Properties

Label 862.2.a.k.1.10
Level $862$
Weight $2$
Character 862.1
Self dual yes
Analytic conductor $6.883$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [862,2,Mod(1,862)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(862, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("862.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 862 = 2 \cdot 431 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 862.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.88310465423\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} - 19x^{8} + 46x^{7} + 89x^{6} - 291x^{5} - 10x^{4} + 543x^{3} - 429x^{2} + 64x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Root \(-2.22143\) of defining polynomial
Character \(\chi\) \(=\) 862.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +3.12057 q^{3} +1.00000 q^{4} -3.20857 q^{5} -3.12057 q^{6} -3.56348 q^{7} -1.00000 q^{8} +6.73793 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} +3.12057 q^{3} +1.00000 q^{4} -3.20857 q^{5} -3.12057 q^{6} -3.56348 q^{7} -1.00000 q^{8} +6.73793 q^{9} +3.20857 q^{10} +2.87639 q^{11} +3.12057 q^{12} +5.53503 q^{13} +3.56348 q^{14} -10.0126 q^{15} +1.00000 q^{16} +3.66567 q^{17} -6.73793 q^{18} -1.83231 q^{19} -3.20857 q^{20} -11.1201 q^{21} -2.87639 q^{22} +3.69456 q^{23} -3.12057 q^{24} +5.29492 q^{25} -5.53503 q^{26} +11.6645 q^{27} -3.56348 q^{28} +9.15934 q^{29} +10.0126 q^{30} -7.66238 q^{31} -1.00000 q^{32} +8.97596 q^{33} -3.66567 q^{34} +11.4337 q^{35} +6.73793 q^{36} +8.38816 q^{37} +1.83231 q^{38} +17.2724 q^{39} +3.20857 q^{40} +11.7570 q^{41} +11.1201 q^{42} -9.09492 q^{43} +2.87639 q^{44} -21.6191 q^{45} -3.69456 q^{46} -9.19678 q^{47} +3.12057 q^{48} +5.69839 q^{49} -5.29492 q^{50} +11.4390 q^{51} +5.53503 q^{52} +3.97970 q^{53} -11.6645 q^{54} -9.22909 q^{55} +3.56348 q^{56} -5.71783 q^{57} -9.15934 q^{58} +13.1414 q^{59} -10.0126 q^{60} -14.0376 q^{61} +7.66238 q^{62} -24.0105 q^{63} +1.00000 q^{64} -17.7595 q^{65} -8.97596 q^{66} +0.398780 q^{67} +3.66567 q^{68} +11.5291 q^{69} -11.4337 q^{70} -7.48303 q^{71} -6.73793 q^{72} +10.5899 q^{73} -8.38816 q^{74} +16.5231 q^{75} -1.83231 q^{76} -10.2500 q^{77} -17.2724 q^{78} -3.37728 q^{79} -3.20857 q^{80} +16.1859 q^{81} -11.7570 q^{82} +0.326978 q^{83} -11.1201 q^{84} -11.7616 q^{85} +9.09492 q^{86} +28.5823 q^{87} -2.87639 q^{88} -12.7173 q^{89} +21.6191 q^{90} -19.7240 q^{91} +3.69456 q^{92} -23.9110 q^{93} +9.19678 q^{94} +5.87908 q^{95} -3.12057 q^{96} -0.300716 q^{97} -5.69839 q^{98} +19.3809 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 10 q^{2} + 4 q^{3} + 10 q^{4} + 4 q^{5} - 4 q^{6} - 3 q^{7} - 10 q^{8} + 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 10 q - 10 q^{2} + 4 q^{3} + 10 q^{4} + 4 q^{5} - 4 q^{6} - 3 q^{7} - 10 q^{8} + 12 q^{9} - 4 q^{10} + 4 q^{11} + 4 q^{12} + 5 q^{13} + 3 q^{14} - q^{15} + 10 q^{16} + 27 q^{17} - 12 q^{18} - 9 q^{19} + 4 q^{20} + 8 q^{21} - 4 q^{22} + 18 q^{23} - 4 q^{24} + 16 q^{25} - 5 q^{26} + 25 q^{27} - 3 q^{28} + 19 q^{29} + q^{30} - 20 q^{31} - 10 q^{32} + 25 q^{33} - 27 q^{34} + 22 q^{35} + 12 q^{36} - 3 q^{37} + 9 q^{38} + q^{39} - 4 q^{40} + 33 q^{41} - 8 q^{42} - q^{43} + 4 q^{44} - 8 q^{45} - 18 q^{46} + 18 q^{47} + 4 q^{48} + 5 q^{49} - 16 q^{50} + 6 q^{51} + 5 q^{52} + 33 q^{53} - 25 q^{54} - 7 q^{55} + 3 q^{56} + 11 q^{57} - 19 q^{58} + 13 q^{59} - q^{60} - 2 q^{61} + 20 q^{62} + 6 q^{63} + 10 q^{64} + 28 q^{65} - 25 q^{66} - 2 q^{67} + 27 q^{68} - 2 q^{69} - 22 q^{70} - 6 q^{71} - 12 q^{72} + 19 q^{73} + 3 q^{74} + 15 q^{75} - 9 q^{76} + 39 q^{77} - q^{78} - 4 q^{79} + 4 q^{80} + 22 q^{81} - 33 q^{82} + 46 q^{83} + 8 q^{84} - 12 q^{85} + q^{86} + 43 q^{87} - 4 q^{88} + 29 q^{89} + 8 q^{90} - 32 q^{91} + 18 q^{92} + 3 q^{93} - 18 q^{94} + 38 q^{95} - 4 q^{96} + 9 q^{97} - 5 q^{98} + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 3.12057 1.80166 0.900830 0.434172i \(-0.142959\pi\)
0.900830 + 0.434172i \(0.142959\pi\)
\(4\) 1.00000 0.500000
\(5\) −3.20857 −1.43492 −0.717458 0.696602i \(-0.754694\pi\)
−0.717458 + 0.696602i \(0.754694\pi\)
\(6\) −3.12057 −1.27397
\(7\) −3.56348 −1.34687 −0.673434 0.739247i \(-0.735182\pi\)
−0.673434 + 0.739247i \(0.735182\pi\)
\(8\) −1.00000 −0.353553
\(9\) 6.73793 2.24598
\(10\) 3.20857 1.01464
\(11\) 2.87639 0.867264 0.433632 0.901090i \(-0.357232\pi\)
0.433632 + 0.901090i \(0.357232\pi\)
\(12\) 3.12057 0.900830
\(13\) 5.53503 1.53514 0.767571 0.640964i \(-0.221465\pi\)
0.767571 + 0.640964i \(0.221465\pi\)
\(14\) 3.56348 0.952380
\(15\) −10.0126 −2.58523
\(16\) 1.00000 0.250000
\(17\) 3.66567 0.889056 0.444528 0.895765i \(-0.353371\pi\)
0.444528 + 0.895765i \(0.353371\pi\)
\(18\) −6.73793 −1.58815
\(19\) −1.83231 −0.420360 −0.210180 0.977663i \(-0.567405\pi\)
−0.210180 + 0.977663i \(0.567405\pi\)
\(20\) −3.20857 −0.717458
\(21\) −11.1201 −2.42660
\(22\) −2.87639 −0.613248
\(23\) 3.69456 0.770369 0.385185 0.922839i \(-0.374138\pi\)
0.385185 + 0.922839i \(0.374138\pi\)
\(24\) −3.12057 −0.636983
\(25\) 5.29492 1.05898
\(26\) −5.53503 −1.08551
\(27\) 11.6645 2.24483
\(28\) −3.56348 −0.673434
\(29\) 9.15934 1.70085 0.850424 0.526099i \(-0.176346\pi\)
0.850424 + 0.526099i \(0.176346\pi\)
\(30\) 10.0126 1.82803
\(31\) −7.66238 −1.37620 −0.688102 0.725614i \(-0.741556\pi\)
−0.688102 + 0.725614i \(0.741556\pi\)
\(32\) −1.00000 −0.176777
\(33\) 8.97596 1.56251
\(34\) −3.66567 −0.628657
\(35\) 11.4337 1.93264
\(36\) 6.73793 1.12299
\(37\) 8.38816 1.37901 0.689503 0.724283i \(-0.257829\pi\)
0.689503 + 0.724283i \(0.257829\pi\)
\(38\) 1.83231 0.297239
\(39\) 17.2724 2.76580
\(40\) 3.20857 0.507319
\(41\) 11.7570 1.83614 0.918068 0.396422i \(-0.129748\pi\)
0.918068 + 0.396422i \(0.129748\pi\)
\(42\) 11.1201 1.71586
\(43\) −9.09492 −1.38696 −0.693481 0.720475i \(-0.743924\pi\)
−0.693481 + 0.720475i \(0.743924\pi\)
\(44\) 2.87639 0.433632
\(45\) −21.6191 −3.22279
\(46\) −3.69456 −0.544733
\(47\) −9.19678 −1.34149 −0.670744 0.741689i \(-0.734025\pi\)
−0.670744 + 0.741689i \(0.734025\pi\)
\(48\) 3.12057 0.450415
\(49\) 5.69839 0.814055
\(50\) −5.29492 −0.748814
\(51\) 11.4390 1.60178
\(52\) 5.53503 0.767571
\(53\) 3.97970 0.546654 0.273327 0.961921i \(-0.411876\pi\)
0.273327 + 0.961921i \(0.411876\pi\)
\(54\) −11.6645 −1.58733
\(55\) −9.22909 −1.24445
\(56\) 3.56348 0.476190
\(57\) −5.71783 −0.757345
\(58\) −9.15934 −1.20268
\(59\) 13.1414 1.71087 0.855433 0.517914i \(-0.173291\pi\)
0.855433 + 0.517914i \(0.173291\pi\)
\(60\) −10.0126 −1.29261
\(61\) −14.0376 −1.79733 −0.898664 0.438638i \(-0.855461\pi\)
−0.898664 + 0.438638i \(0.855461\pi\)
\(62\) 7.66238 0.973123
\(63\) −24.0105 −3.02504
\(64\) 1.00000 0.125000
\(65\) −17.7595 −2.20280
\(66\) −8.97596 −1.10486
\(67\) 0.398780 0.0487188 0.0243594 0.999703i \(-0.492245\pi\)
0.0243594 + 0.999703i \(0.492245\pi\)
\(68\) 3.66567 0.444528
\(69\) 11.5291 1.38794
\(70\) −11.4337 −1.36659
\(71\) −7.48303 −0.888072 −0.444036 0.896009i \(-0.646454\pi\)
−0.444036 + 0.896009i \(0.646454\pi\)
\(72\) −6.73793 −0.794073
\(73\) 10.5899 1.23946 0.619728 0.784817i \(-0.287243\pi\)
0.619728 + 0.784817i \(0.287243\pi\)
\(74\) −8.38816 −0.975104
\(75\) 16.5231 1.90793
\(76\) −1.83231 −0.210180
\(77\) −10.2500 −1.16809
\(78\) −17.2724 −1.95572
\(79\) −3.37728 −0.379974 −0.189987 0.981787i \(-0.560845\pi\)
−0.189987 + 0.981787i \(0.560845\pi\)
\(80\) −3.20857 −0.358729
\(81\) 16.1859 1.79844
\(82\) −11.7570 −1.29834
\(83\) 0.326978 0.0358905 0.0179452 0.999839i \(-0.494288\pi\)
0.0179452 + 0.999839i \(0.494288\pi\)
\(84\) −11.1201 −1.21330
\(85\) −11.7616 −1.27572
\(86\) 9.09492 0.980731
\(87\) 28.5823 3.06435
\(88\) −2.87639 −0.306624
\(89\) −12.7173 −1.34803 −0.674017 0.738716i \(-0.735433\pi\)
−0.674017 + 0.738716i \(0.735433\pi\)
\(90\) 21.6191 2.27886
\(91\) −19.7240 −2.06764
\(92\) 3.69456 0.385185
\(93\) −23.9110 −2.47945
\(94\) 9.19678 0.948575
\(95\) 5.87908 0.603181
\(96\) −3.12057 −0.318491
\(97\) −0.300716 −0.0305331 −0.0152665 0.999883i \(-0.504860\pi\)
−0.0152665 + 0.999883i \(0.504860\pi\)
\(98\) −5.69839 −0.575624
\(99\) 19.3809 1.94785
\(100\) 5.29492 0.529492
\(101\) 4.90531 0.488097 0.244048 0.969763i \(-0.421524\pi\)
0.244048 + 0.969763i \(0.421524\pi\)
\(102\) −11.4390 −1.13263
\(103\) 8.69745 0.856985 0.428492 0.903545i \(-0.359045\pi\)
0.428492 + 0.903545i \(0.359045\pi\)
\(104\) −5.53503 −0.542755
\(105\) 35.6795 3.48197
\(106\) −3.97970 −0.386543
\(107\) −3.09984 −0.299673 −0.149837 0.988711i \(-0.547875\pi\)
−0.149837 + 0.988711i \(0.547875\pi\)
\(108\) 11.6645 1.12241
\(109\) −5.69670 −0.545645 −0.272822 0.962064i \(-0.587957\pi\)
−0.272822 + 0.962064i \(0.587957\pi\)
\(110\) 9.22909 0.879959
\(111\) 26.1758 2.48450
\(112\) −3.56348 −0.336717
\(113\) −19.9262 −1.87449 −0.937247 0.348665i \(-0.886635\pi\)
−0.937247 + 0.348665i \(0.886635\pi\)
\(114\) 5.71783 0.535524
\(115\) −11.8543 −1.10542
\(116\) 9.15934 0.850424
\(117\) 37.2947 3.44790
\(118\) −13.1414 −1.20976
\(119\) −13.0625 −1.19744
\(120\) 10.0126 0.914017
\(121\) −2.72639 −0.247854
\(122\) 14.0376 1.27090
\(123\) 36.6885 3.30809
\(124\) −7.66238 −0.688102
\(125\) −0.946260 −0.0846360
\(126\) 24.0105 2.13902
\(127\) 5.38823 0.478128 0.239064 0.971004i \(-0.423159\pi\)
0.239064 + 0.971004i \(0.423159\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −28.3813 −2.49883
\(130\) 17.7595 1.55761
\(131\) −3.12698 −0.273205 −0.136603 0.990626i \(-0.543618\pi\)
−0.136603 + 0.990626i \(0.543618\pi\)
\(132\) 8.97596 0.781257
\(133\) 6.52938 0.566169
\(134\) −0.398780 −0.0344494
\(135\) −37.4263 −3.22114
\(136\) −3.66567 −0.314329
\(137\) −5.16238 −0.441052 −0.220526 0.975381i \(-0.570777\pi\)
−0.220526 + 0.975381i \(0.570777\pi\)
\(138\) −11.5291 −0.981424
\(139\) −1.07965 −0.0915747 −0.0457873 0.998951i \(-0.514580\pi\)
−0.0457873 + 0.998951i \(0.514580\pi\)
\(140\) 11.4337 0.966322
\(141\) −28.6992 −2.41691
\(142\) 7.48303 0.627962
\(143\) 15.9209 1.33137
\(144\) 6.73793 0.561494
\(145\) −29.3884 −2.44057
\(146\) −10.5899 −0.876427
\(147\) 17.7822 1.46665
\(148\) 8.38816 0.689503
\(149\) −1.31649 −0.107851 −0.0539255 0.998545i \(-0.517173\pi\)
−0.0539255 + 0.998545i \(0.517173\pi\)
\(150\) −16.5231 −1.34911
\(151\) −2.16535 −0.176214 −0.0881070 0.996111i \(-0.528082\pi\)
−0.0881070 + 0.996111i \(0.528082\pi\)
\(152\) 1.83231 0.148620
\(153\) 24.6990 1.99680
\(154\) 10.2500 0.825965
\(155\) 24.5853 1.97474
\(156\) 17.2724 1.38290
\(157\) 7.67225 0.612312 0.306156 0.951981i \(-0.400957\pi\)
0.306156 + 0.951981i \(0.400957\pi\)
\(158\) 3.37728 0.268682
\(159\) 12.4189 0.984885
\(160\) 3.20857 0.253660
\(161\) −13.1655 −1.03759
\(162\) −16.1859 −1.27169
\(163\) −5.77376 −0.452236 −0.226118 0.974100i \(-0.572604\pi\)
−0.226118 + 0.974100i \(0.572604\pi\)
\(164\) 11.7570 0.918068
\(165\) −28.8000 −2.24208
\(166\) −0.326978 −0.0253784
\(167\) −3.58322 −0.277278 −0.138639 0.990343i \(-0.544273\pi\)
−0.138639 + 0.990343i \(0.544273\pi\)
\(168\) 11.1201 0.857932
\(169\) 17.6366 1.35666
\(170\) 11.7616 0.902070
\(171\) −12.3459 −0.944118
\(172\) −9.09492 −0.693481
\(173\) 18.5271 1.40859 0.704295 0.709907i \(-0.251263\pi\)
0.704295 + 0.709907i \(0.251263\pi\)
\(174\) −28.5823 −2.16682
\(175\) −18.8683 −1.42631
\(176\) 2.87639 0.216816
\(177\) 41.0086 3.08240
\(178\) 12.7173 0.953204
\(179\) 7.39440 0.552684 0.276342 0.961059i \(-0.410878\pi\)
0.276342 + 0.961059i \(0.410878\pi\)
\(180\) −21.6191 −1.61139
\(181\) −7.34217 −0.545739 −0.272870 0.962051i \(-0.587973\pi\)
−0.272870 + 0.962051i \(0.587973\pi\)
\(182\) 19.7240 1.46204
\(183\) −43.8052 −3.23817
\(184\) −3.69456 −0.272367
\(185\) −26.9140 −1.97876
\(186\) 23.9110 1.75324
\(187\) 10.5439 0.771046
\(188\) −9.19678 −0.670744
\(189\) −41.5661 −3.02349
\(190\) −5.87908 −0.426513
\(191\) −3.32848 −0.240840 −0.120420 0.992723i \(-0.538424\pi\)
−0.120420 + 0.992723i \(0.538424\pi\)
\(192\) 3.12057 0.225207
\(193\) −7.71797 −0.555552 −0.277776 0.960646i \(-0.589597\pi\)
−0.277776 + 0.960646i \(0.589597\pi\)
\(194\) 0.300716 0.0215901
\(195\) −55.4198 −3.96870
\(196\) 5.69839 0.407028
\(197\) −5.18348 −0.369308 −0.184654 0.982804i \(-0.559116\pi\)
−0.184654 + 0.982804i \(0.559116\pi\)
\(198\) −19.3809 −1.37734
\(199\) −13.5710 −0.962022 −0.481011 0.876715i \(-0.659730\pi\)
−0.481011 + 0.876715i \(0.659730\pi\)
\(200\) −5.29492 −0.374407
\(201\) 1.24442 0.0877747
\(202\) −4.90531 −0.345136
\(203\) −32.6391 −2.29082
\(204\) 11.4390 0.800888
\(205\) −37.7232 −2.63470
\(206\) −8.69745 −0.605980
\(207\) 24.8937 1.73023
\(208\) 5.53503 0.383786
\(209\) −5.27042 −0.364563
\(210\) −35.6795 −2.46212
\(211\) −15.5181 −1.06831 −0.534154 0.845387i \(-0.679370\pi\)
−0.534154 + 0.845387i \(0.679370\pi\)
\(212\) 3.97970 0.273327
\(213\) −23.3513 −1.60000
\(214\) 3.09984 0.211901
\(215\) 29.1817 1.99017
\(216\) −11.6645 −0.793667
\(217\) 27.3047 1.85357
\(218\) 5.69670 0.385829
\(219\) 33.0465 2.23308
\(220\) −9.22909 −0.622225
\(221\) 20.2896 1.36483
\(222\) −26.1758 −1.75681
\(223\) −7.29073 −0.488223 −0.244112 0.969747i \(-0.578496\pi\)
−0.244112 + 0.969747i \(0.578496\pi\)
\(224\) 3.56348 0.238095
\(225\) 35.6768 2.37845
\(226\) 19.9262 1.32547
\(227\) 24.9134 1.65356 0.826780 0.562525i \(-0.190170\pi\)
0.826780 + 0.562525i \(0.190170\pi\)
\(228\) −5.71783 −0.378672
\(229\) −2.62325 −0.173349 −0.0866747 0.996237i \(-0.527624\pi\)
−0.0866747 + 0.996237i \(0.527624\pi\)
\(230\) 11.8543 0.781647
\(231\) −31.9856 −2.10450
\(232\) −9.15934 −0.601340
\(233\) −10.8332 −0.709706 −0.354853 0.934922i \(-0.615469\pi\)
−0.354853 + 0.934922i \(0.615469\pi\)
\(234\) −37.2947 −2.43803
\(235\) 29.5085 1.92492
\(236\) 13.1414 0.855433
\(237\) −10.5390 −0.684584
\(238\) 13.0625 0.846719
\(239\) −5.86356 −0.379282 −0.189641 0.981854i \(-0.560732\pi\)
−0.189641 + 0.981854i \(0.560732\pi\)
\(240\) −10.0126 −0.646307
\(241\) 12.7523 0.821447 0.410724 0.911760i \(-0.365276\pi\)
0.410724 + 0.911760i \(0.365276\pi\)
\(242\) 2.72639 0.175259
\(243\) 15.5159 0.995346
\(244\) −14.0376 −0.898664
\(245\) −18.2837 −1.16810
\(246\) −36.6885 −2.33918
\(247\) −10.1419 −0.645312
\(248\) 7.66238 0.486562
\(249\) 1.02036 0.0646624
\(250\) 0.946260 0.0598467
\(251\) 7.29556 0.460491 0.230246 0.973133i \(-0.426047\pi\)
0.230246 + 0.973133i \(0.426047\pi\)
\(252\) −24.0105 −1.51252
\(253\) 10.6270 0.668113
\(254\) −5.38823 −0.338088
\(255\) −36.7027 −2.29841
\(256\) 1.00000 0.0625000
\(257\) 18.6064 1.16063 0.580317 0.814391i \(-0.302929\pi\)
0.580317 + 0.814391i \(0.302929\pi\)
\(258\) 28.3813 1.76694
\(259\) −29.8910 −1.85734
\(260\) −17.7595 −1.10140
\(261\) 61.7150 3.82006
\(262\) 3.12698 0.193185
\(263\) −6.66943 −0.411255 −0.205627 0.978630i \(-0.565923\pi\)
−0.205627 + 0.978630i \(0.565923\pi\)
\(264\) −8.97596 −0.552432
\(265\) −12.7692 −0.784403
\(266\) −6.52938 −0.400342
\(267\) −39.6853 −2.42870
\(268\) 0.398780 0.0243594
\(269\) −4.92623 −0.300358 −0.150179 0.988659i \(-0.547985\pi\)
−0.150179 + 0.988659i \(0.547985\pi\)
\(270\) 37.4263 2.27769
\(271\) 2.38538 0.144901 0.0724507 0.997372i \(-0.476918\pi\)
0.0724507 + 0.997372i \(0.476918\pi\)
\(272\) 3.66567 0.222264
\(273\) −61.5500 −3.72517
\(274\) 5.16238 0.311871
\(275\) 15.2302 0.918418
\(276\) 11.5291 0.693972
\(277\) 21.0933 1.26737 0.633687 0.773590i \(-0.281541\pi\)
0.633687 + 0.773590i \(0.281541\pi\)
\(278\) 1.07965 0.0647531
\(279\) −51.6286 −3.09092
\(280\) −11.4337 −0.683293
\(281\) 24.2208 1.44489 0.722444 0.691429i \(-0.243019\pi\)
0.722444 + 0.691429i \(0.243019\pi\)
\(282\) 28.6992 1.70901
\(283\) 6.07871 0.361342 0.180671 0.983544i \(-0.442173\pi\)
0.180671 + 0.983544i \(0.442173\pi\)
\(284\) −7.48303 −0.444036
\(285\) 18.3461 1.08673
\(286\) −15.9209 −0.941423
\(287\) −41.8959 −2.47304
\(288\) −6.73793 −0.397037
\(289\) −3.56286 −0.209580
\(290\) 29.3884 1.72575
\(291\) −0.938404 −0.0550102
\(292\) 10.5899 0.619728
\(293\) −0.494993 −0.0289178 −0.0144589 0.999895i \(-0.504603\pi\)
−0.0144589 + 0.999895i \(0.504603\pi\)
\(294\) −17.7822 −1.03708
\(295\) −42.1651 −2.45495
\(296\) −8.38816 −0.487552
\(297\) 33.5515 1.94686
\(298\) 1.31649 0.0762621
\(299\) 20.4495 1.18263
\(300\) 16.5231 0.953964
\(301\) 32.4096 1.86806
\(302\) 2.16535 0.124602
\(303\) 15.3073 0.879384
\(304\) −1.83231 −0.105090
\(305\) 45.0405 2.57901
\(306\) −24.6990 −1.41195
\(307\) −17.8896 −1.02101 −0.510506 0.859874i \(-0.670542\pi\)
−0.510506 + 0.859874i \(0.670542\pi\)
\(308\) −10.2500 −0.584045
\(309\) 27.1410 1.54399
\(310\) −24.5853 −1.39635
\(311\) −29.3209 −1.66264 −0.831318 0.555796i \(-0.812413\pi\)
−0.831318 + 0.555796i \(0.812413\pi\)
\(312\) −17.2724 −0.977859
\(313\) −5.90097 −0.333543 −0.166771 0.985996i \(-0.553334\pi\)
−0.166771 + 0.985996i \(0.553334\pi\)
\(314\) −7.67225 −0.432970
\(315\) 77.0393 4.34067
\(316\) −3.37728 −0.189987
\(317\) −10.2514 −0.575775 −0.287887 0.957664i \(-0.592953\pi\)
−0.287887 + 0.957664i \(0.592953\pi\)
\(318\) −12.4189 −0.696419
\(319\) 26.3458 1.47508
\(320\) −3.20857 −0.179364
\(321\) −9.67326 −0.539909
\(322\) 13.1655 0.733684
\(323\) −6.71663 −0.373723
\(324\) 16.1859 0.899219
\(325\) 29.3075 1.62569
\(326\) 5.77376 0.319779
\(327\) −17.7769 −0.983066
\(328\) −11.7570 −0.649172
\(329\) 32.7725 1.80681
\(330\) 28.8000 1.58539
\(331\) −15.0238 −0.825784 −0.412892 0.910780i \(-0.635481\pi\)
−0.412892 + 0.910780i \(0.635481\pi\)
\(332\) 0.326978 0.0179452
\(333\) 56.5189 3.09721
\(334\) 3.58322 0.196065
\(335\) −1.27951 −0.0699074
\(336\) −11.1201 −0.606650
\(337\) 12.3998 0.675460 0.337730 0.941243i \(-0.390341\pi\)
0.337730 + 0.941243i \(0.390341\pi\)
\(338\) −17.6366 −0.959305
\(339\) −62.1809 −3.37720
\(340\) −11.7616 −0.637860
\(341\) −22.0400 −1.19353
\(342\) 12.3459 0.667592
\(343\) 4.63827 0.250443
\(344\) 9.09492 0.490365
\(345\) −36.9920 −1.99158
\(346\) −18.5271 −0.996024
\(347\) −1.39426 −0.0748477 −0.0374238 0.999299i \(-0.511915\pi\)
−0.0374238 + 0.999299i \(0.511915\pi\)
\(348\) 28.5823 1.53217
\(349\) 0.0613943 0.00328636 0.00164318 0.999999i \(-0.499477\pi\)
0.00164318 + 0.999999i \(0.499477\pi\)
\(350\) 18.8683 1.00855
\(351\) 64.5632 3.44613
\(352\) −2.87639 −0.153312
\(353\) −27.3083 −1.45347 −0.726737 0.686916i \(-0.758964\pi\)
−0.726737 + 0.686916i \(0.758964\pi\)
\(354\) −41.0086 −2.17958
\(355\) 24.0098 1.27431
\(356\) −12.7173 −0.674017
\(357\) −40.7625 −2.15738
\(358\) −7.39440 −0.390806
\(359\) 27.0449 1.42737 0.713687 0.700465i \(-0.247024\pi\)
0.713687 + 0.700465i \(0.247024\pi\)
\(360\) 21.6191 1.13943
\(361\) −15.6427 −0.823298
\(362\) 7.34217 0.385896
\(363\) −8.50788 −0.446548
\(364\) −19.7240 −1.03382
\(365\) −33.9785 −1.77851
\(366\) 43.8052 2.28973
\(367\) 24.5553 1.28177 0.640887 0.767635i \(-0.278567\pi\)
0.640887 + 0.767635i \(0.278567\pi\)
\(368\) 3.69456 0.192592
\(369\) 79.2180 4.12392
\(370\) 26.9140 1.39919
\(371\) −14.1816 −0.736271
\(372\) −23.9110 −1.23973
\(373\) 13.9864 0.724189 0.362094 0.932141i \(-0.382062\pi\)
0.362094 + 0.932141i \(0.382062\pi\)
\(374\) −10.5439 −0.545212
\(375\) −2.95287 −0.152485
\(376\) 9.19678 0.474288
\(377\) 50.6973 2.61104
\(378\) 41.5661 2.13793
\(379\) −26.0430 −1.33774 −0.668869 0.743380i \(-0.733221\pi\)
−0.668869 + 0.743380i \(0.733221\pi\)
\(380\) 5.87908 0.301590
\(381\) 16.8143 0.861424
\(382\) 3.32848 0.170300
\(383\) −11.8191 −0.603928 −0.301964 0.953319i \(-0.597642\pi\)
−0.301964 + 0.953319i \(0.597642\pi\)
\(384\) −3.12057 −0.159246
\(385\) 32.8877 1.67611
\(386\) 7.71797 0.392834
\(387\) −61.2810 −3.11509
\(388\) −0.300716 −0.0152665
\(389\) −32.8956 −1.66787 −0.833937 0.551859i \(-0.813919\pi\)
−0.833937 + 0.551859i \(0.813919\pi\)
\(390\) 55.4198 2.80629
\(391\) 13.5430 0.684901
\(392\) −5.69839 −0.287812
\(393\) −9.75794 −0.492223
\(394\) 5.18348 0.261140
\(395\) 10.8362 0.545231
\(396\) 19.3809 0.973927
\(397\) 17.9175 0.899251 0.449626 0.893217i \(-0.351557\pi\)
0.449626 + 0.893217i \(0.351557\pi\)
\(398\) 13.5710 0.680252
\(399\) 20.3754 1.02004
\(400\) 5.29492 0.264746
\(401\) −6.27747 −0.313482 −0.156741 0.987640i \(-0.550099\pi\)
−0.156741 + 0.987640i \(0.550099\pi\)
\(402\) −1.24442 −0.0620661
\(403\) −42.4115 −2.11267
\(404\) 4.90531 0.244048
\(405\) −51.9337 −2.58061
\(406\) 32.6391 1.61985
\(407\) 24.1276 1.19596
\(408\) −11.4390 −0.566313
\(409\) 13.9011 0.687364 0.343682 0.939086i \(-0.388326\pi\)
0.343682 + 0.939086i \(0.388326\pi\)
\(410\) 37.7232 1.86302
\(411\) −16.1096 −0.794626
\(412\) 8.69745 0.428492
\(413\) −46.8291 −2.30431
\(414\) −24.8937 −1.22346
\(415\) −1.04913 −0.0514998
\(416\) −5.53503 −0.271377
\(417\) −3.36912 −0.164986
\(418\) 5.27042 0.257785
\(419\) 13.9559 0.681792 0.340896 0.940101i \(-0.389270\pi\)
0.340896 + 0.940101i \(0.389270\pi\)
\(420\) 35.6795 1.74098
\(421\) −21.9631 −1.07042 −0.535208 0.844720i \(-0.679767\pi\)
−0.535208 + 0.844720i \(0.679767\pi\)
\(422\) 15.5181 0.755408
\(423\) −61.9673 −3.01295
\(424\) −3.97970 −0.193271
\(425\) 19.4094 0.941495
\(426\) 23.3513 1.13137
\(427\) 50.0226 2.42076
\(428\) −3.09984 −0.149837
\(429\) 49.6822 2.39868
\(430\) −29.1817 −1.40727
\(431\) 1.00000 0.0481683
\(432\) 11.6645 0.561207
\(433\) −27.1869 −1.30652 −0.653260 0.757133i \(-0.726599\pi\)
−0.653260 + 0.757133i \(0.726599\pi\)
\(434\) −27.3047 −1.31067
\(435\) −91.7084 −4.39708
\(436\) −5.69670 −0.272822
\(437\) −6.76957 −0.323832
\(438\) −33.0465 −1.57902
\(439\) 2.72928 0.130261 0.0651306 0.997877i \(-0.479254\pi\)
0.0651306 + 0.997877i \(0.479254\pi\)
\(440\) 9.22909 0.439980
\(441\) 38.3953 1.82835
\(442\) −20.2896 −0.965079
\(443\) 12.7310 0.604867 0.302433 0.953171i \(-0.402201\pi\)
0.302433 + 0.953171i \(0.402201\pi\)
\(444\) 26.1758 1.24225
\(445\) 40.8044 1.93432
\(446\) 7.29073 0.345226
\(447\) −4.10819 −0.194311
\(448\) −3.56348 −0.168359
\(449\) −2.49955 −0.117961 −0.0589805 0.998259i \(-0.518785\pi\)
−0.0589805 + 0.998259i \(0.518785\pi\)
\(450\) −35.6768 −1.68182
\(451\) 33.8177 1.59241
\(452\) −19.9262 −0.937247
\(453\) −6.75713 −0.317478
\(454\) −24.9134 −1.16924
\(455\) 63.2858 2.96688
\(456\) 5.71783 0.267762
\(457\) −35.4681 −1.65913 −0.829563 0.558413i \(-0.811411\pi\)
−0.829563 + 0.558413i \(0.811411\pi\)
\(458\) 2.62325 0.122577
\(459\) 42.7581 1.99578
\(460\) −11.8543 −0.552708
\(461\) 6.53689 0.304453 0.152227 0.988346i \(-0.451356\pi\)
0.152227 + 0.988346i \(0.451356\pi\)
\(462\) 31.9856 1.48811
\(463\) 29.2282 1.35835 0.679176 0.733976i \(-0.262337\pi\)
0.679176 + 0.733976i \(0.262337\pi\)
\(464\) 9.15934 0.425212
\(465\) 76.7200 3.55780
\(466\) 10.8332 0.501838
\(467\) −7.26969 −0.336401 −0.168201 0.985753i \(-0.553796\pi\)
−0.168201 + 0.985753i \(0.553796\pi\)
\(468\) 37.2947 1.72395
\(469\) −1.42105 −0.0656178
\(470\) −29.5085 −1.36113
\(471\) 23.9418 1.10318
\(472\) −13.1414 −0.604882
\(473\) −26.1605 −1.20286
\(474\) 10.5390 0.484074
\(475\) −9.70190 −0.445154
\(476\) −13.0625 −0.598721
\(477\) 26.8150 1.22777
\(478\) 5.86356 0.268193
\(479\) 27.9334 1.27631 0.638155 0.769908i \(-0.279698\pi\)
0.638155 + 0.769908i \(0.279698\pi\)
\(480\) 10.0126 0.457008
\(481\) 46.4288 2.11697
\(482\) −12.7523 −0.580851
\(483\) −41.0838 −1.86938
\(484\) −2.72639 −0.123927
\(485\) 0.964868 0.0438124
\(486\) −15.5159 −0.703816
\(487\) −29.2096 −1.32361 −0.661807 0.749674i \(-0.730210\pi\)
−0.661807 + 0.749674i \(0.730210\pi\)
\(488\) 14.0376 0.635451
\(489\) −18.0174 −0.814775
\(490\) 18.2837 0.825972
\(491\) 7.36315 0.332294 0.166147 0.986101i \(-0.446867\pi\)
0.166147 + 0.986101i \(0.446867\pi\)
\(492\) 36.6885 1.65405
\(493\) 33.5751 1.51215
\(494\) 10.1419 0.456304
\(495\) −62.1850 −2.79501
\(496\) −7.66238 −0.344051
\(497\) 26.6656 1.19612
\(498\) −1.02036 −0.0457232
\(499\) 3.84359 0.172063 0.0860314 0.996292i \(-0.472581\pi\)
0.0860314 + 0.996292i \(0.472581\pi\)
\(500\) −0.946260 −0.0423180
\(501\) −11.1817 −0.499560
\(502\) −7.29556 −0.325617
\(503\) 4.08957 0.182345 0.0911725 0.995835i \(-0.470939\pi\)
0.0911725 + 0.995835i \(0.470939\pi\)
\(504\) 24.0105 1.06951
\(505\) −15.7390 −0.700377
\(506\) −10.6270 −0.472428
\(507\) 55.0362 2.44424
\(508\) 5.38823 0.239064
\(509\) 5.44950 0.241545 0.120773 0.992680i \(-0.461463\pi\)
0.120773 + 0.992680i \(0.461463\pi\)
\(510\) 36.7027 1.62522
\(511\) −37.7369 −1.66938
\(512\) −1.00000 −0.0441942
\(513\) −21.3729 −0.943635
\(514\) −18.6064 −0.820692
\(515\) −27.9064 −1.22970
\(516\) −28.3813 −1.24942
\(517\) −26.4535 −1.16342
\(518\) 29.8910 1.31334
\(519\) 57.8151 2.53780
\(520\) 17.7595 0.778807
\(521\) −22.1226 −0.969207 −0.484604 0.874734i \(-0.661036\pi\)
−0.484604 + 0.874734i \(0.661036\pi\)
\(522\) −61.7150 −2.70119
\(523\) −15.4728 −0.676578 −0.338289 0.941042i \(-0.609848\pi\)
−0.338289 + 0.941042i \(0.609848\pi\)
\(524\) −3.12698 −0.136603
\(525\) −58.8799 −2.56973
\(526\) 6.66943 0.290801
\(527\) −28.0878 −1.22352
\(528\) 8.97596 0.390629
\(529\) −9.35021 −0.406531
\(530\) 12.7692 0.554657
\(531\) 88.5459 3.84257
\(532\) 6.52938 0.283085
\(533\) 65.0755 2.81873
\(534\) 39.6853 1.71735
\(535\) 9.94606 0.430006
\(536\) −0.398780 −0.0172247
\(537\) 23.0747 0.995748
\(538\) 4.92623 0.212385
\(539\) 16.3908 0.706000
\(540\) −37.4263 −1.61057
\(541\) −36.5353 −1.57078 −0.785388 0.619004i \(-0.787537\pi\)
−0.785388 + 0.619004i \(0.787537\pi\)
\(542\) −2.38538 −0.102461
\(543\) −22.9117 −0.983236
\(544\) −3.66567 −0.157164
\(545\) 18.2783 0.782954
\(546\) 61.5500 2.63410
\(547\) −31.8512 −1.36186 −0.680929 0.732349i \(-0.738424\pi\)
−0.680929 + 0.732349i \(0.738424\pi\)
\(548\) −5.16238 −0.220526
\(549\) −94.5843 −4.03676
\(550\) −15.2302 −0.649419
\(551\) −16.7827 −0.714967
\(552\) −11.5291 −0.490712
\(553\) 12.0349 0.511775
\(554\) −21.0933 −0.896168
\(555\) −83.9869 −3.56505
\(556\) −1.07965 −0.0457873
\(557\) −22.4877 −0.952835 −0.476417 0.879219i \(-0.658065\pi\)
−0.476417 + 0.879219i \(0.658065\pi\)
\(558\) 51.6286 2.18561
\(559\) −50.3407 −2.12918
\(560\) 11.4337 0.483161
\(561\) 32.9029 1.38916
\(562\) −24.2208 −1.02169
\(563\) 39.2872 1.65576 0.827879 0.560907i \(-0.189548\pi\)
0.827879 + 0.560907i \(0.189548\pi\)
\(564\) −28.6992 −1.20845
\(565\) 63.9344 2.68974
\(566\) −6.07871 −0.255507
\(567\) −57.6783 −2.42226
\(568\) 7.48303 0.313981
\(569\) 13.9330 0.584103 0.292051 0.956403i \(-0.405662\pi\)
0.292051 + 0.956403i \(0.405662\pi\)
\(570\) −18.3461 −0.768432
\(571\) 18.2680 0.764491 0.382246 0.924061i \(-0.375151\pi\)
0.382246 + 0.924061i \(0.375151\pi\)
\(572\) 15.9209 0.665687
\(573\) −10.3867 −0.433912
\(574\) 41.8959 1.74870
\(575\) 19.5624 0.815808
\(576\) 6.73793 0.280747
\(577\) 39.3576 1.63848 0.819240 0.573451i \(-0.194396\pi\)
0.819240 + 0.573451i \(0.194396\pi\)
\(578\) 3.56286 0.148195
\(579\) −24.0844 −1.00091
\(580\) −29.3884 −1.22029
\(581\) −1.16518 −0.0483397
\(582\) 0.938404 0.0388981
\(583\) 11.4472 0.474093
\(584\) −10.5899 −0.438214
\(585\) −119.663 −4.94744
\(586\) 0.494993 0.0204480
\(587\) −27.4225 −1.13185 −0.565924 0.824458i \(-0.691480\pi\)
−0.565924 + 0.824458i \(0.691480\pi\)
\(588\) 17.7822 0.733325
\(589\) 14.0398 0.578501
\(590\) 42.1651 1.73591
\(591\) −16.1754 −0.665367
\(592\) 8.38816 0.344751
\(593\) −38.9146 −1.59803 −0.799015 0.601311i \(-0.794645\pi\)
−0.799015 + 0.601311i \(0.794645\pi\)
\(594\) −33.5515 −1.37664
\(595\) 41.9121 1.71823
\(596\) −1.31649 −0.0539255
\(597\) −42.3492 −1.73324
\(598\) −20.4495 −0.836243
\(599\) −23.1879 −0.947431 −0.473715 0.880678i \(-0.657087\pi\)
−0.473715 + 0.880678i \(0.657087\pi\)
\(600\) −16.5231 −0.674554
\(601\) 17.4362 0.711236 0.355618 0.934631i \(-0.384270\pi\)
0.355618 + 0.934631i \(0.384270\pi\)
\(602\) −32.4096 −1.32092
\(603\) 2.68696 0.109421
\(604\) −2.16535 −0.0881070
\(605\) 8.74781 0.355649
\(606\) −15.3073 −0.621818
\(607\) 6.11449 0.248179 0.124090 0.992271i \(-0.460399\pi\)
0.124090 + 0.992271i \(0.460399\pi\)
\(608\) 1.83231 0.0743098
\(609\) −101.853 −4.12727
\(610\) −45.0405 −1.82364
\(611\) −50.9045 −2.05938
\(612\) 24.6990 0.998400
\(613\) 5.83033 0.235485 0.117742 0.993044i \(-0.462434\pi\)
0.117742 + 0.993044i \(0.462434\pi\)
\(614\) 17.8896 0.721964
\(615\) −117.718 −4.74684
\(616\) 10.2500 0.412982
\(617\) −0.923392 −0.0371744 −0.0185872 0.999827i \(-0.505917\pi\)
−0.0185872 + 0.999827i \(0.505917\pi\)
\(618\) −27.1410 −1.09177
\(619\) −9.98614 −0.401377 −0.200688 0.979655i \(-0.564318\pi\)
−0.200688 + 0.979655i \(0.564318\pi\)
\(620\) 24.5853 0.987368
\(621\) 43.0951 1.72935
\(622\) 29.3209 1.17566
\(623\) 45.3179 1.81562
\(624\) 17.2724 0.691451
\(625\) −23.4384 −0.937538
\(626\) 5.90097 0.235850
\(627\) −16.4467 −0.656818
\(628\) 7.67225 0.306156
\(629\) 30.7482 1.22601
\(630\) −77.0393 −3.06932
\(631\) 6.32745 0.251892 0.125946 0.992037i \(-0.459803\pi\)
0.125946 + 0.992037i \(0.459803\pi\)
\(632\) 3.37728 0.134341
\(633\) −48.4252 −1.92473
\(634\) 10.2514 0.407134
\(635\) −17.2885 −0.686074
\(636\) 12.4189 0.492442
\(637\) 31.5408 1.24969
\(638\) −26.3458 −1.04304
\(639\) −50.4202 −1.99459
\(640\) 3.20857 0.126830
\(641\) −38.4143 −1.51727 −0.758636 0.651515i \(-0.774134\pi\)
−0.758636 + 0.651515i \(0.774134\pi\)
\(642\) 9.67326 0.381773
\(643\) 33.6227 1.32595 0.662974 0.748642i \(-0.269294\pi\)
0.662974 + 0.748642i \(0.269294\pi\)
\(644\) −13.1655 −0.518793
\(645\) 91.0634 3.58562
\(646\) 6.71663 0.264262
\(647\) −29.0243 −1.14106 −0.570532 0.821275i \(-0.693263\pi\)
−0.570532 + 0.821275i \(0.693263\pi\)
\(648\) −16.1859 −0.635844
\(649\) 37.7998 1.48377
\(650\) −29.3075 −1.14954
\(651\) 85.2062 3.33949
\(652\) −5.77376 −0.226118
\(653\) −1.82119 −0.0712685 −0.0356342 0.999365i \(-0.511345\pi\)
−0.0356342 + 0.999365i \(0.511345\pi\)
\(654\) 17.7769 0.695133
\(655\) 10.0331 0.392027
\(656\) 11.7570 0.459034
\(657\) 71.3541 2.78379
\(658\) −32.7725 −1.27761
\(659\) −31.4954 −1.22688 −0.613442 0.789739i \(-0.710216\pi\)
−0.613442 + 0.789739i \(0.710216\pi\)
\(660\) −28.8000 −1.12104
\(661\) 38.1820 1.48511 0.742554 0.669786i \(-0.233614\pi\)
0.742554 + 0.669786i \(0.233614\pi\)
\(662\) 15.0238 0.583917
\(663\) 63.3151 2.45895
\(664\) −0.326978 −0.0126892
\(665\) −20.9500 −0.812405
\(666\) −56.5189 −2.19006
\(667\) 33.8398 1.31028
\(668\) −3.58322 −0.138639
\(669\) −22.7512 −0.879612
\(670\) 1.27951 0.0494320
\(671\) −40.3775 −1.55876
\(672\) 11.1201 0.428966
\(673\) −7.98325 −0.307732 −0.153866 0.988092i \(-0.549172\pi\)
−0.153866 + 0.988092i \(0.549172\pi\)
\(674\) −12.3998 −0.477622
\(675\) 61.7624 2.37724
\(676\) 17.6366 0.678331
\(677\) 35.4169 1.36118 0.680590 0.732664i \(-0.261723\pi\)
0.680590 + 0.732664i \(0.261723\pi\)
\(678\) 62.1809 2.38804
\(679\) 1.07159 0.0411240
\(680\) 11.7616 0.451035
\(681\) 77.7439 2.97915
\(682\) 22.0400 0.843954
\(683\) 24.2299 0.927130 0.463565 0.886063i \(-0.346570\pi\)
0.463565 + 0.886063i \(0.346570\pi\)
\(684\) −12.3459 −0.472059
\(685\) 16.5639 0.632873
\(686\) −4.63827 −0.177090
\(687\) −8.18603 −0.312317
\(688\) −9.09492 −0.346741
\(689\) 22.0278 0.839192
\(690\) 36.9920 1.40826
\(691\) −35.9371 −1.36711 −0.683556 0.729898i \(-0.739567\pi\)
−0.683556 + 0.729898i \(0.739567\pi\)
\(692\) 18.5271 0.704295
\(693\) −69.0635 −2.62350
\(694\) 1.39426 0.0529253
\(695\) 3.46413 0.131402
\(696\) −28.5823 −1.08341
\(697\) 43.0973 1.63243
\(698\) −0.0613943 −0.00232381
\(699\) −33.8057 −1.27865
\(700\) −18.8683 −0.713156
\(701\) −32.6912 −1.23473 −0.617365 0.786677i \(-0.711800\pi\)
−0.617365 + 0.786677i \(0.711800\pi\)
\(702\) −64.5632 −2.43678
\(703\) −15.3697 −0.579678
\(704\) 2.87639 0.108408
\(705\) 92.0832 3.46806
\(706\) 27.3083 1.02776
\(707\) −17.4800 −0.657402
\(708\) 41.0086 1.54120
\(709\) −20.2019 −0.758698 −0.379349 0.925254i \(-0.623852\pi\)
−0.379349 + 0.925254i \(0.623852\pi\)
\(710\) −24.0098 −0.901073
\(711\) −22.7559 −0.853413
\(712\) 12.7173 0.476602
\(713\) −28.3091 −1.06019
\(714\) 40.7625 1.52550
\(715\) −51.0833 −1.91041
\(716\) 7.39440 0.276342
\(717\) −18.2976 −0.683337
\(718\) −27.0449 −1.00931
\(719\) −9.27692 −0.345971 −0.172985 0.984924i \(-0.555341\pi\)
−0.172985 + 0.984924i \(0.555341\pi\)
\(720\) −21.6191 −0.805697
\(721\) −30.9932 −1.15425
\(722\) 15.6427 0.582159
\(723\) 39.7944 1.47997
\(724\) −7.34217 −0.272870
\(725\) 48.4980 1.80117
\(726\) 8.50788 0.315757
\(727\) −49.0183 −1.81799 −0.908994 0.416809i \(-0.863149\pi\)
−0.908994 + 0.416809i \(0.863149\pi\)
\(728\) 19.7240 0.731019
\(729\) −0.139421 −0.00516374
\(730\) 33.9785 1.25760
\(731\) −33.3390 −1.23309
\(732\) −43.8052 −1.61909
\(733\) 40.2474 1.48657 0.743285 0.668975i \(-0.233266\pi\)
0.743285 + 0.668975i \(0.233266\pi\)
\(734\) −24.5553 −0.906351
\(735\) −57.0554 −2.10452
\(736\) −3.69456 −0.136183
\(737\) 1.14705 0.0422520
\(738\) −79.2180 −2.91605
\(739\) 18.3815 0.676176 0.338088 0.941115i \(-0.390220\pi\)
0.338088 + 0.941115i \(0.390220\pi\)
\(740\) −26.9140 −0.989378
\(741\) −31.6484 −1.16263
\(742\) 14.1816 0.520623
\(743\) 28.9777 1.06309 0.531544 0.847030i \(-0.321612\pi\)
0.531544 + 0.847030i \(0.321612\pi\)
\(744\) 23.9110 0.876618
\(745\) 4.22404 0.154757
\(746\) −13.9864 −0.512079
\(747\) 2.20315 0.0806092
\(748\) 10.5439 0.385523
\(749\) 11.0462 0.403620
\(750\) 2.95287 0.107823
\(751\) 48.2362 1.76016 0.880082 0.474821i \(-0.157487\pi\)
0.880082 + 0.474821i \(0.157487\pi\)
\(752\) −9.19678 −0.335372
\(753\) 22.7663 0.829649
\(754\) −50.6973 −1.84629
\(755\) 6.94769 0.252852
\(756\) −41.5661 −1.51174
\(757\) 11.8816 0.431844 0.215922 0.976411i \(-0.430724\pi\)
0.215922 + 0.976411i \(0.430724\pi\)
\(758\) 26.0430 0.945924
\(759\) 33.1622 1.20371
\(760\) −5.87908 −0.213257
\(761\) 24.5967 0.891631 0.445815 0.895125i \(-0.352914\pi\)
0.445815 + 0.895125i \(0.352914\pi\)
\(762\) −16.8143 −0.609119
\(763\) 20.3001 0.734912
\(764\) −3.32848 −0.120420
\(765\) −79.2486 −2.86524
\(766\) 11.8191 0.427041
\(767\) 72.7382 2.62642
\(768\) 3.12057 0.112604
\(769\) −40.3764 −1.45601 −0.728005 0.685572i \(-0.759552\pi\)
−0.728005 + 0.685572i \(0.759552\pi\)
\(770\) −32.8877 −1.18519
\(771\) 58.0624 2.09107
\(772\) −7.71797 −0.277776
\(773\) 35.5118 1.27727 0.638635 0.769510i \(-0.279499\pi\)
0.638635 + 0.769510i \(0.279499\pi\)
\(774\) 61.2810 2.20270
\(775\) −40.5717 −1.45738
\(776\) 0.300716 0.0107951
\(777\) −93.2770 −3.34629
\(778\) 32.8956 1.17937
\(779\) −21.5424 −0.771838
\(780\) −55.4198 −1.98435
\(781\) −21.5241 −0.770193
\(782\) −13.5430 −0.484298
\(783\) 106.839 3.81811
\(784\) 5.69839 0.203514
\(785\) −24.6170 −0.878617
\(786\) 9.75794 0.348054
\(787\) 6.60881 0.235579 0.117789 0.993039i \(-0.462419\pi\)
0.117789 + 0.993039i \(0.462419\pi\)
\(788\) −5.18348 −0.184654
\(789\) −20.8124 −0.740941
\(790\) −10.8362 −0.385536
\(791\) 71.0064 2.52470
\(792\) −19.3809 −0.688671
\(793\) −77.6985 −2.75915
\(794\) −17.9175 −0.635867
\(795\) −39.8470 −1.41323
\(796\) −13.5710 −0.481011
\(797\) 27.4362 0.971841 0.485921 0.874003i \(-0.338484\pi\)
0.485921 + 0.874003i \(0.338484\pi\)
\(798\) −20.3754 −0.721280
\(799\) −33.7124 −1.19266
\(800\) −5.29492 −0.187204
\(801\) −85.6885 −3.02765
\(802\) 6.27747 0.221665
\(803\) 30.4607 1.07493
\(804\) 1.24442 0.0438873
\(805\) 42.2424 1.48885
\(806\) 42.4115 1.49388
\(807\) −15.3726 −0.541142
\(808\) −4.90531 −0.172568
\(809\) 39.7409 1.39722 0.698609 0.715504i \(-0.253803\pi\)
0.698609 + 0.715504i \(0.253803\pi\)
\(810\) 51.9337 1.82476
\(811\) −7.88798 −0.276985 −0.138492 0.990364i \(-0.544226\pi\)
−0.138492 + 0.990364i \(0.544226\pi\)
\(812\) −32.6391 −1.14541
\(813\) 7.44373 0.261063
\(814\) −24.1276 −0.845672
\(815\) 18.5255 0.648921
\(816\) 11.4390 0.400444
\(817\) 16.6647 0.583023
\(818\) −13.9011 −0.486040
\(819\) −132.899 −4.64386
\(820\) −37.7232 −1.31735
\(821\) 5.31774 0.185590 0.0927951 0.995685i \(-0.470420\pi\)
0.0927951 + 0.995685i \(0.470420\pi\)
\(822\) 16.1096 0.561885
\(823\) −12.2961 −0.428616 −0.214308 0.976766i \(-0.568750\pi\)
−0.214308 + 0.976766i \(0.568750\pi\)
\(824\) −8.69745 −0.302990
\(825\) 47.5270 1.65468
\(826\) 46.8291 1.62939
\(827\) 11.7753 0.409467 0.204734 0.978818i \(-0.434367\pi\)
0.204734 + 0.978818i \(0.434367\pi\)
\(828\) 24.8937 0.865116
\(829\) −9.47466 −0.329069 −0.164534 0.986371i \(-0.552612\pi\)
−0.164534 + 0.986371i \(0.552612\pi\)
\(830\) 1.04913 0.0364159
\(831\) 65.8230 2.28338
\(832\) 5.53503 0.191893
\(833\) 20.8884 0.723740
\(834\) 3.36912 0.116663
\(835\) 11.4970 0.397870
\(836\) −5.27042 −0.182281
\(837\) −89.3776 −3.08934
\(838\) −13.9559 −0.482099
\(839\) −45.1458 −1.55861 −0.779303 0.626647i \(-0.784427\pi\)
−0.779303 + 0.626647i \(0.784427\pi\)
\(840\) −35.6795 −1.23106
\(841\) 54.8935 1.89288
\(842\) 21.9631 0.756898
\(843\) 75.5825 2.60320
\(844\) −15.5181 −0.534154
\(845\) −56.5883 −1.94670
\(846\) 61.9673 2.13048
\(847\) 9.71544 0.333826
\(848\) 3.97970 0.136664
\(849\) 18.9690 0.651015
\(850\) −19.4094 −0.665738
\(851\) 30.9906 1.06234
\(852\) −23.3513 −0.800002
\(853\) −17.6085 −0.602904 −0.301452 0.953481i \(-0.597471\pi\)
−0.301452 + 0.953481i \(0.597471\pi\)
\(854\) −50.0226 −1.71174
\(855\) 39.6128 1.35473
\(856\) 3.09984 0.105950
\(857\) −23.9488 −0.818077 −0.409038 0.912517i \(-0.634136\pi\)
−0.409038 + 0.912517i \(0.634136\pi\)
\(858\) −49.6822 −1.69612
\(859\) −23.3114 −0.795375 −0.397687 0.917521i \(-0.630187\pi\)
−0.397687 + 0.917521i \(0.630187\pi\)
\(860\) 29.1817 0.995087
\(861\) −130.739 −4.45557
\(862\) −1.00000 −0.0340601
\(863\) 54.7118 1.86241 0.931205 0.364495i \(-0.118758\pi\)
0.931205 + 0.364495i \(0.118758\pi\)
\(864\) −11.6645 −0.396833
\(865\) −59.4455 −2.02121
\(866\) 27.1869 0.923850
\(867\) −11.1181 −0.377592
\(868\) 27.3047 0.926783
\(869\) −9.71438 −0.329538
\(870\) 91.7084 3.10921
\(871\) 2.20726 0.0747903
\(872\) 5.69670 0.192915
\(873\) −2.02620 −0.0685766
\(874\) 6.76957 0.228984
\(875\) 3.37198 0.113994
\(876\) 33.0465 1.11654
\(877\) 10.6128 0.358370 0.179185 0.983815i \(-0.442654\pi\)
0.179185 + 0.983815i \(0.442654\pi\)
\(878\) −2.72928 −0.0921086
\(879\) −1.54466 −0.0521001
\(880\) −9.22909 −0.311113
\(881\) 50.5021 1.70146 0.850730 0.525603i \(-0.176160\pi\)
0.850730 + 0.525603i \(0.176160\pi\)
\(882\) −38.3953 −1.29284
\(883\) 25.4836 0.857592 0.428796 0.903401i \(-0.358938\pi\)
0.428796 + 0.903401i \(0.358938\pi\)
\(884\) 20.2896 0.682414
\(885\) −131.579 −4.42298
\(886\) −12.7310 −0.427705
\(887\) 5.68533 0.190895 0.0954474 0.995434i \(-0.469572\pi\)
0.0954474 + 0.995434i \(0.469572\pi\)
\(888\) −26.1758 −0.878403
\(889\) −19.2008 −0.643976
\(890\) −40.8044 −1.36777
\(891\) 46.5571 1.55972
\(892\) −7.29073 −0.244112
\(893\) 16.8513 0.563907
\(894\) 4.10819 0.137398
\(895\) −23.7255 −0.793054
\(896\) 3.56348 0.119047
\(897\) 63.8141 2.13069
\(898\) 2.49955 0.0834111
\(899\) −70.1823 −2.34071
\(900\) 35.6768 1.18923
\(901\) 14.5883 0.486006
\(902\) −33.8177 −1.12601
\(903\) 101.136 3.36560
\(904\) 19.9262 0.662734
\(905\) 23.5579 0.783090
\(906\) 6.75713 0.224491
\(907\) 15.4507 0.513032 0.256516 0.966540i \(-0.417425\pi\)
0.256516 + 0.966540i \(0.417425\pi\)
\(908\) 24.9134 0.826780
\(909\) 33.0516 1.09625
\(910\) −63.2858 −2.09790
\(911\) −20.1186 −0.666559 −0.333279 0.942828i \(-0.608155\pi\)
−0.333279 + 0.942828i \(0.608155\pi\)
\(912\) −5.71783 −0.189336
\(913\) 0.940515 0.0311265
\(914\) 35.4681 1.17318
\(915\) 140.552 4.64651
\(916\) −2.62325 −0.0866747
\(917\) 11.1429 0.367972
\(918\) −42.7581 −1.41123
\(919\) 32.0332 1.05668 0.528338 0.849034i \(-0.322815\pi\)
0.528338 + 0.849034i \(0.322815\pi\)
\(920\) 11.8543 0.390823
\(921\) −55.8256 −1.83951
\(922\) −6.53689 −0.215281
\(923\) −41.4188 −1.36332
\(924\) −31.9856 −1.05225
\(925\) 44.4146 1.46034
\(926\) −29.2282 −0.960499
\(927\) 58.6028 1.92477
\(928\) −9.15934 −0.300670
\(929\) 42.4240 1.39189 0.695944 0.718096i \(-0.254986\pi\)
0.695944 + 0.718096i \(0.254986\pi\)
\(930\) −76.7200 −2.51575
\(931\) −10.4412 −0.342196
\(932\) −10.8332 −0.354853
\(933\) −91.4979 −2.99551
\(934\) 7.26969 0.237871
\(935\) −33.8308 −1.10639
\(936\) −37.2947 −1.21902
\(937\) 8.36566 0.273294 0.136647 0.990620i \(-0.456367\pi\)
0.136647 + 0.990620i \(0.456367\pi\)
\(938\) 1.42105 0.0463988
\(939\) −18.4144 −0.600930
\(940\) 29.5085 0.962461
\(941\) −45.6000 −1.48652 −0.743259 0.669004i \(-0.766721\pi\)
−0.743259 + 0.669004i \(0.766721\pi\)
\(942\) −23.9418 −0.780065
\(943\) 43.4370 1.41450
\(944\) 13.1414 0.427716
\(945\) 133.368 4.33845
\(946\) 26.1605 0.850552
\(947\) 52.8756 1.71823 0.859113 0.511785i \(-0.171016\pi\)
0.859113 + 0.511785i \(0.171016\pi\)
\(948\) −10.5390 −0.342292
\(949\) 58.6155 1.90274
\(950\) 9.70190 0.314771
\(951\) −31.9901 −1.03735
\(952\) 13.0625 0.423359
\(953\) 0.851000 0.0275666 0.0137833 0.999905i \(-0.495613\pi\)
0.0137833 + 0.999905i \(0.495613\pi\)
\(954\) −26.8150 −0.868167
\(955\) 10.6796 0.345585
\(956\) −5.86356 −0.189641
\(957\) 82.2139 2.65760
\(958\) −27.9334 −0.902488
\(959\) 18.3960 0.594039
\(960\) −10.0126 −0.323154
\(961\) 27.7120 0.893937
\(962\) −46.4288 −1.49692
\(963\) −20.8865 −0.673059
\(964\) 12.7523 0.410724
\(965\) 24.7636 0.797170
\(966\) 41.0838 1.32185
\(967\) 23.6991 0.762112 0.381056 0.924552i \(-0.375560\pi\)
0.381056 + 0.924552i \(0.375560\pi\)
\(968\) 2.72639 0.0876295
\(969\) −20.9597 −0.673322
\(970\) −0.964868 −0.0309800
\(971\) −48.8946 −1.56910 −0.784551 0.620065i \(-0.787106\pi\)
−0.784551 + 0.620065i \(0.787106\pi\)
\(972\) 15.5159 0.497673
\(973\) 3.84731 0.123339
\(974\) 29.2096 0.935937
\(975\) 91.4561 2.92894
\(976\) −14.0376 −0.449332
\(977\) −37.8227 −1.21006 −0.605028 0.796204i \(-0.706838\pi\)
−0.605028 + 0.796204i \(0.706838\pi\)
\(978\) 18.0174 0.576133
\(979\) −36.5800 −1.16910
\(980\) −18.2837 −0.584050
\(981\) −38.3840 −1.22551
\(982\) −7.36315 −0.234967
\(983\) 43.4739 1.38660 0.693300 0.720649i \(-0.256156\pi\)
0.693300 + 0.720649i \(0.256156\pi\)
\(984\) −36.6885 −1.16959
\(985\) 16.6316 0.529926
\(986\) −33.5751 −1.06925
\(987\) 102.269 3.25525
\(988\) −10.1419 −0.322656
\(989\) −33.6018 −1.06847
\(990\) 62.1850 1.97637
\(991\) −50.7542 −1.61226 −0.806130 0.591738i \(-0.798442\pi\)
−0.806130 + 0.591738i \(0.798442\pi\)
\(992\) 7.66238 0.243281
\(993\) −46.8828 −1.48778
\(994\) −26.6656 −0.845782
\(995\) 43.5434 1.38042
\(996\) 1.02036 0.0323312
\(997\) 13.3258 0.422031 0.211016 0.977483i \(-0.432323\pi\)
0.211016 + 0.977483i \(0.432323\pi\)
\(998\) −3.84359 −0.121667
\(999\) 97.8434 3.09563
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 862.2.a.k.1.10 10
3.2 odd 2 7758.2.a.v.1.9 10
4.3 odd 2 6896.2.a.t.1.1 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
862.2.a.k.1.10 10 1.1 even 1 trivial
6896.2.a.t.1.1 10 4.3 odd 2
7758.2.a.v.1.9 10 3.2 odd 2