.588644
8787 −13.2853 −1.42433
8888 −0.276147 −0.0294374
8989 17.1312 1.81591 0.907954 0.419069i 0.137643π-0.137643\pi
0.907954 + 0.419069i 0.137643π0.137643\pi
9090 1.30145 0.137185
9191 6.97630 0.731315
9292 4.98236 0.519447
9393 −8.12296 −0.842312
9494 −9.49305 −0.979133
9595 −15.5372 −1.59408
9696 1.63132 0.166495
9797 8.80436 0.893947 0.446974 0.894547i 0.352502π-0.352502\pi
0.446974 + 0.894547i 0.352502π0.352502\pi
9898 10.2698 1.03741
9999 0.0935612 0.00940326
100100 9.75511 0.975511
101101 −3.45921 −0.344204 −0.172102 0.985079i 0.555056π-0.555056\pi
−0.172102 + 0.985079i 0.555056π0.555056\pi
102102 −9.69271 −0.959721
103103 −7.23292 −0.712681 −0.356340 0.934356i 0.615976π-0.615976\pi
−0.356340 + 0.934356i 0.615976π0.615976\pi
104104 −1.67873 −0.164613
105105 26.0407 2.54131
106106 5.04713 0.490220
107107 −12.7985 −1.23728 −0.618638 0.785676i 0.712315π-0.712315\pi
−0.618638 + 0.785676i 0.712315π0.712315\pi
108108 −5.44665 −0.524104
109109 −7.07598 −0.677756 −0.338878 0.940830i 0.610047π-0.610047\pi
−0.338878 + 0.940830i 0.610047π0.610047\pi
110110 1.06075 0.101138
111111 9.86635 0.936472
112112 −4.15570 −0.392676
113113 −10.1828 −0.957918 −0.478959 0.877837i 0.658986π-0.658986\pi
−0.478959 + 0.877837i 0.658986π0.658986\pi
114114 6.59842 0.617999
115115 −19.1384 −1.78467
116116 −8.14390 −0.756142
117117 0.568770 0.0525829
118118 0.0328732 0.00302622
119119 24.6917 2.26348
120120 −6.26627 −0.572030
121121 −10.9237 −0.993068
122122 −15.2993 −1.38514
123123 −8.43372 −0.760443
124124 −4.97939 −0.447163
125125 −18.2655 −1.63371
126126 1.40799 0.125434
127127 −4.34187 −0.385278 −0.192639 0.981270i 0.561705π-0.561705\pi
−0.192639 + 0.981270i 0.561705π0.561705\pi
128128 1.00000 0.0883883
129129 8.90512 0.784052
130130 6.44841 0.565563
131131 4.05026 0.353873 0.176936 0.984222i 0.443381π-0.443381\pi
0.176936 + 0.984222i 0.443381π0.443381\pi
132132 −0.450483 −0.0392095
133133 −16.8091 −1.45754
134134 8.68500 0.750270
135135 20.9219 1.80067
136136 −5.94165 −0.509493
137137 −18.7826 −1.60470 −0.802352 0.596850i 0.796419π-0.796419\pi
−0.802352 + 0.596850i 0.796419π0.796419\pi
138138 8.12781 0.691885
139139 −0.403657 −0.0342378 −0.0171189 0.999853i 0.505449π-0.505449\pi
−0.0171189 + 0.999853i 0.505449π0.505449\pi
140140 15.9630 1.34912
141141 −15.4862 −1.30417
142142 12.8570 1.07894
143143 0.463576 0.0387662
144144 −0.338810 −0.0282341
145145 31.2827 2.59788
146146 −8.66551 −0.717162
147147 16.7533 1.38179
148148 6.04809 0.497150
149149 −15.6313 −1.28057 −0.640283 0.768139i 0.721183π-0.721183\pi
−0.640283 + 0.768139i 0.721183π0.721183\pi
150150 15.9137 1.29934
151151 10.7772 0.877038 0.438519 0.898722i 0.355503π-0.355503\pi
0.438519 + 0.898722i 0.355503π0.355503\pi
152152 4.04484 0.328080
153153 2.01309 0.162749
154154 1.14758 0.0924748
155155 19.1270 1.53632
156156 −2.73854 −0.219259
157157 7.11275 0.567660 0.283830 0.958875i 0.408395π-0.408395\pi
0.283830 + 0.958875i 0.408395π0.408395\pi
158158 −0.311274 −0.0247636
159159 8.23345 0.652955
160160 −3.84124 −0.303676
161161 −20.7052 −1.63180
162162 −7.86878 −0.618230
163163 −11.6073 −0.909151 −0.454576 0.890708i 0.650209π-0.650209\pi
−0.454576 + 0.890708i 0.650209π0.650209\pi
164164 −5.16989 −0.403700
165165 1.73041 0.134712
166166 12.4146 0.963558
167167 −22.1423 −1.71342 −0.856711 0.515797i 0.827496π-0.827496\pi
−0.856711 + 0.515797i 0.827496π0.827496\pi
168168 −6.77925 −0.523031
169169 −10.1819 −0.783220
170170 22.8233 1.75047
171171 −1.37043 −0.104800
172172 5.45886 0.416234
173173 −21.5519 −1.63856 −0.819279 0.573395i 0.805626π-0.805626\pi
−0.819279 + 0.573395i 0.805626π0.805626\pi
174174 −13.2853 −1.00715
175175 −40.5393 −3.06448
176176 −0.276147 −0.0208154
177177 0.0536266 0.00403082
178178 17.1312 1.28404
179179 −4.84364 −0.362030 −0.181015 0.983480i 0.557938π-0.557938\pi
−0.181015 + 0.983480i 0.557938π0.557938\pi
180180 1.30145 0.0970042
181181 17.5445 1.30407 0.652036 0.758188i 0.273915π-0.273915\pi
0.652036 + 0.758188i 0.273915π0.273915\pi
182182 6.97630 0.517118
183183 −24.9580 −1.84495
184184 4.98236 0.367305
185185 −23.2322 −1.70806
186186 −8.12296 −0.595604
187187 1.64077 0.119985
188188 −9.49305 −0.692352
189189 22.6346 1.64643
190190 −15.5372 −1.12719
191191 −9.30170 −0.673048 −0.336524 0.941675i 0.609251π-0.609251\pi
−0.336524 + 0.941675i 0.609251π0.609251\pi
192192 1.63132 0.117730
193193 11.0308 0.794012 0.397006 0.917816i 0.370049π-0.370049\pi
0.397006 + 0.917816i 0.370049π0.370049\pi
194194 8.80436 0.632116
195195 10.5194 0.753309
196196 10.2698 0.733558
197197 7.28400 0.518964 0.259482 0.965748i 0.416448π-0.416448\pi
0.259482 + 0.965748i 0.416448π0.416448\pi
198198 0.0935612 0.00664911
199199 −0.786893 −0.0557814 −0.0278907 0.999611i 0.508879π-0.508879\pi
−0.0278907 + 0.999611i 0.508879π0.508879\pi
200200 9.75511 0.689790
201201 14.1680 0.999332
202202 −3.45921 −0.243389
203203 33.8436 2.37535
204204 −9.69271 −0.678625
205205 19.8588 1.38700
206206 −7.23292 −0.503941
207207 −1.68807 −0.117329
208208 −1.67873 −0.116399
209209 −1.11697 −0.0772625
210210 26.0407 1.79698
211211 3.83957 0.264327 0.132164 0.991228i 0.457808π-0.457808\pi
0.132164 + 0.991228i 0.457808π0.457808\pi
212212 5.04713 0.346638
213213 20.9739 1.43711
214214 −12.7985 −0.874886
215215 −20.9688 −1.43006
216216 −5.44665 −0.370598
217217 20.6928 1.40472
218218 −7.07598 −0.479246
219219 −14.1362 −0.955234
220220 1.06075 0.0715155
221221 9.97444 0.670954
222222 9.86635 0.662186
223223 0.306499 0.0205247 0.0102623 0.999947i 0.496733π-0.496733\pi
0.0102623 + 0.999947i 0.496733π0.496733\pi
224224 −4.15570 −0.277664
225225 −3.30512 −0.220342
226226 −10.1828 −0.677351
227227 −14.8578 −0.986147 −0.493073 0.869988i 0.664127π-0.664127\pi
−0.493073 + 0.869988i 0.664127π0.664127\pi
228228 6.59842 0.436991
229229 25.3876 1.67766 0.838831 0.544391i 0.183239π-0.183239\pi
0.838831 + 0.544391i 0.183239π0.183239\pi
230230 −19.1384 −1.26195
231231 1.87207 0.123173
232232 −8.14390 −0.534673
233233 −17.0575 −1.11747 −0.558735 0.829346i 0.688713π-0.688713\pi
−0.558735 + 0.829346i 0.688713π0.688713\pi
234234 0.568770 0.0371817
235235 36.4650 2.37872
236236 0.0328732 0.00213986
237237 −0.507786 −0.0329842
238238 24.6917 1.60053
239239 24.8233 1.60568 0.802842 0.596191i 0.203320π-0.203320\pi
0.802842 + 0.596191i 0.203320π0.203320\pi
240240 −6.26627 −0.404486
241241 22.7265 1.46394 0.731972 0.681334i 0.238600π-0.238600\pi
0.731972 + 0.681334i 0.238600π0.238600\pi
242242 −10.9237 −0.702205
243243 3.50349 0.224749
244244 −15.2993 −0.979439
245245 −39.4488 −2.52029
246246 −8.43372 −0.537714
247247 −6.79021 −0.432051
248248 −4.97939 −0.316192
249249 20.2521 1.28342
250250 −18.2655 −1.15521
251251 −18.5322 −1.16974 −0.584870 0.811127i 0.698854π-0.698854\pi
−0.584870 + 0.811127i 0.698854π0.698854\pi
252252 1.40799 0.0886950
253253 −1.37586 −0.0864998
254254 −4.34187 −0.272433
255255 37.2320 2.33156
256256 1.00000 0.0625000
257257 −9.16281 −0.571560 −0.285780 0.958295i 0.592253π-0.592253\pi
−0.285780 + 0.958295i 0.592253π0.592253\pi
258258 8.90512 0.554408
259259 −25.1340 −1.56175
260260 6.44841 0.399913
261261 2.75923 0.170792
262262 4.05026 0.250226
263263 −24.4845 −1.50978 −0.754888 0.655853i 0.772309π-0.772309\pi
−0.754888 + 0.655853i 0.772309π0.772309\pi
264264 −0.450483 −0.0277253
265265 −19.3872 −1.19095
266266 −16.8091 −1.03063
267267 27.9465 1.71030
268268 8.68500 0.530521
269269 9.68210 0.590328 0.295164 0.955447i 0.404626π-0.404626\pi
0.295164 + 0.955447i 0.404626π0.404626\pi
270270 20.9219 1.27327
271271 −13.0895 −0.795132 −0.397566 0.917574i 0.630145π-0.630145\pi
−0.397566 + 0.917574i 0.630145π0.630145\pi
272272 −5.94165 −0.360266
273273 11.3805 0.688782
274274 −18.7826 −1.13470
275275 −2.69384 −0.162445
276276 8.12781 0.489236
277277 −7.89689 −0.474478 −0.237239 0.971451i 0.576242π-0.576242\pi
−0.237239 + 0.971451i 0.576242π0.576242\pi
278278 −0.403657 −0.0242098
279279 1.68707 0.101002
280280 15.9630 0.953973
281281 1.49322 0.0890782 0.0445391 0.999008i 0.485818π-0.485818\pi
0.0445391 + 0.999008i 0.485818π0.485818\pi
282282 −15.4862 −0.922187
283283 16.5837 0.985797 0.492899 0.870087i 0.335937π-0.335937\pi
0.492899 + 0.870087i 0.335937π0.335937\pi
284284 12.8570 0.762924
285285 −25.3461 −1.50137
286286 0.463576 0.0274118
287287 21.4845 1.26819
288288 −0.338810 −0.0199646
289289 18.3032 1.07666
290290 31.2827 1.83698
291291 14.3627 0.841956
292292 −8.66551 −0.507110
293293 12.5499 0.733176 0.366588 0.930383i 0.380526π-0.380526\pi
0.366588 + 0.930383i 0.380526π0.380526\pi
294294 16.7533 0.977072
295295 −0.126274 −0.00735194
296296 6.04809 0.351538
297297 1.50408 0.0872753
298298 −15.6313 −0.905497
299299 −8.36405 −0.483706
300300 15.9137 0.918775
301301 −22.6853 −1.30756
302302 10.7772 0.620159
303303 −5.64306 −0.324185
304304 4.04484 0.231988
305305 58.7683 3.36506
306306 2.01309 0.115081
307307 −1.67505 −0.0956002 −0.0478001 0.998857i 0.515221π-0.515221\pi
−0.0478001 + 0.998857i 0.515221π0.515221\pi
308308 1.14758 0.0653896
309309 −11.7992 −0.671231
310310 19.1270 1.08634
311311 1.96842 0.111619 0.0558094 0.998441i 0.482226π-0.482226\pi
0.0558094 + 0.998441i 0.482226π0.482226\pi
312312 −2.73854 −0.155039
313313 26.8085 1.51531 0.757654 0.652656i 0.226345π-0.226345\pi
0.757654 + 0.652656i 0.226345π0.226345\pi
314314 7.11275 0.401396
315315 −5.40842 −0.304730
316316 −0.311274 −0.0175105
317317 −9.28552 −0.521527 −0.260763 0.965403i 0.583974π-0.583974\pi
−0.260763 + 0.965403i 0.583974π0.583974\pi
318318 8.23345 0.461709
319319 2.24891 0.125915
320320 −3.84124 −0.214732
321321 −20.8784 −1.16532
322322 −20.7052 −1.15385
323323 −24.0331 −1.33724
324324 −7.86878 −0.437154
325325 −16.3762 −0.908388
326326 −11.6073 −0.642867
327327 −11.5432 −0.638338
328328 −5.16989 −0.285459
329329 39.4502 2.17496
330330 1.73041 0.0952560
331331 −10.9258 −0.600538 −0.300269 0.953854i 0.597077π-0.597077\pi
−0.300269 + 0.953854i 0.597077π0.597077\pi
332332 12.4146 0.681338
333333 −2.04915 −0.112293
334334 −22.1423 −1.21157
335335 −33.3612 −1.82271
336336 −6.77925 −0.369838
337337 3.84795 0.209611 0.104806 0.994493i 0.466578π-0.466578\pi
0.104806 + 0.994493i 0.466578π0.466578\pi
338338 −10.1819 −0.553820
339339 −16.6114 −0.902206
340340 22.8233 1.23777
341341 1.37504 0.0744628
342342 −1.37043 −0.0741045
343343 −13.5883 −0.733701
344344 5.45886 0.294322
345345 −31.2208 −1.68087
346346 −21.5519 −1.15864
347347 −14.2307 −0.763942 −0.381971 0.924174i 0.624755π-0.624755\pi
−0.381971 + 0.924174i 0.624755π0.624755\pi
348348 −13.2853 −0.712165
349349 10.1198 0.541698 0.270849 0.962622i 0.412696π-0.412696\pi
0.270849 + 0.962622i 0.412696π0.412696\pi
350350 −40.5393 −2.16691
351351 9.14347 0.488042
352352 −0.276147 −0.0147187
353353 −8.64445 −0.460098 −0.230049 0.973179i 0.573889π-0.573889\pi
−0.230049 + 0.973179i 0.573889π0.573889\pi
354354 0.0536266 0.00285022
355355 −49.3869 −2.62118
356356 17.1312 0.907954
357357 40.2800 2.13184
358358 −4.84364 −0.255994
359359 16.3812 0.864568 0.432284 0.901738i 0.357708π-0.357708\pi
0.432284 + 0.901738i 0.357708π0.357708\pi
360360 1.30145 0.0685923
361361 −2.63923 −0.138907
362362 17.5445 0.922119
363363 −17.8201 −0.935311
364364 6.97630 0.365657
365365 33.2863 1.74228
366366 −24.9580 −1.30458
367367 10.0760 0.525965 0.262982 0.964801i 0.415294π-0.415294\pi
0.262982 + 0.964801i 0.415294π0.415294\pi
368368 4.98236 0.259724
369369 1.75161 0.0911851
370370 −23.2322 −1.20778
371371 −20.9743 −1.08893
372372 −8.12296 −0.421156
373373 −10.7310 −0.555628 −0.277814 0.960635i 0.589610π-0.589610\pi
−0.277814 + 0.960635i 0.589610π0.589610\pi
374374 1.64077 0.0848421
375375 −29.7968 −1.53870
376376 −9.49305 −0.489567
377377 13.6714 0.704114
378378 22.6346 1.16420
379379 −15.8594 −0.814644 −0.407322 0.913285i 0.633537π-0.633537\pi
−0.407322 + 0.913285i 0.633537π0.633537\pi
380380 −15.5372 −0.797042
381381 −7.08295 −0.362871
382382 −9.30170 −0.475917
383383 5.47574 0.279797 0.139899 0.990166i 0.455322π-0.455322\pi
0.139899 + 0.990166i 0.455322π0.455322\pi
384384 1.63132 0.0832477
385385 −4.40814 −0.224659
386386 11.0308 0.561451
387387 −1.84951 −0.0940160
388388 8.80436 0.446974
389389 −5.64583 −0.286255 −0.143127 0.989704i 0.545716π-0.545716\pi
−0.143127 + 0.989704i 0.545716π0.545716\pi
390390 10.5194 0.532670
391391 −29.6035 −1.49711
392392 10.2698 0.518704
393393 6.60725 0.333292
394394 7.28400 0.366963
395395 1.19568 0.0601610
396396 0.0935612 0.00470163
397397 −31.3006 −1.57093 −0.785465 0.618906i 0.787576π-0.787576\pi
−0.785465 + 0.618906i 0.787576π0.787576\pi
398398 −0.786893 −0.0394434
399399 −27.4210 −1.37277
400400 9.75511 0.487755
401401 39.7974 1.98739 0.993694 0.112126i 0.0357659π-0.0357659\pi
0.993694 + 0.112126i 0.0357659π0.0357659\pi
402402 14.1680 0.706635
403403 8.35906 0.416395
404404 −3.45921 −0.172102
405405 30.2258 1.50193
406406 33.8436 1.67963
407407 −1.67016 −0.0827868
408408 −9.69271 −0.479861
409409 25.8648 1.27893 0.639467 0.768818i 0.279155π-0.279155\pi
0.639467 + 0.768818i 0.279155π0.279155\pi
410410 19.8588 0.980755
411411 −30.6403 −1.51138
412412 −7.23292 −0.356340
413413 −0.136611 −0.00672219
414414 −1.68807 −0.0829643
415415 −47.6873 −2.34088
416416 −1.67873 −0.0823066
417417 −0.658493 −0.0322465
418418 −1.11697 −0.0546328
419419 −21.1908 −1.03524 −0.517618 0.855612i 0.673181π-0.673181\pi
−0.517618 + 0.855612i 0.673181π0.673181\pi
420420 26.0407 1.27066
421421 18.2822 0.891018 0.445509 0.895278i 0.353023π-0.353023\pi
0.445509 + 0.895278i 0.353023π0.353023\pi
422422 3.83957 0.186908
423423 3.21634 0.156384
424424 5.04713 0.245110
425425 −57.9615 −2.81154
426426 20.9739 1.01619
427427 63.5793 3.07682
428428 −12.7985 −0.618638
429429 0.756239 0.0365116
430430 −20.9688 −1.01120
431431 1.00000 0.0481683
432432 −5.44665 −0.262052
433433 6.14415 0.295269 0.147635 0.989042i 0.452834π-0.452834\pi
0.147635 + 0.989042i 0.452834π0.452834\pi
434434 20.6928 0.993288
435435 51.0319 2.44679
436436 −7.07598 −0.338878
437437 20.1529 0.964043
438438 −14.1362 −0.675453
439439 −36.1274 −1.72427 −0.862134 0.506680i 0.830873π-0.830873\pi
−0.862134 + 0.506680i 0.830873π0.830873\pi
440440 1.06075 0.0505691
441441 −3.47951 −0.165691
442442 9.97444 0.474436
443443 −8.89045 −0.422398 −0.211199 0.977443i 0.567737π-0.567737\pi
−0.211199 + 0.977443i 0.567737π0.567737\pi
444444 9.86635 0.468236
445445 −65.8052 −3.11947
446446 0.306499 0.0145131
447447 −25.4996 −1.20609
448448 −4.15570 −0.196338
449449 6.53770 0.308533 0.154266 0.988029i 0.450699π-0.450699\pi
0.154266 + 0.988029i 0.450699π0.450699\pi
450450 −3.30512 −0.155805
451451 1.42765 0.0672253
452452 −10.1828 −0.478959
453453 17.5810 0.826030
454454 −14.8578 −0.697311
455455 −26.7976 −1.25629
456456 6.59842 0.308999
457457 33.0933 1.54804 0.774019 0.633163i 0.218244π-0.218244\pi
0.774019 + 0.633163i 0.218244π0.218244\pi
458458 25.3876 1.18629
459459 32.3621 1.51053
460460 −19.1384 −0.892334
461461 −3.64501 −0.169765 −0.0848825 0.996391i 0.527051π-0.527051\pi
−0.0848825 + 0.996391i 0.527051π0.527051\pi
462462 1.87207 0.0870965
463463 −20.6250 −0.958526 −0.479263 0.877671i 0.659096π-0.659096\pi
−0.479263 + 0.877671i 0.659096π0.659096\pi
464464 −8.14390 −0.378071
465465 31.2022 1.44697
466466 −17.0575 −0.790171
467467 −28.0985 −1.30025 −0.650123 0.759829i 0.725282π-0.725282\pi
−0.650123 + 0.759829i 0.725282π0.725282\pi
468468 0.568770 0.0262914
469469 −36.0922 −1.66658
470470 36.4650 1.68201
471471 11.6031 0.534645
472472 0.0328732 0.00151311
473473 −1.50745 −0.0693124
474474 −0.507786 −0.0233234
475475 39.4579 1.81045
476476 24.6917 1.13174
477477 −1.71001 −0.0782962
478478 24.8233 1.13539
479479 −12.3551 −0.564518 −0.282259 0.959338i 0.591084π-0.591084\pi
−0.282259 + 0.959338i 0.591084π0.591084\pi
480480 −6.26627 −0.286015
481481 −10.1531 −0.462943
482482 22.7265 1.03517
483483 −33.7767 −1.53689
484484 −10.9237 −0.496534
485485 −33.8196 −1.53567
486486 3.50349 0.158922
487487 4.08488 0.185104 0.0925518 0.995708i 0.470498π-0.470498\pi
0.0925518 + 0.995708i 0.470498π0.470498\pi
488488 −15.2993 −0.692568
489489 −18.9351 −0.856275
490490 −39.4488 −1.78211
491491 22.2836 1.00565 0.502823 0.864389i 0.332295π-0.332295\pi
0.502823 + 0.864389i 0.332295π0.332295\pi
492492 −8.43372 −0.380221
493493 48.3882 2.17930
494494 −6.79021 −0.305506
495495 −0.359391 −0.0161534
496496 −4.97939 −0.223581
497497 −53.4299 −2.39666
498498 20.2521 0.907518
499499 9.36238 0.419118 0.209559 0.977796i 0.432797π-0.432797\pi
0.209559 + 0.977796i 0.432797π0.432797\pi
500500 −18.2655 −0.816857
501501 −36.1211 −1.61377
502502 −18.5322 −0.827131
503503 −40.7628 −1.81753 −0.908763 0.417313i 0.862972π-0.862972\pi
−0.908763 + 0.417313i 0.862972π0.862972\pi
504504 1.40799 0.0627169
505505 13.2876 0.591292
506506 −1.37586 −0.0611646
507507 −16.6098 −0.737668
508508 −4.34187 −0.192639
509509 −9.44020 −0.418430 −0.209215 0.977870i 0.567091π-0.567091\pi
−0.209215 + 0.977870i 0.567091π0.567091\pi
510510 37.2320 1.64866
511511 36.0112 1.59304
512512 1.00000 0.0441942
513513 −22.0309 −0.972686
514514 −9.16281 −0.404154
515515 27.7834 1.22428
516516 8.90512 0.392026
517517 2.62147 0.115292
518518 −25.1340 −1.10433
519519 −35.1579 −1.54326
520520 6.44841 0.282781
521521 29.0149 1.27116 0.635582 0.772033i 0.280760π-0.280760\pi
0.635582 + 0.772033i 0.280760π0.280760\pi
522522 2.75923 0.120768
523523 −8.17788 −0.357594 −0.178797 0.983886i 0.557221π-0.557221\pi
−0.178797 + 0.983886i 0.557221π0.557221\pi
524524 4.05026 0.176936
525525 −66.1323 −2.88625
526526 −24.4845 −1.06757
527527 29.5858 1.28878
528528 −0.450483 −0.0196047
529529 1.82394 0.0793019
530530 −19.3872 −0.842127
531531 −0.0111378 −0.000483337 0
532532 −16.8091 −0.728769
533533 8.67886 0.375923
534534 27.9465 1.20936
535535 49.1620 2.12546
536536 8.68500 0.375135
537537 −7.90150 −0.340975
538538 9.68210 0.417425
539539 −2.83598 −0.122154
540540 20.9219 0.900335
541541 38.2930 1.64634 0.823172 0.567791i 0.192202π-0.192202\pi
0.823172 + 0.567791i 0.192202π0.192202\pi
542542 −13.0895 −0.562243
543543 28.6206 1.22823
544544 −5.94165 −0.254746
545545 27.1805 1.16429
546546 11.3805 0.487042
547547 −0.158405 −0.00677293 −0.00338646 0.999994i 0.501078π-0.501078\pi
−0.00338646 + 0.999994i 0.501078π0.501078\pi
548548 −18.7826 −0.802352
549549 5.18356 0.221229
550550 −2.69384 −0.114866
551551 −32.9408 −1.40333
552552 8.12781 0.345942
553553 1.29356 0.0550077
554554 −7.89689 −0.335507
555555 −37.8990 −1.60872
556556 −0.403657 −0.0171189
557557 6.35752 0.269377 0.134688 0.990888i 0.456997π-0.456997\pi
0.134688 + 0.990888i 0.456997π0.456997\pi
558558 1.68707 0.0714192
559559 −9.16395 −0.387594
560560 15.9630 0.674560
561561 2.67661 0.113007
562562 1.49322 0.0629878
563563 −11.3821 −0.479697 −0.239848 0.970810i 0.577098π-0.577098\pi
−0.239848 + 0.970810i 0.577098π0.577098\pi
564564 −15.4862 −0.652085
565565 39.1146 1.64556
566566 16.5837 0.697064
567567 32.7003 1.37328
568568 12.8570 0.539469
569569 4.04360 0.169516 0.0847582 0.996402i 0.472988π-0.472988\pi
0.0847582 + 0.996402i 0.472988π0.472988\pi
570570 −25.3461 −1.06163
571571 27.7431 1.16101 0.580506 0.814256i 0.302855π-0.302855\pi
0.580506 + 0.814256i 0.302855π0.302855\pi
572572 0.463576 0.0193831
573573 −15.1740 −0.633904
574574 21.4845 0.896745
575575 48.6035 2.02691
576576 −0.338810 −0.0141171
577577 10.7599 0.447939 0.223969 0.974596i 0.428098π-0.428098\pi
0.223969 + 0.974596i 0.428098π0.428098\pi
578578 18.3032 0.761314
579579 17.9947 0.747833
580580 31.2827 1.29894
581581 −51.5912 −2.14036
582582 14.3627 0.595353
583583 −1.39375 −0.0577231
584584 −8.66551 −0.358581
585585 −2.18478 −0.0903296
586586 12.5499 0.518433
587587 −42.8169 −1.76724 −0.883622 0.468202i 0.844902π-0.844902\pi
−0.883622 + 0.468202i 0.844902π0.844902\pi
588588 16.7533 0.690894
589589 −20.1409 −0.829890
590590 −0.126274 −0.00519861
591591 11.8825 0.488781
592592 6.04809 0.248575
593593 19.4319 0.797974 0.398987 0.916957i 0.369362π-0.369362\pi
0.398987 + 0.916957i 0.369362π0.369362\pi
594594 1.50408 0.0617130
595595 −94.8467 −3.88834
596596 −15.6313 −0.640283
597597 −1.28367 −0.0525372
598598 −8.36405 −0.342031
599599 10.9336 0.446736 0.223368 0.974734i 0.428295π-0.428295\pi
0.223368 + 0.974734i 0.428295π0.428295\pi
600600 15.9137 0.649672
601601 −45.3393 −1.84943 −0.924715 0.380661i 0.875696π-0.875696\pi
−0.924715 + 0.380661i 0.875696π0.875696\pi
602602 −22.6853 −0.924586
603603 −2.94256 −0.119830
604604 10.7772 0.438519
605605 41.9607 1.70594
606606 −5.64306 −0.229234
607607 30.2535 1.22795 0.613976 0.789325i 0.289569π-0.289569\pi
0.613976 + 0.789325i 0.289569π0.289569\pi
608608 4.04484 0.164040
609609 55.2096 2.23720
610610 58.7683 2.37946
611611 15.9363 0.644713
612612 2.01309 0.0813743
613613 −35.3247 −1.42675 −0.713376 0.700782i 0.752835π-0.752835\pi
−0.713376 + 0.700782i 0.752835π0.752835\pi
614614 −1.67505 −0.0675996
615615 32.3959 1.30633
616616 1.14758 0.0462374
617617 −39.8514 −1.60436 −0.802179 0.597084i 0.796326π-0.796326\pi
−0.802179 + 0.597084i 0.796326π0.796326\pi
618618 −11.7992 −0.474632
619619 8.23400 0.330952 0.165476 0.986214i 0.447084π-0.447084\pi
0.165476 + 0.986214i 0.447084π0.447084\pi
620620 19.1270 0.768160
621621 −27.1372 −1.08898
622622 1.96842 0.0789265
623623 −71.1923 −2.85226
624624 −2.73854 −0.109629
625625 21.3866 0.855462
626626 26.8085 1.07149
627627 −1.82213 −0.0727690
628628 7.11275 0.283830
629629 −35.9357 −1.43285
630630 −5.40842 −0.215477
631631 22.0301 0.877003 0.438501 0.898731i 0.355509π-0.355509\pi
0.438501 + 0.898731i 0.355509π0.355509\pi
632632 −0.311274 −0.0123818
633633 6.26356 0.248954
634634 −9.28552 −0.368775
635635 16.6781 0.661852
636636 8.23345 0.326478
637637 −17.2403 −0.683084
638638 2.24891 0.0890353
639639 −4.35609 −0.172324
640640 −3.84124 −0.151838
641641 27.4655 1.08482 0.542412 0.840113i 0.317511π-0.317511\pi
0.542412 + 0.840113i 0.317511π0.317511\pi
642642 −20.8784 −0.824003
643643 −26.5753 −1.04803 −0.524014 0.851710i 0.675566π-0.675566\pi
−0.524014 + 0.851710i 0.675566π0.675566\pi
644644 −20.7052 −0.815899
645645 −34.2067 −1.34689
646646 −24.0331 −0.945568
647647 50.6370 1.99075 0.995373 0.0960843i 0.0306318π-0.0306318\pi
0.995373 + 0.0960843i 0.0306318π0.0306318\pi
648648 −7.86878 −0.309115
649649 −0.00907783 −0.000356336 0
650650 −16.3762 −0.642328
651651 33.7565 1.32302
652652 −11.6073 −0.454576
653653 32.4939 1.27158 0.635792 0.771861i 0.280674π-0.280674\pi
0.635792 + 0.771861i 0.280674π0.280674\pi
654654 −11.5432 −0.451373
655655 −15.5580 −0.607902
656656 −5.16989 −0.201850
657657 2.93596 0.114543
658658 39.4502 1.53793
659659 6.50088 0.253238 0.126619 0.991951i 0.459587π-0.459587\pi
0.126619 + 0.991951i 0.459587π0.459587\pi
660660 1.73041 0.0673561
661661 −15.5197 −0.603648 −0.301824 0.953364i 0.597595π-0.597595\pi
−0.301824 + 0.953364i 0.597595π0.597595\pi
662662 −10.9258 −0.424645
663663 16.2715 0.631931
664664 12.4146 0.481779
665665 64.5679 2.50384
666666 −2.04915 −0.0794030
667667 −40.5759 −1.57110
668668 −22.1423 −0.856711
669669 0.499996 0.0193310
670670 −33.3612 −1.28885
671671 4.22486 0.163099
672672 −6.77925 −0.261515
673673 −6.03387 −0.232589 −0.116294 0.993215i 0.537102π-0.537102\pi
−0.116294 + 0.993215i 0.537102π0.537102\pi
674674 3.84795 0.148218
675675 −53.1327 −2.04508
676676 −10.1819 −0.391610
677677 7.31202 0.281024 0.140512 0.990079i 0.455125π-0.455125\pi
0.140512 + 0.990079i 0.455125π0.455125\pi
678678 −16.6114 −0.637956
679679 −36.5882 −1.40413
680680 22.8233 0.875234
681681 −24.2378 −0.928793
682682 1.37504 0.0526531
683683 15.9625 0.610787 0.305393 0.952226i 0.401212π-0.401212\pi
0.305393 + 0.952226i 0.401212π0.401212\pi
684684 −1.37043 −0.0523998
685685 72.1484 2.75665
686686 −13.5883 −0.518805
687687 41.4153 1.58009
688688 5.45886 0.208117
689689 −8.47277 −0.322787
690690 −31.2208 −1.18856
691691 −25.4080 −0.966564 −0.483282 0.875465i 0.660556π-0.660556\pi
−0.483282 + 0.875465i 0.660556π0.660556\pi
692692 −21.5519 −0.819279
693693 −0.388812 −0.0147697
694694 −14.2307 −0.540189
695695 1.55054 0.0588155
696696 −13.2853 −0.503577
697697 30.7177 1.16352
698698 10.1198 0.383038
699699 −27.8261 −1.05248
700700 −40.5393 −1.53224
701701 −4.74023 −0.179036 −0.0895180 0.995985i 0.528533π-0.528533\pi
−0.0895180 + 0.995985i 0.528533π0.528533\pi
702702 9.14347 0.345098
703703 24.4636 0.922662
704704 −0.276147 −0.0104077
705705 59.4860 2.24037
706706 −8.64445 −0.325338
707707 14.3754 0.540643
708708 0.0536266 0.00201541
709709 −0.120576 −0.00452833 −0.00226417 0.999997i 0.500721π-0.500721\pi
−0.00226417 + 0.999997i 0.500721π0.500721\pi
710710 −49.3869 −1.85346
711711 0.105463 0.00395515
712712 17.1312 0.642021
713713 −24.8091 −0.929110
714714 40.2800 1.50744
715715 −1.78071 −0.0665947
716716 −4.84364 −0.181015
717717 40.4946 1.51230
718718 16.3812 0.611342
719719 42.5762 1.58783 0.793913 0.608032i 0.208041π-0.208041\pi
0.793913 + 0.608032i 0.208041π0.208041\pi
720720 1.30145 0.0485021
721721 30.0578 1.11941
722722 −2.63923 −0.0982219
723723 37.0741 1.37880
724724 17.5445 0.652036
725725 −79.4446 −2.95050
726726 −17.8201 −0.661365
727727 26.2967 0.975292 0.487646 0.873041i 0.337856π-0.337856\pi
0.487646 + 0.873041i 0.337856π0.337856\pi
728728 6.97630 0.258559
729729 29.3216 1.08599
730730 33.2863 1.23198
731731 −32.4346 −1.19964
732732 −24.9580 −0.922475
733733 −46.8153 −1.72916 −0.864582 0.502492i 0.832417π-0.832417\pi
−0.864582 + 0.502492i 0.832417π0.832417\pi
734734 10.0760 0.371913
735735 −64.3534 −2.37371
736736 4.98236 0.183652
737737 −2.39834 −0.0883438
738738 1.75161 0.0644776
739739 42.9520 1.58002 0.790008 0.613096i 0.210076π-0.210076\pi
0.790008 + 0.613096i 0.210076π0.210076\pi
740740 −23.2322 −0.854031
741741 −11.0770 −0.406923
742742 −20.9743 −0.769992
743743 8.12998 0.298260 0.149130 0.988818i 0.452353π-0.452353\pi
0.149130 + 0.988818i 0.452353π0.452353\pi
744744 −8.12296 −0.297802
745745 60.0435 2.19982
746746 −10.7310 −0.392888
747747 −4.20618 −0.153896
748748 1.64077 0.0599924
749749 53.1866 1.94340
750750 −29.7968 −1.08802
751751 −29.3449 −1.07081 −0.535406 0.844595i 0.679841π-0.679841\pi
−0.535406 + 0.844595i 0.679841π0.679841\pi
752752 −9.49305 −0.346176
753753 −30.2318 −1.10171
754754 13.6714 0.497884
755755 −41.3979 −1.50662
756756 22.6346 0.823214
757757 23.4338 0.851717 0.425859 0.904790i 0.359972π-0.359972\pi
0.425859 + 0.904790i 0.359972π0.359972\pi
758758 −15.8594 −0.576040
759759 −2.24447 −0.0814690
760760 −15.5372 −0.563594
761761 −41.7728 −1.51426 −0.757132 0.653262i 0.773400π-0.773400\pi
−0.757132 + 0.653262i 0.773400π0.773400\pi
762762 −7.08295 −0.256588
763763 29.4056 1.06455
764764 −9.30170 −0.336524
765765 −7.73275 −0.279578
766766 5.47574 0.197847
767767 −0.0551853 −0.00199262
768768 1.63132 0.0588650
769769 −28.3426 −1.02206 −0.511029 0.859563i 0.670736π-0.670736\pi
−0.511029 + 0.859563i 0.670736π0.670736\pi
770770 −4.40814 −0.158858
771771 −14.9474 −0.538318
772772 11.0308 0.397006
773773 −1.24443 −0.0447590 −0.0223795 0.999750i 0.507124π-0.507124\pi
−0.0223795 + 0.999750i 0.507124π0.507124\pi
774774 −1.84951 −0.0664794
775775 −48.5745 −1.74485
776776 8.80436 0.316058
777777 −41.0015 −1.47092
778778 −5.64583 −0.202413
779779 −20.9114 −0.749229
780780 10.5194 0.376654
781781 −3.55043 −0.127044
782782 −29.6035 −1.05862
783783 44.3570 1.58519
784784 10.2698 0.366779
785785 −27.3218 −0.975156
786786 6.60725 0.235673
787787 −17.9016 −0.638124 −0.319062 0.947734i 0.603368π-0.603368\pi
−0.319062 + 0.947734i 0.603368π0.603368\pi
788788 7.28400 0.259482
789789 −39.9419 −1.42197
790790 1.19568 0.0425403
791791 42.3167 1.50461
792792 0.0935612 0.00332455
793793 25.6835 0.912046
794794 −31.3006 −1.11082
795795 −31.6267 −1.12168
796796 −0.786893 −0.0278907
797797 9.40528 0.333152 0.166576 0.986029i 0.446729π-0.446729\pi
0.166576 + 0.986029i 0.446729π0.446729\pi
798798 −27.4210 −0.970694
799799 56.4044 1.99544
800800 9.75511 0.344895
801801 −5.80423 −0.205082
802802 39.7974 1.40530
803803 2.39295 0.0844454
804804 14.1680 0.499666
805805 79.5335 2.80319
806806 8.35906 0.294435
807807 15.7946 0.555995
808808 −3.45921 −0.121695
809809 −17.4796 −0.614549 −0.307274 0.951621i 0.599417π-0.599417\pi
−0.307274 + 0.951621i 0.599417π0.599417\pi
810810 30.2258 1.06203
811811 31.4888 1.10572 0.552860 0.833274i 0.313536π-0.313536\pi
0.552860 + 0.833274i 0.313536π0.313536\pi
812812 33.8436 1.18768
813813 −21.3531 −0.748888
814814 −1.67016 −0.0585391
815815 44.5863 1.56179
816816 −9.69271 −0.339313
817817 22.0802 0.772489
818818 25.8648 0.904343
819819 −2.36364 −0.0825922
820820 19.8588 0.693498
821821 −38.3261 −1.33759 −0.668795 0.743447i 0.733190π-0.733190\pi
−0.668795 + 0.743447i 0.733190π0.733190\pi
822822 −30.6403 −1.06870
823823 −19.1836 −0.668699 −0.334350 0.942449i 0.608517π-0.608517\pi
−0.334350 + 0.942449i 0.608517π0.608517\pi
824824 −7.23292 −0.251971
825825 −4.39451 −0.152997
826826 −0.136611 −0.00475331
827827 −12.6443 −0.439686 −0.219843 0.975535i 0.570555π-0.570555\pi
−0.219843 + 0.975535i 0.570555π0.570555\pi
828828 −1.68807 −0.0586646
829829 −32.1585 −1.11691 −0.558455 0.829535i 0.688606π-0.688606\pi
−0.558455 + 0.829535i 0.688606π0.688606\pi
830830 −47.6873 −1.65525
831831 −12.8823 −0.446882
832832 −1.67873 −0.0581995
833833 −61.0196 −2.11421
834834 −0.658493 −0.0228017
835835 85.0538 2.94341
836836 −1.11697 −0.0386313
837837 27.1210 0.937439
838838 −21.1908 −0.732022
839839 −32.6744 −1.12804 −0.564022 0.825760i 0.690747π-0.690747\pi
−0.564022 + 0.825760i 0.690747π0.690747\pi
840840 26.0407 0.898490
841841 37.3231 1.28700
842842 18.2822 0.630045
843843 2.43592 0.0838974
844844 3.83957 0.132164
845845 39.1109 1.34546
846846 3.21634 0.110580
847847 45.3958 1.55982
848848 5.04713 0.173319
849849 27.0532 0.928464
850850 −57.9615 −1.98806
851851 30.1338 1.03297
852852 20.9739 0.718553
853853 31.9590 1.09426 0.547128 0.837049i 0.315721π-0.315721\pi
0.547128 + 0.837049i 0.315721π0.315721\pi
854854 63.5793 2.17564
855855 5.26416 0.180030
856856 −12.7985 −0.437443
857857 45.1022 1.54066 0.770332 0.637643i 0.220091π-0.220091\pi
0.770332 + 0.637643i 0.220091π0.220091\pi
858858 0.756239 0.0258176
859859 10.6491 0.363343 0.181672 0.983359i 0.441849π-0.441849\pi
0.181672 + 0.983359i 0.441849π0.441849\pi
860860 −20.9688 −0.715029
861861 35.0480 1.19443
862862 1.00000 0.0340601
863863 −34.5080 −1.17467 −0.587333 0.809346i 0.699822π-0.699822\pi
−0.587333 + 0.809346i 0.699822π0.699822\pi
864864 −5.44665 −0.185299
865865 82.7858 2.81480
866866 6.14415 0.208787
867867 29.8584 1.01404
868868 20.6928 0.702361
869869 0.0859573 0.00291590
870870 51.0319 1.73014
871871 −14.5798 −0.494017
872872 −7.07598 −0.239623
873873 −2.98300 −0.100959
874874 20.1529 0.681682
875875 75.9058 2.56608
876876 −14.1362 −0.477617
877877 24.1703 0.816173 0.408087 0.912943i 0.366196π-0.366196\pi
0.408087 + 0.912943i 0.366196π0.366196\pi
878878 −36.1274 −1.21924
879879 20.4729 0.690534
880880 1.06075 0.0357577
881881 35.8442 1.20762 0.603810 0.797128i 0.293648π-0.293648\pi
0.603810 + 0.797128i 0.293648π0.293648\pi
882882 −3.47951 −0.117161
883883 −14.5189 −0.488600 −0.244300 0.969700i 0.578558π-0.578558\pi
−0.244300 + 0.969700i 0.578558π0.578558\pi
884884 9.97444 0.335477
885885 −0.205992 −0.00692436
886886 −8.89045 −0.298680
887887 20.5709 0.690703 0.345351 0.938473i 0.387760π-0.387760\pi
0.345351 + 0.938473i 0.387760π0.387760\pi
888888 9.86635 0.331093
889889 18.0435 0.605159
890890 −65.8052 −2.20580
891891 2.17294 0.0727962
892892 0.306499 0.0102623
893893 −38.3979 −1.28494
894894 −25.4996 −0.852833
895895 18.6056 0.621915
896896 −4.15570 −0.138832
897897 −13.6444 −0.455573
898898 6.53770 0.218166
899899 40.5517 1.35247
900900 −3.30512 −0.110171
901901 −29.9883 −0.999054
902902 1.42765 0.0475355
903903 −37.0070 −1.23151
904904 −10.1828 −0.338675
905905 −67.3926 −2.24021
906906 17.5810 0.584091
907907 −4.98294 −0.165456 −0.0827280 0.996572i 0.526363π-0.526363\pi
−0.0827280 + 0.996572i 0.526363π0.526363\pi
908908 −14.8578 −0.493073
909909 1.17201 0.0388732
910910 −26.7976 −0.888332
911911 34.1001 1.12979 0.564893 0.825164i 0.308918π-0.308918\pi
0.564893 + 0.825164i 0.308918π0.308918\pi
912912 6.59842 0.218495
913913 −3.42825 −0.113458
914914 33.0933 1.09463
915915 95.8697 3.16935
916916 25.3876 0.838831
917917 −16.8316 −0.555830
918918 32.3621 1.06811
919919 42.9521 1.41686 0.708430 0.705781i 0.249404π-0.249404\pi
0.708430 + 0.705781i 0.249404π0.249404\pi
920920 −19.1384 −0.630976
921921 −2.73254 −0.0900402
922922 −3.64501 −0.120042
923923 −21.5835 −0.710430
924924 1.87207 0.0615865
925925 58.9998 1.93990
926926 −20.6250 −0.677780
927927 2.45058 0.0804877
928928 −8.14390 −0.267337
929929 −19.9917 −0.655906 −0.327953 0.944694i 0.606359π-0.606359\pi
−0.327953 + 0.944694i 0.606359π0.606359\pi
930930 31.2022 1.02316
931931 41.5398 1.36141
932932 −17.0575 −0.558735
933933 3.21111 0.105127
934934 −28.0985 −0.919412
935935 −6.30258 −0.206116
936936 0.568770 0.0185908
937937 5.33935 0.174429 0.0872144 0.996190i 0.472203π-0.472203\pi
0.0872144 + 0.996190i 0.472203π0.472203\pi
938938 −36.0922 −1.17845
939939 43.7332 1.42718
940940 36.4650 1.18936
941941 4.96644 0.161901 0.0809506 0.996718i 0.474204π-0.474204\pi
0.0809506 + 0.996718i 0.474204π0.474204\pi
942942 11.6031 0.378051
943943 −25.7583 −0.838804
944944 0.0328732 0.00106993
945945 −86.9450 −2.82832
946946 −1.50745 −0.0490113
947947 32.5717 1.05844 0.529220 0.848485i 0.322485π-0.322485\pi
0.529220 + 0.848485i 0.322485π0.322485\pi
948948 −0.507786 −0.0164921
949949 14.5471 0.472218
950950 39.4579 1.28018
951951 −15.1476 −0.491195
952952 24.6917 0.800263
953953 −13.3712 −0.433137 −0.216568 0.976267i 0.569486π-0.569486\pi
−0.216568 + 0.976267i 0.569486π0.569486\pi
954954 −1.71001 −0.0553638
955955 35.7301 1.15620
956956 24.8233 0.802842
957957 3.66869 0.118592
958958 −12.3551 −0.399175
959959 78.0547 2.52052
960960 −6.26627 −0.202243
961961 −6.20565 −0.200182
962962 −10.1531 −0.327350
963963 4.33625 0.139734
964964 22.7265 0.731972
965965 −42.3718 −1.36400
966966 −33.7767 −1.08675
967967 5.70566 0.183482 0.0917408 0.995783i 0.470757π-0.470757\pi
0.0917408 + 0.995783i 0.470757π0.470757\pi
968968 −10.9237 −0.351102
969969 −39.2055 −1.25946
970970 −33.8196 −1.08588
971971 −14.7811 −0.474348 −0.237174 0.971467i 0.576221π-0.576221\pi
−0.237174 + 0.971467i 0.576221π0.576221\pi
972972 3.50349 0.112375
973973 1.67748 0.0537775
974974 4.08488 0.130888
975975 −26.7148 −0.855557
976976 −15.2993 −0.489719
977977 17.1592 0.548971 0.274486 0.961591i 0.411492π-0.411492\pi
0.274486 + 0.961591i 0.411492π0.411492\pi
978978 −18.9351 −0.605478
979979 −4.73074 −0.151195
980980 −39.4488 −1.26014
981981 2.39741 0.0765434
982982 22.2836 0.711099
983983 39.3412 1.25479 0.627395 0.778701i 0.284121π-0.284121\pi
0.627395 + 0.778701i 0.284121π0.284121\pi
984984 −8.43372 −0.268857
985985 −27.9796 −0.891503
986986 48.3882 1.54100
987987 64.3557 2.04847
988988 −6.79021 −0.216025
989989 27.1980 0.864846
990990 −0.359391 −0.0114222
991991 −3.45230 −0.109666 −0.0548330 0.998496i 0.517463π-0.517463\pi
−0.0548330 + 0.998496i 0.517463π0.517463\pi
992992 −4.97939 −0.158096
993993 −17.8235 −0.565611
994994 −53.4299 −1.69469
995995 3.02264 0.0958243
996996 20.2521 0.641712
997997 5.40355 0.171132 0.0855661 0.996332i 0.472730π-0.472730\pi
0.0855661 + 0.996332i 0.472730π0.472730\pi
998998 9.36238 0.296361
999999 −32.9419 −1.04223
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 862.2.a.j.1.6 6
3.2 odd 2 7758.2.a.r.1.6 6
4.3 odd 2 6896.2.a.r.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
862.2.a.j.1.6 6 1.1 even 1 trivial
6896.2.a.r.1.1 6 4.3 odd 2
7758.2.a.r.1.6 6 3.2 odd 2