Properties

Label 862.2.a.k.1.10
Level 862862
Weight 22
Character 862.1
Self dual yes
Analytic conductor 6.8836.883
Analytic rank 00
Dimension 1010
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [862,2,Mod(1,862)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(862, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("862.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 862=2431 862 = 2 \cdot 431
Weight: k k == 2 2
Character orbit: [χ][\chi] == 862.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 6.883104654236.88310465423
Analytic rank: 00
Dimension: 1010
Coefficient field: Q[x]/(x10)\mathbb{Q}[x]/(x^{10} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x102x919x8+46x7+89x6291x510x4+543x3429x2+64x+4 x^{10} - 2x^{9} - 19x^{8} + 46x^{7} + 89x^{6} - 291x^{5} - 10x^{4} + 543x^{3} - 429x^{2} + 64x + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 22 2^{2}
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.10
Root 2.22143-2.22143 of defining polynomial
Character χ\chi == 862.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1.00000q2+3.12057q3+1.00000q43.20857q53.12057q63.56348q71.00000q8+6.73793q9+3.20857q10+2.87639q11+3.12057q12+5.53503q13+3.56348q1410.0126q15+1.00000q16+3.66567q176.73793q181.83231q193.20857q2011.1201q212.87639q22+3.69456q233.12057q24+5.29492q255.53503q26+11.6645q273.56348q28+9.15934q29+10.0126q307.66238q311.00000q32+8.97596q333.66567q34+11.4337q35+6.73793q36+8.38816q37+1.83231q38+17.2724q39+3.20857q40+11.7570q41+11.1201q429.09492q43+2.87639q4421.6191q453.69456q469.19678q47+3.12057q48+5.69839q495.29492q50+11.4390q51+5.53503q52+3.97970q5311.6645q549.22909q55+3.56348q565.71783q579.15934q58+13.1414q5910.0126q6014.0376q61+7.66238q6224.0105q63+1.00000q6417.7595q658.97596q66+0.398780q67+3.66567q68+11.5291q6911.4337q707.48303q716.73793q72+10.5899q738.38816q74+16.5231q751.83231q7610.2500q7717.2724q783.37728q793.20857q80+16.1859q8111.7570q82+0.326978q8311.1201q8411.7616q85+9.09492q86+28.5823q872.87639q8812.7173q89+21.6191q9019.7240q91+3.69456q9223.9110q93+9.19678q94+5.87908q953.12057q960.300716q975.69839q98+19.3809q99+O(q100)q-1.00000 q^{2} +3.12057 q^{3} +1.00000 q^{4} -3.20857 q^{5} -3.12057 q^{6} -3.56348 q^{7} -1.00000 q^{8} +6.73793 q^{9} +3.20857 q^{10} +2.87639 q^{11} +3.12057 q^{12} +5.53503 q^{13} +3.56348 q^{14} -10.0126 q^{15} +1.00000 q^{16} +3.66567 q^{17} -6.73793 q^{18} -1.83231 q^{19} -3.20857 q^{20} -11.1201 q^{21} -2.87639 q^{22} +3.69456 q^{23} -3.12057 q^{24} +5.29492 q^{25} -5.53503 q^{26} +11.6645 q^{27} -3.56348 q^{28} +9.15934 q^{29} +10.0126 q^{30} -7.66238 q^{31} -1.00000 q^{32} +8.97596 q^{33} -3.66567 q^{34} +11.4337 q^{35} +6.73793 q^{36} +8.38816 q^{37} +1.83231 q^{38} +17.2724 q^{39} +3.20857 q^{40} +11.7570 q^{41} +11.1201 q^{42} -9.09492 q^{43} +2.87639 q^{44} -21.6191 q^{45} -3.69456 q^{46} -9.19678 q^{47} +3.12057 q^{48} +5.69839 q^{49} -5.29492 q^{50} +11.4390 q^{51} +5.53503 q^{52} +3.97970 q^{53} -11.6645 q^{54} -9.22909 q^{55} +3.56348 q^{56} -5.71783 q^{57} -9.15934 q^{58} +13.1414 q^{59} -10.0126 q^{60} -14.0376 q^{61} +7.66238 q^{62} -24.0105 q^{63} +1.00000 q^{64} -17.7595 q^{65} -8.97596 q^{66} +0.398780 q^{67} +3.66567 q^{68} +11.5291 q^{69} -11.4337 q^{70} -7.48303 q^{71} -6.73793 q^{72} +10.5899 q^{73} -8.38816 q^{74} +16.5231 q^{75} -1.83231 q^{76} -10.2500 q^{77} -17.2724 q^{78} -3.37728 q^{79} -3.20857 q^{80} +16.1859 q^{81} -11.7570 q^{82} +0.326978 q^{83} -11.1201 q^{84} -11.7616 q^{85} +9.09492 q^{86} +28.5823 q^{87} -2.87639 q^{88} -12.7173 q^{89} +21.6191 q^{90} -19.7240 q^{91} +3.69456 q^{92} -23.9110 q^{93} +9.19678 q^{94} +5.87908 q^{95} -3.12057 q^{96} -0.300716 q^{97} -5.69839 q^{98} +19.3809 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 10q10q2+4q3+10q4+4q54q63q710q8+12q94q10+4q11+4q12+5q13+3q14q15+10q16+27q1712q189q19+4q20++20q99+O(q100) 10 q - 10 q^{2} + 4 q^{3} + 10 q^{4} + 4 q^{5} - 4 q^{6} - 3 q^{7} - 10 q^{8} + 12 q^{9} - 4 q^{10} + 4 q^{11} + 4 q^{12} + 5 q^{13} + 3 q^{14} - q^{15} + 10 q^{16} + 27 q^{17} - 12 q^{18} - 9 q^{19} + 4 q^{20}+ \cdots + 20 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −1.00000 −0.707107
33 3.12057 1.80166 0.900830 0.434172i 0.142959π-0.142959\pi
0.900830 + 0.434172i 0.142959π0.142959\pi
44 1.00000 0.500000
55 −3.20857 −1.43492 −0.717458 0.696602i 0.754694π-0.754694\pi
−0.717458 + 0.696602i 0.754694π0.754694\pi
66 −3.12057 −1.27397
77 −3.56348 −1.34687 −0.673434 0.739247i 0.735182π-0.735182\pi
−0.673434 + 0.739247i 0.735182π0.735182\pi
88 −1.00000 −0.353553
99 6.73793 2.24598
1010 3.20857 1.01464
1111 2.87639 0.867264 0.433632 0.901090i 0.357232π-0.357232\pi
0.433632 + 0.901090i 0.357232π0.357232\pi
1212 3.12057 0.900830
1313 5.53503 1.53514 0.767571 0.640964i 0.221465π-0.221465\pi
0.767571 + 0.640964i 0.221465π0.221465\pi
1414 3.56348 0.952380
1515 −10.0126 −2.58523
1616 1.00000 0.250000
1717 3.66567 0.889056 0.444528 0.895765i 0.353371π-0.353371\pi
0.444528 + 0.895765i 0.353371π0.353371\pi
1818 −6.73793 −1.58815
1919 −1.83231 −0.420360 −0.210180 0.977663i 0.567405π-0.567405\pi
−0.210180 + 0.977663i 0.567405π0.567405\pi
2020 −3.20857 −0.717458
2121 −11.1201 −2.42660
2222 −2.87639 −0.613248
2323 3.69456 0.770369 0.385185 0.922839i 0.374138π-0.374138\pi
0.385185 + 0.922839i 0.374138π0.374138\pi
2424 −3.12057 −0.636983
2525 5.29492 1.05898
2626 −5.53503 −1.08551
2727 11.6645 2.24483
2828 −3.56348 −0.673434
2929 9.15934 1.70085 0.850424 0.526099i 0.176346π-0.176346\pi
0.850424 + 0.526099i 0.176346π0.176346\pi
3030 10.0126 1.82803
3131 −7.66238 −1.37620 −0.688102 0.725614i 0.741556π-0.741556\pi
−0.688102 + 0.725614i 0.741556π0.741556\pi
3232 −1.00000 −0.176777
3333 8.97596 1.56251
3434 −3.66567 −0.628657
3535 11.4337 1.93264
3636 6.73793 1.12299
3737 8.38816 1.37901 0.689503 0.724283i 0.257829π-0.257829\pi
0.689503 + 0.724283i 0.257829π0.257829\pi
3838 1.83231 0.297239
3939 17.2724 2.76580
4040 3.20857 0.507319
4141 11.7570 1.83614 0.918068 0.396422i 0.129748π-0.129748\pi
0.918068 + 0.396422i 0.129748π0.129748\pi
4242 11.1201 1.71586
4343 −9.09492 −1.38696 −0.693481 0.720475i 0.743924π-0.743924\pi
−0.693481 + 0.720475i 0.743924π0.743924\pi
4444 2.87639 0.433632
4545 −21.6191 −3.22279
4646 −3.69456 −0.544733
4747 −9.19678 −1.34149 −0.670744 0.741689i 0.734025π-0.734025\pi
−0.670744 + 0.741689i 0.734025π0.734025\pi
4848 3.12057 0.450415
4949 5.69839 0.814055
5050 −5.29492 −0.748814
5151 11.4390 1.60178
5252 5.53503 0.767571
5353 3.97970 0.546654 0.273327 0.961921i 0.411876π-0.411876\pi
0.273327 + 0.961921i 0.411876π0.411876\pi
5454 −11.6645 −1.58733
5555 −9.22909 −1.24445
5656 3.56348 0.476190
5757 −5.71783 −0.757345
5858 −9.15934 −1.20268
5959 13.1414 1.71087 0.855433 0.517914i 0.173291π-0.173291\pi
0.855433 + 0.517914i 0.173291π0.173291\pi
6060 −10.0126 −1.29261
6161 −14.0376 −1.79733 −0.898664 0.438638i 0.855461π-0.855461\pi
−0.898664 + 0.438638i 0.855461π0.855461\pi
6262 7.66238 0.973123
6363 −24.0105 −3.02504
6464 1.00000 0.125000
6565 −17.7595 −2.20280
6666 −8.97596 −1.10486
6767 0.398780 0.0487188 0.0243594 0.999703i 0.492245π-0.492245\pi
0.0243594 + 0.999703i 0.492245π0.492245\pi
6868 3.66567 0.444528
6969 11.5291 1.38794
7070 −11.4337 −1.36659
7171 −7.48303 −0.888072 −0.444036 0.896009i 0.646454π-0.646454\pi
−0.444036 + 0.896009i 0.646454π0.646454\pi
7272 −6.73793 −0.794073
7373 10.5899 1.23946 0.619728 0.784817i 0.287243π-0.287243\pi
0.619728 + 0.784817i 0.287243π0.287243\pi
7474 −8.38816 −0.975104
7575 16.5231 1.90793
7676 −1.83231 −0.210180
7777 −10.2500 −1.16809
7878 −17.2724 −1.95572
7979 −3.37728 −0.379974 −0.189987 0.981787i 0.560845π-0.560845\pi
−0.189987 + 0.981787i 0.560845π0.560845\pi
8080 −3.20857 −0.358729
8181 16.1859 1.79844
8282 −11.7570 −1.29834
8383 0.326978 0.0358905 0.0179452 0.999839i 0.494288π-0.494288\pi
0.0179452 + 0.999839i 0.494288π0.494288\pi
8484 −11.1201 −1.21330
8585 −11.7616 −1.27572
8686 9.09492 0.980731
8787 28.5823 3.06435
8888 −2.87639 −0.306624
8989 −12.7173 −1.34803 −0.674017 0.738716i 0.735433π-0.735433\pi
−0.674017 + 0.738716i 0.735433π0.735433\pi
9090 21.6191 2.27886
9191 −19.7240 −2.06764
9292 3.69456 0.385185
9393 −23.9110 −2.47945
9494 9.19678 0.948575
9595 5.87908 0.603181
9696 −3.12057 −0.318491
9797 −0.300716 −0.0305331 −0.0152665 0.999883i 0.504860π-0.504860\pi
−0.0152665 + 0.999883i 0.504860π0.504860\pi
9898 −5.69839 −0.575624
9999 19.3809 1.94785
100100 5.29492 0.529492
101101 4.90531 0.488097 0.244048 0.969763i 0.421524π-0.421524\pi
0.244048 + 0.969763i 0.421524π0.421524\pi
102102 −11.4390 −1.13263
103103 8.69745 0.856985 0.428492 0.903545i 0.359045π-0.359045\pi
0.428492 + 0.903545i 0.359045π0.359045\pi
104104 −5.53503 −0.542755
105105 35.6795 3.48197
106106 −3.97970 −0.386543
107107 −3.09984 −0.299673 −0.149837 0.988711i 0.547875π-0.547875\pi
−0.149837 + 0.988711i 0.547875π0.547875\pi
108108 11.6645 1.12241
109109 −5.69670 −0.545645 −0.272822 0.962064i 0.587957π-0.587957\pi
−0.272822 + 0.962064i 0.587957π0.587957\pi
110110 9.22909 0.879959
111111 26.1758 2.48450
112112 −3.56348 −0.336717
113113 −19.9262 −1.87449 −0.937247 0.348665i 0.886635π-0.886635\pi
−0.937247 + 0.348665i 0.886635π0.886635\pi
114114 5.71783 0.535524
115115 −11.8543 −1.10542
116116 9.15934 0.850424
117117 37.2947 3.44790
118118 −13.1414 −1.20976
119119 −13.0625 −1.19744
120120 10.0126 0.914017
121121 −2.72639 −0.247854
122122 14.0376 1.27090
123123 36.6885 3.30809
124124 −7.66238 −0.688102
125125 −0.946260 −0.0846360
126126 24.0105 2.13902
127127 5.38823 0.478128 0.239064 0.971004i 0.423159π-0.423159\pi
0.239064 + 0.971004i 0.423159π0.423159\pi
128128 −1.00000 −0.0883883
129129 −28.3813 −2.49883
130130 17.7595 1.55761
131131 −3.12698 −0.273205 −0.136603 0.990626i 0.543618π-0.543618\pi
−0.136603 + 0.990626i 0.543618π0.543618\pi
132132 8.97596 0.781257
133133 6.52938 0.566169
134134 −0.398780 −0.0344494
135135 −37.4263 −3.22114
136136 −3.66567 −0.314329
137137 −5.16238 −0.441052 −0.220526 0.975381i 0.570777π-0.570777\pi
−0.220526 + 0.975381i 0.570777π0.570777\pi
138138 −11.5291 −0.981424
139139 −1.07965 −0.0915747 −0.0457873 0.998951i 0.514580π-0.514580\pi
−0.0457873 + 0.998951i 0.514580π0.514580\pi
140140 11.4337 0.966322
141141 −28.6992 −2.41691
142142 7.48303 0.627962
143143 15.9209 1.33137
144144 6.73793 0.561494
145145 −29.3884 −2.44057
146146 −10.5899 −0.876427
147147 17.7822 1.46665
148148 8.38816 0.689503
149149 −1.31649 −0.107851 −0.0539255 0.998545i 0.517173π-0.517173\pi
−0.0539255 + 0.998545i 0.517173π0.517173\pi
150150 −16.5231 −1.34911
151151 −2.16535 −0.176214 −0.0881070 0.996111i 0.528082π-0.528082\pi
−0.0881070 + 0.996111i 0.528082π0.528082\pi
152152 1.83231 0.148620
153153 24.6990 1.99680
154154 10.2500 0.825965
155155 24.5853 1.97474
156156 17.2724 1.38290
157157 7.67225 0.612312 0.306156 0.951981i 0.400957π-0.400957\pi
0.306156 + 0.951981i 0.400957π0.400957\pi
158158 3.37728 0.268682
159159 12.4189 0.984885
160160 3.20857 0.253660
161161 −13.1655 −1.03759
162162 −16.1859 −1.27169
163163 −5.77376 −0.452236 −0.226118 0.974100i 0.572604π-0.572604\pi
−0.226118 + 0.974100i 0.572604π0.572604\pi
164164 11.7570 0.918068
165165 −28.8000 −2.24208
166166 −0.326978 −0.0253784
167167 −3.58322 −0.277278 −0.138639 0.990343i 0.544273π-0.544273\pi
−0.138639 + 0.990343i 0.544273π0.544273\pi
168168 11.1201 0.857932
169169 17.6366 1.35666
170170 11.7616 0.902070
171171 −12.3459 −0.944118
172172 −9.09492 −0.693481
173173 18.5271 1.40859 0.704295 0.709907i 0.251263π-0.251263\pi
0.704295 + 0.709907i 0.251263π0.251263\pi
174174 −28.5823 −2.16682
175175 −18.8683 −1.42631
176176 2.87639 0.216816
177177 41.0086 3.08240
178178 12.7173 0.953204
179179 7.39440 0.552684 0.276342 0.961059i 0.410878π-0.410878\pi
0.276342 + 0.961059i 0.410878π0.410878\pi
180180 −21.6191 −1.61139
181181 −7.34217 −0.545739 −0.272870 0.962051i 0.587973π-0.587973\pi
−0.272870 + 0.962051i 0.587973π0.587973\pi
182182 19.7240 1.46204
183183 −43.8052 −3.23817
184184 −3.69456 −0.272367
185185 −26.9140 −1.97876
186186 23.9110 1.75324
187187 10.5439 0.771046
188188 −9.19678 −0.670744
189189 −41.5661 −3.02349
190190 −5.87908 −0.426513
191191 −3.32848 −0.240840 −0.120420 0.992723i 0.538424π-0.538424\pi
−0.120420 + 0.992723i 0.538424π0.538424\pi
192192 3.12057 0.225207
193193 −7.71797 −0.555552 −0.277776 0.960646i 0.589597π-0.589597\pi
−0.277776 + 0.960646i 0.589597π0.589597\pi
194194 0.300716 0.0215901
195195 −55.4198 −3.96870
196196 5.69839 0.407028
197197 −5.18348 −0.369308 −0.184654 0.982804i 0.559116π-0.559116\pi
−0.184654 + 0.982804i 0.559116π0.559116\pi
198198 −19.3809 −1.37734
199199 −13.5710 −0.962022 −0.481011 0.876715i 0.659730π-0.659730\pi
−0.481011 + 0.876715i 0.659730π0.659730\pi
200200 −5.29492 −0.374407
201201 1.24442 0.0877747
202202 −4.90531 −0.345136
203203 −32.6391 −2.29082
204204 11.4390 0.800888
205205 −37.7232 −2.63470
206206 −8.69745 −0.605980
207207 24.8937 1.73023
208208 5.53503 0.383786
209209 −5.27042 −0.364563
210210 −35.6795 −2.46212
211211 −15.5181 −1.06831 −0.534154 0.845387i 0.679370π-0.679370\pi
−0.534154 + 0.845387i 0.679370π0.679370\pi
212212 3.97970 0.273327
213213 −23.3513 −1.60000
214214 3.09984 0.211901
215215 29.1817 1.99017
216216 −11.6645 −0.793667
217217 27.3047 1.85357
218218 5.69670 0.385829
219219 33.0465 2.23308
220220 −9.22909 −0.622225
221221 20.2896 1.36483
222222 −26.1758 −1.75681
223223 −7.29073 −0.488223 −0.244112 0.969747i 0.578496π-0.578496\pi
−0.244112 + 0.969747i 0.578496π0.578496\pi
224224 3.56348 0.238095
225225 35.6768 2.37845
226226 19.9262 1.32547
227227 24.9134 1.65356 0.826780 0.562525i 0.190170π-0.190170\pi
0.826780 + 0.562525i 0.190170π0.190170\pi
228228 −5.71783 −0.378672
229229 −2.62325 −0.173349 −0.0866747 0.996237i 0.527624π-0.527624\pi
−0.0866747 + 0.996237i 0.527624π0.527624\pi
230230 11.8543 0.781647
231231 −31.9856 −2.10450
232232 −9.15934 −0.601340
233233 −10.8332 −0.709706 −0.354853 0.934922i 0.615469π-0.615469\pi
−0.354853 + 0.934922i 0.615469π0.615469\pi
234234 −37.2947 −2.43803
235235 29.5085 1.92492
236236 13.1414 0.855433
237237 −10.5390 −0.684584
238238 13.0625 0.846719
239239 −5.86356 −0.379282 −0.189641 0.981854i 0.560732π-0.560732\pi
−0.189641 + 0.981854i 0.560732π0.560732\pi
240240 −10.0126 −0.646307
241241 12.7523 0.821447 0.410724 0.911760i 0.365276π-0.365276\pi
0.410724 + 0.911760i 0.365276π0.365276\pi
242242 2.72639 0.175259
243243 15.5159 0.995346
244244 −14.0376 −0.898664
245245 −18.2837 −1.16810
246246 −36.6885 −2.33918
247247 −10.1419 −0.645312
248248 7.66238 0.486562
249249 1.02036 0.0646624
250250 0.946260 0.0598467
251251 7.29556 0.460491 0.230246 0.973133i 0.426047π-0.426047\pi
0.230246 + 0.973133i 0.426047π0.426047\pi
252252 −24.0105 −1.51252
253253 10.6270 0.668113
254254 −5.38823 −0.338088
255255 −36.7027 −2.29841
256256 1.00000 0.0625000
257257 18.6064 1.16063 0.580317 0.814391i 0.302929π-0.302929\pi
0.580317 + 0.814391i 0.302929π0.302929\pi
258258 28.3813 1.76694
259259 −29.8910 −1.85734
260260 −17.7595 −1.10140
261261 61.7150 3.82006
262262 3.12698 0.193185
263263 −6.66943 −0.411255 −0.205627 0.978630i 0.565923π-0.565923\pi
−0.205627 + 0.978630i 0.565923π0.565923\pi
264264 −8.97596 −0.552432
265265 −12.7692 −0.784403
266266 −6.52938 −0.400342
267267 −39.6853 −2.42870
268268 0.398780 0.0243594
269269 −4.92623 −0.300358 −0.150179 0.988659i 0.547985π-0.547985\pi
−0.150179 + 0.988659i 0.547985π0.547985\pi
270270 37.4263 2.27769
271271 2.38538 0.144901 0.0724507 0.997372i 0.476918π-0.476918\pi
0.0724507 + 0.997372i 0.476918π0.476918\pi
272272 3.66567 0.222264
273273 −61.5500 −3.72517
274274 5.16238 0.311871
275275 15.2302 0.918418
276276 11.5291 0.693972
277277 21.0933 1.26737 0.633687 0.773590i 0.281541π-0.281541\pi
0.633687 + 0.773590i 0.281541π0.281541\pi
278278 1.07965 0.0647531
279279 −51.6286 −3.09092
280280 −11.4337 −0.683293
281281 24.2208 1.44489 0.722444 0.691429i 0.243019π-0.243019\pi
0.722444 + 0.691429i 0.243019π0.243019\pi
282282 28.6992 1.70901
283283 6.07871 0.361342 0.180671 0.983544i 0.442173π-0.442173\pi
0.180671 + 0.983544i 0.442173π0.442173\pi
284284 −7.48303 −0.444036
285285 18.3461 1.08673
286286 −15.9209 −0.941423
287287 −41.8959 −2.47304
288288 −6.73793 −0.397037
289289 −3.56286 −0.209580
290290 29.3884 1.72575
291291 −0.938404 −0.0550102
292292 10.5899 0.619728
293293 −0.494993 −0.0289178 −0.0144589 0.999895i 0.504603π-0.504603\pi
−0.0144589 + 0.999895i 0.504603π0.504603\pi
294294 −17.7822 −1.03708
295295 −42.1651 −2.45495
296296 −8.38816 −0.487552
297297 33.5515 1.94686
298298 1.31649 0.0762621
299299 20.4495 1.18263
300300 16.5231 0.953964
301301 32.4096 1.86806
302302 2.16535 0.124602
303303 15.3073 0.879384
304304 −1.83231 −0.105090
305305 45.0405 2.57901
306306 −24.6990 −1.41195
307307 −17.8896 −1.02101 −0.510506 0.859874i 0.670542π-0.670542\pi
−0.510506 + 0.859874i 0.670542π0.670542\pi
308308 −10.2500 −0.584045
309309 27.1410 1.54399
310310 −24.5853 −1.39635
311311 −29.3209 −1.66264 −0.831318 0.555796i 0.812413π-0.812413\pi
−0.831318 + 0.555796i 0.812413π0.812413\pi
312312 −17.2724 −0.977859
313313 −5.90097 −0.333543 −0.166771 0.985996i 0.553334π-0.553334\pi
−0.166771 + 0.985996i 0.553334π0.553334\pi
314314 −7.67225 −0.432970
315315 77.0393 4.34067
316316 −3.37728 −0.189987
317317 −10.2514 −0.575775 −0.287887 0.957664i 0.592953π-0.592953\pi
−0.287887 + 0.957664i 0.592953π0.592953\pi
318318 −12.4189 −0.696419
319319 26.3458 1.47508
320320 −3.20857 −0.179364
321321 −9.67326 −0.539909
322322 13.1655 0.733684
323323 −6.71663 −0.373723
324324 16.1859 0.899219
325325 29.3075 1.62569
326326 5.77376 0.319779
327327 −17.7769 −0.983066
328328 −11.7570 −0.649172
329329 32.7725 1.80681
330330 28.8000 1.58539
331331 −15.0238 −0.825784 −0.412892 0.910780i 0.635481π-0.635481\pi
−0.412892 + 0.910780i 0.635481π0.635481\pi
332332 0.326978 0.0179452
333333 56.5189 3.09721
334334 3.58322 0.196065
335335 −1.27951 −0.0699074
336336 −11.1201 −0.606650
337337 12.3998 0.675460 0.337730 0.941243i 0.390341π-0.390341\pi
0.337730 + 0.941243i 0.390341π0.390341\pi
338338 −17.6366 −0.959305
339339 −62.1809 −3.37720
340340 −11.7616 −0.637860
341341 −22.0400 −1.19353
342342 12.3459 0.667592
343343 4.63827 0.250443
344344 9.09492 0.490365
345345 −36.9920 −1.99158
346346 −18.5271 −0.996024
347347 −1.39426 −0.0748477 −0.0374238 0.999299i 0.511915π-0.511915\pi
−0.0374238 + 0.999299i 0.511915π0.511915\pi
348348 28.5823 1.53217
349349 0.0613943 0.00328636 0.00164318 0.999999i 0.499477π-0.499477\pi
0.00164318 + 0.999999i 0.499477π0.499477\pi
350350 18.8683 1.00855
351351 64.5632 3.44613
352352 −2.87639 −0.153312
353353 −27.3083 −1.45347 −0.726737 0.686916i 0.758964π-0.758964\pi
−0.726737 + 0.686916i 0.758964π0.758964\pi
354354 −41.0086 −2.17958
355355 24.0098 1.27431
356356 −12.7173 −0.674017
357357 −40.7625 −2.15738
358358 −7.39440 −0.390806
359359 27.0449 1.42737 0.713687 0.700465i 0.247024π-0.247024\pi
0.713687 + 0.700465i 0.247024π0.247024\pi
360360 21.6191 1.13943
361361 −15.6427 −0.823298
362362 7.34217 0.385896
363363 −8.50788 −0.446548
364364 −19.7240 −1.03382
365365 −33.9785 −1.77851
366366 43.8052 2.28973
367367 24.5553 1.28177 0.640887 0.767635i 0.278567π-0.278567\pi
0.640887 + 0.767635i 0.278567π0.278567\pi
368368 3.69456 0.192592
369369 79.2180 4.12392
370370 26.9140 1.39919
371371 −14.1816 −0.736271
372372 −23.9110 −1.23973
373373 13.9864 0.724189 0.362094 0.932141i 0.382062π-0.382062\pi
0.362094 + 0.932141i 0.382062π0.382062\pi
374374 −10.5439 −0.545212
375375 −2.95287 −0.152485
376376 9.19678 0.474288
377377 50.6973 2.61104
378378 41.5661 2.13793
379379 −26.0430 −1.33774 −0.668869 0.743380i 0.733221π-0.733221\pi
−0.668869 + 0.743380i 0.733221π0.733221\pi
380380 5.87908 0.301590
381381 16.8143 0.861424
382382 3.32848 0.170300
383383 −11.8191 −0.603928 −0.301964 0.953319i 0.597642π-0.597642\pi
−0.301964 + 0.953319i 0.597642π0.597642\pi
384384 −3.12057 −0.159246
385385 32.8877 1.67611
386386 7.71797 0.392834
387387 −61.2810 −3.11509
388388 −0.300716 −0.0152665
389389 −32.8956 −1.66787 −0.833937 0.551859i 0.813919π-0.813919\pi
−0.833937 + 0.551859i 0.813919π0.813919\pi
390390 55.4198 2.80629
391391 13.5430 0.684901
392392 −5.69839 −0.287812
393393 −9.75794 −0.492223
394394 5.18348 0.261140
395395 10.8362 0.545231
396396 19.3809 0.973927
397397 17.9175 0.899251 0.449626 0.893217i 0.351557π-0.351557\pi
0.449626 + 0.893217i 0.351557π0.351557\pi
398398 13.5710 0.680252
399399 20.3754 1.02004
400400 5.29492 0.264746
401401 −6.27747 −0.313482 −0.156741 0.987640i 0.550099π-0.550099\pi
−0.156741 + 0.987640i 0.550099π0.550099\pi
402402 −1.24442 −0.0620661
403403 −42.4115 −2.11267
404404 4.90531 0.244048
405405 −51.9337 −2.58061
406406 32.6391 1.61985
407407 24.1276 1.19596
408408 −11.4390 −0.566313
409409 13.9011 0.687364 0.343682 0.939086i 0.388326π-0.388326\pi
0.343682 + 0.939086i 0.388326π0.388326\pi
410410 37.7232 1.86302
411411 −16.1096 −0.794626
412412 8.69745 0.428492
413413 −46.8291 −2.30431
414414 −24.8937 −1.22346
415415 −1.04913 −0.0514998
416416 −5.53503 −0.271377
417417 −3.36912 −0.164986
418418 5.27042 0.257785
419419 13.9559 0.681792 0.340896 0.940101i 0.389270π-0.389270\pi
0.340896 + 0.940101i 0.389270π0.389270\pi
420420 35.6795 1.74098
421421 −21.9631 −1.07042 −0.535208 0.844720i 0.679767π-0.679767\pi
−0.535208 + 0.844720i 0.679767π0.679767\pi
422422 15.5181 0.755408
423423 −61.9673 −3.01295
424424 −3.97970 −0.193271
425425 19.4094 0.941495
426426 23.3513 1.13137
427427 50.0226 2.42076
428428 −3.09984 −0.149837
429429 49.6822 2.39868
430430 −29.1817 −1.40727
431431 1.00000 0.0481683
432432 11.6645 0.561207
433433 −27.1869 −1.30652 −0.653260 0.757133i 0.726599π-0.726599\pi
−0.653260 + 0.757133i 0.726599π0.726599\pi
434434 −27.3047 −1.31067
435435 −91.7084 −4.39708
436436 −5.69670 −0.272822
437437 −6.76957 −0.323832
438438 −33.0465 −1.57902
439439 2.72928 0.130261 0.0651306 0.997877i 0.479254π-0.479254\pi
0.0651306 + 0.997877i 0.479254π0.479254\pi
440440 9.22909 0.439980
441441 38.3953 1.82835
442442 −20.2896 −0.965079
443443 12.7310 0.604867 0.302433 0.953171i 0.402201π-0.402201\pi
0.302433 + 0.953171i 0.402201π0.402201\pi
444444 26.1758 1.24225
445445 40.8044 1.93432
446446 7.29073 0.345226
447447 −4.10819 −0.194311
448448 −3.56348 −0.168359
449449 −2.49955 −0.117961 −0.0589805 0.998259i 0.518785π-0.518785\pi
−0.0589805 + 0.998259i 0.518785π0.518785\pi
450450 −35.6768 −1.68182
451451 33.8177 1.59241
452452 −19.9262 −0.937247
453453 −6.75713 −0.317478
454454 −24.9134 −1.16924
455455 63.2858 2.96688
456456 5.71783 0.267762
457457 −35.4681 −1.65913 −0.829563 0.558413i 0.811411π-0.811411\pi
−0.829563 + 0.558413i 0.811411π0.811411\pi
458458 2.62325 0.122577
459459 42.7581 1.99578
460460 −11.8543 −0.552708
461461 6.53689 0.304453 0.152227 0.988346i 0.451356π-0.451356\pi
0.152227 + 0.988346i 0.451356π0.451356\pi
462462 31.9856 1.48811
463463 29.2282 1.35835 0.679176 0.733976i 0.262337π-0.262337\pi
0.679176 + 0.733976i 0.262337π0.262337\pi
464464 9.15934 0.425212
465465 76.7200 3.55780
466466 10.8332 0.501838
467467 −7.26969 −0.336401 −0.168201 0.985753i 0.553796π-0.553796\pi
−0.168201 + 0.985753i 0.553796π0.553796\pi
468468 37.2947 1.72395
469469 −1.42105 −0.0656178
470470 −29.5085 −1.36113
471471 23.9418 1.10318
472472 −13.1414 −0.604882
473473 −26.1605 −1.20286
474474 10.5390 0.484074
475475 −9.70190 −0.445154
476476 −13.0625 −0.598721
477477 26.8150 1.22777
478478 5.86356 0.268193
479479 27.9334 1.27631 0.638155 0.769908i 0.279698π-0.279698\pi
0.638155 + 0.769908i 0.279698π0.279698\pi
480480 10.0126 0.457008
481481 46.4288 2.11697
482482 −12.7523 −0.580851
483483 −41.0838 −1.86938
484484 −2.72639 −0.123927
485485 0.964868 0.0438124
486486 −15.5159 −0.703816
487487 −29.2096 −1.32361 −0.661807 0.749674i 0.730210π-0.730210\pi
−0.661807 + 0.749674i 0.730210π0.730210\pi
488488 14.0376 0.635451
489489 −18.0174 −0.814775
490490 18.2837 0.825972
491491 7.36315 0.332294 0.166147 0.986101i 0.446867π-0.446867\pi
0.166147 + 0.986101i 0.446867π0.446867\pi
492492 36.6885 1.65405
493493 33.5751 1.51215
494494 10.1419 0.456304
495495 −62.1850 −2.79501
496496 −7.66238 −0.344051
497497 26.6656 1.19612
498498 −1.02036 −0.0457232
499499 3.84359 0.172063 0.0860314 0.996292i 0.472581π-0.472581\pi
0.0860314 + 0.996292i 0.472581π0.472581\pi
500500 −0.946260 −0.0423180
501501 −11.1817 −0.499560
502502 −7.29556 −0.325617
503503 4.08957 0.182345 0.0911725 0.995835i 0.470939π-0.470939\pi
0.0911725 + 0.995835i 0.470939π0.470939\pi
504504 24.0105 1.06951
505505 −15.7390 −0.700377
506506 −10.6270 −0.472428
507507 55.0362 2.44424
508508 5.38823 0.239064
509509 5.44950 0.241545 0.120773 0.992680i 0.461463π-0.461463\pi
0.120773 + 0.992680i 0.461463π0.461463\pi
510510 36.7027 1.62522
511511 −37.7369 −1.66938
512512 −1.00000 −0.0441942
513513 −21.3729 −0.943635
514514 −18.6064 −0.820692
515515 −27.9064 −1.22970
516516 −28.3813 −1.24942
517517 −26.4535 −1.16342
518518 29.8910 1.31334
519519 57.8151 2.53780
520520 17.7595 0.778807
521521 −22.1226 −0.969207 −0.484604 0.874734i 0.661036π-0.661036\pi
−0.484604 + 0.874734i 0.661036π0.661036\pi
522522 −61.7150 −2.70119
523523 −15.4728 −0.676578 −0.338289 0.941042i 0.609848π-0.609848\pi
−0.338289 + 0.941042i 0.609848π0.609848\pi
524524 −3.12698 −0.136603
525525 −58.8799 −2.56973
526526 6.66943 0.290801
527527 −28.0878 −1.22352
528528 8.97596 0.390629
529529 −9.35021 −0.406531
530530 12.7692 0.554657
531531 88.5459 3.84257
532532 6.52938 0.283085
533533 65.0755 2.81873
534534 39.6853 1.71735
535535 9.94606 0.430006
536536 −0.398780 −0.0172247
537537 23.0747 0.995748
538538 4.92623 0.212385
539539 16.3908 0.706000
540540 −37.4263 −1.61057
541541 −36.5353 −1.57078 −0.785388 0.619004i 0.787537π-0.787537\pi
−0.785388 + 0.619004i 0.787537π0.787537\pi
542542 −2.38538 −0.102461
543543 −22.9117 −0.983236
544544 −3.66567 −0.157164
545545 18.2783 0.782954
546546 61.5500 2.63410
547547 −31.8512 −1.36186 −0.680929 0.732349i 0.738424π-0.738424\pi
−0.680929 + 0.732349i 0.738424π0.738424\pi
548548 −5.16238 −0.220526
549549 −94.5843 −4.03676
550550 −15.2302 −0.649419
551551 −16.7827 −0.714967
552552 −11.5291 −0.490712
553553 12.0349 0.511775
554554 −21.0933 −0.896168
555555 −83.9869 −3.56505
556556 −1.07965 −0.0457873
557557 −22.4877 −0.952835 −0.476417 0.879219i 0.658065π-0.658065\pi
−0.476417 + 0.879219i 0.658065π0.658065\pi
558558 51.6286 2.18561
559559 −50.3407 −2.12918
560560 11.4337 0.483161
561561 32.9029 1.38916
562562 −24.2208 −1.02169
563563 39.2872 1.65576 0.827879 0.560907i 0.189548π-0.189548\pi
0.827879 + 0.560907i 0.189548π0.189548\pi
564564 −28.6992 −1.20845
565565 63.9344 2.68974
566566 −6.07871 −0.255507
567567 −57.6783 −2.42226
568568 7.48303 0.313981
569569 13.9330 0.584103 0.292051 0.956403i 0.405662π-0.405662\pi
0.292051 + 0.956403i 0.405662π0.405662\pi
570570 −18.3461 −0.768432
571571 18.2680 0.764491 0.382246 0.924061i 0.375151π-0.375151\pi
0.382246 + 0.924061i 0.375151π0.375151\pi
572572 15.9209 0.665687
573573 −10.3867 −0.433912
574574 41.8959 1.74870
575575 19.5624 0.815808
576576 6.73793 0.280747
577577 39.3576 1.63848 0.819240 0.573451i 0.194396π-0.194396\pi
0.819240 + 0.573451i 0.194396π0.194396\pi
578578 3.56286 0.148195
579579 −24.0844 −1.00091
580580 −29.3884 −1.22029
581581 −1.16518 −0.0483397
582582 0.938404 0.0388981
583583 11.4472 0.474093
584584 −10.5899 −0.438214
585585 −119.663 −4.94744
586586 0.494993 0.0204480
587587 −27.4225 −1.13185 −0.565924 0.824458i 0.691480π-0.691480\pi
−0.565924 + 0.824458i 0.691480π0.691480\pi
588588 17.7822 0.733325
589589 14.0398 0.578501
590590 42.1651 1.73591
591591 −16.1754 −0.665367
592592 8.38816 0.344751
593593 −38.9146 −1.59803 −0.799015 0.601311i 0.794645π-0.794645\pi
−0.799015 + 0.601311i 0.794645π0.794645\pi
594594 −33.5515 −1.37664
595595 41.9121 1.71823
596596 −1.31649 −0.0539255
597597 −42.3492 −1.73324
598598 −20.4495 −0.836243
599599 −23.1879 −0.947431 −0.473715 0.880678i 0.657087π-0.657087\pi
−0.473715 + 0.880678i 0.657087π0.657087\pi
600600 −16.5231 −0.674554
601601 17.4362 0.711236 0.355618 0.934631i 0.384270π-0.384270\pi
0.355618 + 0.934631i 0.384270π0.384270\pi
602602 −32.4096 −1.32092
603603 2.68696 0.109421
604604 −2.16535 −0.0881070
605605 8.74781 0.355649
606606 −15.3073 −0.621818
607607 6.11449 0.248179 0.124090 0.992271i 0.460399π-0.460399\pi
0.124090 + 0.992271i 0.460399π0.460399\pi
608608 1.83231 0.0743098
609609 −101.853 −4.12727
610610 −45.0405 −1.82364
611611 −50.9045 −2.05938
612612 24.6990 0.998400
613613 5.83033 0.235485 0.117742 0.993044i 0.462434π-0.462434\pi
0.117742 + 0.993044i 0.462434π0.462434\pi
614614 17.8896 0.721964
615615 −117.718 −4.74684
616616 10.2500 0.412982
617617 −0.923392 −0.0371744 −0.0185872 0.999827i 0.505917π-0.505917\pi
−0.0185872 + 0.999827i 0.505917π0.505917\pi
618618 −27.1410 −1.09177
619619 −9.98614 −0.401377 −0.200688 0.979655i 0.564318π-0.564318\pi
−0.200688 + 0.979655i 0.564318π0.564318\pi
620620 24.5853 0.987368
621621 43.0951 1.72935
622622 29.3209 1.17566
623623 45.3179 1.81562
624624 17.2724 0.691451
625625 −23.4384 −0.937538
626626 5.90097 0.235850
627627 −16.4467 −0.656818
628628 7.67225 0.306156
629629 30.7482 1.22601
630630 −77.0393 −3.06932
631631 6.32745 0.251892 0.125946 0.992037i 0.459803π-0.459803\pi
0.125946 + 0.992037i 0.459803π0.459803\pi
632632 3.37728 0.134341
633633 −48.4252 −1.92473
634634 10.2514 0.407134
635635 −17.2885 −0.686074
636636 12.4189 0.492442
637637 31.5408 1.24969
638638 −26.3458 −1.04304
639639 −50.4202 −1.99459
640640 3.20857 0.126830
641641 −38.4143 −1.51727 −0.758636 0.651515i 0.774134π-0.774134\pi
−0.758636 + 0.651515i 0.774134π0.774134\pi
642642 9.67326 0.381773
643643 33.6227 1.32595 0.662974 0.748642i 0.269294π-0.269294\pi
0.662974 + 0.748642i 0.269294π0.269294\pi
644644 −13.1655 −0.518793
645645 91.0634 3.58562
646646 6.71663 0.264262
647647 −29.0243 −1.14106 −0.570532 0.821275i 0.693263π-0.693263\pi
−0.570532 + 0.821275i 0.693263π0.693263\pi
648648 −16.1859 −0.635844
649649 37.7998 1.48377
650650 −29.3075 −1.14954
651651 85.2062 3.33949
652652 −5.77376 −0.226118
653653 −1.82119 −0.0712685 −0.0356342 0.999365i 0.511345π-0.511345\pi
−0.0356342 + 0.999365i 0.511345π0.511345\pi
654654 17.7769 0.695133
655655 10.0331 0.392027
656656 11.7570 0.459034
657657 71.3541 2.78379
658658 −32.7725 −1.27761
659659 −31.4954 −1.22688 −0.613442 0.789739i 0.710216π-0.710216\pi
−0.613442 + 0.789739i 0.710216π0.710216\pi
660660 −28.8000 −1.12104
661661 38.1820 1.48511 0.742554 0.669786i 0.233614π-0.233614\pi
0.742554 + 0.669786i 0.233614π0.233614\pi
662662 15.0238 0.583917
663663 63.3151 2.45895
664664 −0.326978 −0.0126892
665665 −20.9500 −0.812405
666666 −56.5189 −2.19006
667667 33.8398 1.31028
668668 −3.58322 −0.138639
669669 −22.7512 −0.879612
670670 1.27951 0.0494320
671671 −40.3775 −1.55876
672672 11.1201 0.428966
673673 −7.98325 −0.307732 −0.153866 0.988092i 0.549172π-0.549172\pi
−0.153866 + 0.988092i 0.549172π0.549172\pi
674674 −12.3998 −0.477622
675675 61.7624 2.37724
676676 17.6366 0.678331
677677 35.4169 1.36118 0.680590 0.732664i 0.261723π-0.261723\pi
0.680590 + 0.732664i 0.261723π0.261723\pi
678678 62.1809 2.38804
679679 1.07159 0.0411240
680680 11.7616 0.451035
681681 77.7439 2.97915
682682 22.0400 0.843954
683683 24.2299 0.927130 0.463565 0.886063i 0.346570π-0.346570\pi
0.463565 + 0.886063i 0.346570π0.346570\pi
684684 −12.3459 −0.472059
685685 16.5639 0.632873
686686 −4.63827 −0.177090
687687 −8.18603 −0.312317
688688 −9.09492 −0.346741
689689 22.0278 0.839192
690690 36.9920 1.40826
691691 −35.9371 −1.36711 −0.683556 0.729898i 0.739567π-0.739567\pi
−0.683556 + 0.729898i 0.739567π0.739567\pi
692692 18.5271 0.704295
693693 −69.0635 −2.62350
694694 1.39426 0.0529253
695695 3.46413 0.131402
696696 −28.5823 −1.08341
697697 43.0973 1.63243
698698 −0.0613943 −0.00232381
699699 −33.8057 −1.27865
700700 −18.8683 −0.713156
701701 −32.6912 −1.23473 −0.617365 0.786677i 0.711800π-0.711800\pi
−0.617365 + 0.786677i 0.711800π0.711800\pi
702702 −64.5632 −2.43678
703703 −15.3697 −0.579678
704704 2.87639 0.108408
705705 92.0832 3.46806
706706 27.3083 1.02776
707707 −17.4800 −0.657402
708708 41.0086 1.54120
709709 −20.2019 −0.758698 −0.379349 0.925254i 0.623852π-0.623852\pi
−0.379349 + 0.925254i 0.623852π0.623852\pi
710710 −24.0098 −0.901073
711711 −22.7559 −0.853413
712712 12.7173 0.476602
713713 −28.3091 −1.06019
714714 40.7625 1.52550
715715 −51.0833 −1.91041
716716 7.39440 0.276342
717717 −18.2976 −0.683337
718718 −27.0449 −1.00931
719719 −9.27692 −0.345971 −0.172985 0.984924i 0.555341π-0.555341\pi
−0.172985 + 0.984924i 0.555341π0.555341\pi
720720 −21.6191 −0.805697
721721 −30.9932 −1.15425
722722 15.6427 0.582159
723723 39.7944 1.47997
724724 −7.34217 −0.272870
725725 48.4980 1.80117
726726 8.50788 0.315757
727727 −49.0183 −1.81799 −0.908994 0.416809i 0.863149π-0.863149\pi
−0.908994 + 0.416809i 0.863149π0.863149\pi
728728 19.7240 0.731019
729729 −0.139421 −0.00516374
730730 33.9785 1.25760
731731 −33.3390 −1.23309
732732 −43.8052 −1.61909
733733 40.2474 1.48657 0.743285 0.668975i 0.233266π-0.233266\pi
0.743285 + 0.668975i 0.233266π0.233266\pi
734734 −24.5553 −0.906351
735735 −57.0554 −2.10452
736736 −3.69456 −0.136183
737737 1.14705 0.0422520
738738 −79.2180 −2.91605
739739 18.3815 0.676176 0.338088 0.941115i 0.390220π-0.390220\pi
0.338088 + 0.941115i 0.390220π0.390220\pi
740740 −26.9140 −0.989378
741741 −31.6484 −1.16263
742742 14.1816 0.520623
743743 28.9777 1.06309 0.531544 0.847030i 0.321612π-0.321612\pi
0.531544 + 0.847030i 0.321612π0.321612\pi
744744 23.9110 0.876618
745745 4.22404 0.154757
746746 −13.9864 −0.512079
747747 2.20315 0.0806092
748748 10.5439 0.385523
749749 11.0462 0.403620
750750 2.95287 0.107823
751751 48.2362 1.76016 0.880082 0.474821i 0.157487π-0.157487\pi
0.880082 + 0.474821i 0.157487π0.157487\pi
752752 −9.19678 −0.335372
753753 22.7663 0.829649
754754 −50.6973 −1.84629
755755 6.94769 0.252852
756756 −41.5661 −1.51174
757757 11.8816 0.431844 0.215922 0.976411i 0.430724π-0.430724\pi
0.215922 + 0.976411i 0.430724π0.430724\pi
758758 26.0430 0.945924
759759 33.1622 1.20371
760760 −5.87908 −0.213257
761761 24.5967 0.891631 0.445815 0.895125i 0.352914π-0.352914\pi
0.445815 + 0.895125i 0.352914π0.352914\pi
762762 −16.8143 −0.609119
763763 20.3001 0.734912
764764 −3.32848 −0.120420
765765 −79.2486 −2.86524
766766 11.8191 0.427041
767767 72.7382 2.62642
768768 3.12057 0.112604
769769 −40.3764 −1.45601 −0.728005 0.685572i 0.759552π-0.759552\pi
−0.728005 + 0.685572i 0.759552π0.759552\pi
770770 −32.8877 −1.18519
771771 58.0624 2.09107
772772 −7.71797 −0.277776
773773 35.5118 1.27727 0.638635 0.769510i 0.279499π-0.279499\pi
0.638635 + 0.769510i 0.279499π0.279499\pi
774774 61.2810 2.20270
775775 −40.5717 −1.45738
776776 0.300716 0.0107951
777777 −93.2770 −3.34629
778778 32.8956 1.17937
779779 −21.5424 −0.771838
780780 −55.4198 −1.98435
781781 −21.5241 −0.770193
782782 −13.5430 −0.484298
783783 106.839 3.81811
784784 5.69839 0.203514
785785 −24.6170 −0.878617
786786 9.75794 0.348054
787787 6.60881 0.235579 0.117789 0.993039i 0.462419π-0.462419\pi
0.117789 + 0.993039i 0.462419π0.462419\pi
788788 −5.18348 −0.184654
789789 −20.8124 −0.740941
790790 −10.8362 −0.385536
791791 71.0064 2.52470
792792 −19.3809 −0.688671
793793 −77.6985 −2.75915
794794 −17.9175 −0.635867
795795 −39.8470 −1.41323
796796 −13.5710 −0.481011
797797 27.4362 0.971841 0.485921 0.874003i 0.338484π-0.338484\pi
0.485921 + 0.874003i 0.338484π0.338484\pi
798798 −20.3754 −0.721280
799799 −33.7124 −1.19266
800800 −5.29492 −0.187204
801801 −85.6885 −3.02765
802802 6.27747 0.221665
803803 30.4607 1.07493
804804 1.24442 0.0438873
805805 42.2424 1.48885
806806 42.4115 1.49388
807807 −15.3726 −0.541142
808808 −4.90531 −0.172568
809809 39.7409 1.39722 0.698609 0.715504i 0.253803π-0.253803\pi
0.698609 + 0.715504i 0.253803π0.253803\pi
810810 51.9337 1.82476
811811 −7.88798 −0.276985 −0.138492 0.990364i 0.544226π-0.544226\pi
−0.138492 + 0.990364i 0.544226π0.544226\pi
812812 −32.6391 −1.14541
813813 7.44373 0.261063
814814 −24.1276 −0.845672
815815 18.5255 0.648921
816816 11.4390 0.400444
817817 16.6647 0.583023
818818 −13.9011 −0.486040
819819 −132.899 −4.64386
820820 −37.7232 −1.31735
821821 5.31774 0.185590 0.0927951 0.995685i 0.470420π-0.470420\pi
0.0927951 + 0.995685i 0.470420π0.470420\pi
822822 16.1096 0.561885
823823 −12.2961 −0.428616 −0.214308 0.976766i 0.568750π-0.568750\pi
−0.214308 + 0.976766i 0.568750π0.568750\pi
824824 −8.69745 −0.302990
825825 47.5270 1.65468
826826 46.8291 1.62939
827827 11.7753 0.409467 0.204734 0.978818i 0.434367π-0.434367\pi
0.204734 + 0.978818i 0.434367π0.434367\pi
828828 24.8937 0.865116
829829 −9.47466 −0.329069 −0.164534 0.986371i 0.552612π-0.552612\pi
−0.164534 + 0.986371i 0.552612π0.552612\pi
830830 1.04913 0.0364159
831831 65.8230 2.28338
832832 5.53503 0.191893
833833 20.8884 0.723740
834834 3.36912 0.116663
835835 11.4970 0.397870
836836 −5.27042 −0.182281
837837 −89.3776 −3.08934
838838 −13.9559 −0.482099
839839 −45.1458 −1.55861 −0.779303 0.626647i 0.784427π-0.784427\pi
−0.779303 + 0.626647i 0.784427π0.784427\pi
840840 −35.6795 −1.23106
841841 54.8935 1.89288
842842 21.9631 0.756898
843843 75.5825 2.60320
844844 −15.5181 −0.534154
845845 −56.5883 −1.94670
846846 61.9673 2.13048
847847 9.71544 0.333826
848848 3.97970 0.136664
849849 18.9690 0.651015
850850 −19.4094 −0.665738
851851 30.9906 1.06234
852852 −23.3513 −0.800002
853853 −17.6085 −0.602904 −0.301452 0.953481i 0.597471π-0.597471\pi
−0.301452 + 0.953481i 0.597471π0.597471\pi
854854 −50.0226 −1.71174
855855 39.6128 1.35473
856856 3.09984 0.105950
857857 −23.9488 −0.818077 −0.409038 0.912517i 0.634136π-0.634136\pi
−0.409038 + 0.912517i 0.634136π0.634136\pi
858858 −49.6822 −1.69612
859859 −23.3114 −0.795375 −0.397687 0.917521i 0.630187π-0.630187\pi
−0.397687 + 0.917521i 0.630187π0.630187\pi
860860 29.1817 0.995087
861861 −130.739 −4.45557
862862 −1.00000 −0.0340601
863863 54.7118 1.86241 0.931205 0.364495i 0.118758π-0.118758\pi
0.931205 + 0.364495i 0.118758π0.118758\pi
864864 −11.6645 −0.396833
865865 −59.4455 −2.02121
866866 27.1869 0.923850
867867 −11.1181 −0.377592
868868 27.3047 0.926783
869869 −9.71438 −0.329538
870870 91.7084 3.10921
871871 2.20726 0.0747903
872872 5.69670 0.192915
873873 −2.02620 −0.0685766
874874 6.76957 0.228984
875875 3.37198 0.113994
876876 33.0465 1.11654
877877 10.6128 0.358370 0.179185 0.983815i 0.442654π-0.442654\pi
0.179185 + 0.983815i 0.442654π0.442654\pi
878878 −2.72928 −0.0921086
879879 −1.54466 −0.0521001
880880 −9.22909 −0.311113
881881 50.5021 1.70146 0.850730 0.525603i 0.176160π-0.176160\pi
0.850730 + 0.525603i 0.176160π0.176160\pi
882882 −38.3953 −1.29284
883883 25.4836 0.857592 0.428796 0.903401i 0.358938π-0.358938\pi
0.428796 + 0.903401i 0.358938π0.358938\pi
884884 20.2896 0.682414
885885 −131.579 −4.42298
886886 −12.7310 −0.427705
887887 5.68533 0.190895 0.0954474 0.995434i 0.469572π-0.469572\pi
0.0954474 + 0.995434i 0.469572π0.469572\pi
888888 −26.1758 −0.878403
889889 −19.2008 −0.643976
890890 −40.8044 −1.36777
891891 46.5571 1.55972
892892 −7.29073 −0.244112
893893 16.8513 0.563907
894894 4.10819 0.137398
895895 −23.7255 −0.793054
896896 3.56348 0.119047
897897 63.8141 2.13069
898898 2.49955 0.0834111
899899 −70.1823 −2.34071
900900 35.6768 1.18923
901901 14.5883 0.486006
902902 −33.8177 −1.12601
903903 101.136 3.36560
904904 19.9262 0.662734
905905 23.5579 0.783090
906906 6.75713 0.224491
907907 15.4507 0.513032 0.256516 0.966540i 0.417425π-0.417425\pi
0.256516 + 0.966540i 0.417425π0.417425\pi
908908 24.9134 0.826780
909909 33.0516 1.09625
910910 −63.2858 −2.09790
911911 −20.1186 −0.666559 −0.333279 0.942828i 0.608155π-0.608155\pi
−0.333279 + 0.942828i 0.608155π0.608155\pi
912912 −5.71783 −0.189336
913913 0.940515 0.0311265
914914 35.4681 1.17318
915915 140.552 4.64651
916916 −2.62325 −0.0866747
917917 11.1429 0.367972
918918 −42.7581 −1.41123
919919 32.0332 1.05668 0.528338 0.849034i 0.322815π-0.322815\pi
0.528338 + 0.849034i 0.322815π0.322815\pi
920920 11.8543 0.390823
921921 −55.8256 −1.83951
922922 −6.53689 −0.215281
923923 −41.4188 −1.36332
924924 −31.9856 −1.05225
925925 44.4146 1.46034
926926 −29.2282 −0.960499
927927 58.6028 1.92477
928928 −9.15934 −0.300670
929929 42.4240 1.39189 0.695944 0.718096i 0.254986π-0.254986\pi
0.695944 + 0.718096i 0.254986π0.254986\pi
930930 −76.7200 −2.51575
931931 −10.4412 −0.342196
932932 −10.8332 −0.354853
933933 −91.4979 −2.99551
934934 7.26969 0.237871
935935 −33.8308 −1.10639
936936 −37.2947 −1.21902
937937 8.36566 0.273294 0.136647 0.990620i 0.456367π-0.456367\pi
0.136647 + 0.990620i 0.456367π0.456367\pi
938938 1.42105 0.0463988
939939 −18.4144 −0.600930
940940 29.5085 0.962461
941941 −45.6000 −1.48652 −0.743259 0.669004i 0.766721π-0.766721\pi
−0.743259 + 0.669004i 0.766721π0.766721\pi
942942 −23.9418 −0.780065
943943 43.4370 1.41450
944944 13.1414 0.427716
945945 133.368 4.33845
946946 26.1605 0.850552
947947 52.8756 1.71823 0.859113 0.511785i 0.171016π-0.171016\pi
0.859113 + 0.511785i 0.171016π0.171016\pi
948948 −10.5390 −0.342292
949949 58.6155 1.90274
950950 9.70190 0.314771
951951 −31.9901 −1.03735
952952 13.0625 0.423359
953953 0.851000 0.0275666 0.0137833 0.999905i 0.495613π-0.495613\pi
0.0137833 + 0.999905i 0.495613π0.495613\pi
954954 −26.8150 −0.868167
955955 10.6796 0.345585
956956 −5.86356 −0.189641
957957 82.2139 2.65760
958958 −27.9334 −0.902488
959959 18.3960 0.594039
960960 −10.0126 −0.323154
961961 27.7120 0.893937
962962 −46.4288 −1.49692
963963 −20.8865 −0.673059
964964 12.7523 0.410724
965965 24.7636 0.797170
966966 41.0838 1.32185
967967 23.6991 0.762112 0.381056 0.924552i 0.375560π-0.375560\pi
0.381056 + 0.924552i 0.375560π0.375560\pi
968968 2.72639 0.0876295
969969 −20.9597 −0.673322
970970 −0.964868 −0.0309800
971971 −48.8946 −1.56910 −0.784551 0.620065i 0.787106π-0.787106\pi
−0.784551 + 0.620065i 0.787106π0.787106\pi
972972 15.5159 0.497673
973973 3.84731 0.123339
974974 29.2096 0.935937
975975 91.4561 2.92894
976976 −14.0376 −0.449332
977977 −37.8227 −1.21006 −0.605028 0.796204i 0.706838π-0.706838\pi
−0.605028 + 0.796204i 0.706838π0.706838\pi
978978 18.0174 0.576133
979979 −36.5800 −1.16910
980980 −18.2837 −0.584050
981981 −38.3840 −1.22551
982982 −7.36315 −0.234967
983983 43.4739 1.38660 0.693300 0.720649i 0.256156π-0.256156\pi
0.693300 + 0.720649i 0.256156π0.256156\pi
984984 −36.6885 −1.16959
985985 16.6316 0.529926
986986 −33.5751 −1.06925
987987 102.269 3.25525
988988 −10.1419 −0.322656
989989 −33.6018 −1.06847
990990 62.1850 1.97637
991991 −50.7542 −1.61226 −0.806130 0.591738i 0.798442π-0.798442\pi
−0.806130 + 0.591738i 0.798442π0.798442\pi
992992 7.66238 0.243281
993993 −46.8828 −1.48778
994994 −26.6656 −0.845782
995995 43.5434 1.38042
996996 1.02036 0.0323312
997997 13.3258 0.422031 0.211016 0.977483i 0.432323π-0.432323\pi
0.211016 + 0.977483i 0.432323π0.432323\pi
998998 −3.84359 −0.121667
999999 97.8434 3.09563
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 862.2.a.k.1.10 10
3.2 odd 2 7758.2.a.v.1.9 10
4.3 odd 2 6896.2.a.t.1.1 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
862.2.a.k.1.10 10 1.1 even 1 trivial
6896.2.a.t.1.1 10 4.3 odd 2
7758.2.a.v.1.9 10 3.2 odd 2