Properties

Label 8624.2.a.bc
Level $8624$
Weight $2$
Character orbit 8624.a
Self dual yes
Analytic conductor $68.863$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8624,2,Mod(1,8624)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8624, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8624.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8624 = 2^{4} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8624.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(68.8629867032\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 77)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 2 q^{3} + 2 q^{5} + q^{9} - q^{11} - 4 q^{13} + 4 q^{15} - 4 q^{17} + 4 q^{23} - q^{25} - 4 q^{27} - 6 q^{29} + 10 q^{31} - 2 q^{33} - 6 q^{37} - 8 q^{39} - 4 q^{41} - 12 q^{43} + 2 q^{45} - 10 q^{47}+ \cdots - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 2.00000 0 2.00000 0 0 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( -1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8624.2.a.bc 1
4.b odd 2 1 539.2.a.d 1
7.b odd 2 1 1232.2.a.a 1
12.b even 2 1 4851.2.a.a 1
28.d even 2 1 77.2.a.c 1
28.f even 6 2 539.2.e.a 2
28.g odd 6 2 539.2.e.b 2
44.c even 2 1 5929.2.a.b 1
56.e even 2 1 4928.2.a.g 1
56.h odd 2 1 4928.2.a.bi 1
84.h odd 2 1 693.2.a.a 1
140.c even 2 1 1925.2.a.c 1
140.j odd 4 2 1925.2.b.d 2
308.g odd 2 1 847.2.a.a 1
308.s odd 10 4 847.2.f.k 4
308.t even 10 4 847.2.f.e 4
924.n even 2 1 7623.2.a.n 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
77.2.a.c 1 28.d even 2 1
539.2.a.d 1 4.b odd 2 1
539.2.e.a 2 28.f even 6 2
539.2.e.b 2 28.g odd 6 2
693.2.a.a 1 84.h odd 2 1
847.2.a.a 1 308.g odd 2 1
847.2.f.e 4 308.t even 10 4
847.2.f.k 4 308.s odd 10 4
1232.2.a.a 1 7.b odd 2 1
1925.2.a.c 1 140.c even 2 1
1925.2.b.d 2 140.j odd 4 2
4851.2.a.a 1 12.b even 2 1
4928.2.a.g 1 56.e even 2 1
4928.2.a.bi 1 56.h odd 2 1
5929.2.a.b 1 44.c even 2 1
7623.2.a.n 1 924.n even 2 1
8624.2.a.bc 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8624))\):

\( T_{3} - 2 \) Copy content Toggle raw display
\( T_{5} - 2 \) Copy content Toggle raw display
\( T_{13} + 4 \) Copy content Toggle raw display
\( T_{17} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 2 \) Copy content Toggle raw display
$5$ \( T - 2 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T + 1 \) Copy content Toggle raw display
$13$ \( T + 4 \) Copy content Toggle raw display
$17$ \( T + 4 \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T - 4 \) Copy content Toggle raw display
$29$ \( T + 6 \) Copy content Toggle raw display
$31$ \( T - 10 \) Copy content Toggle raw display
$37$ \( T + 6 \) Copy content Toggle raw display
$41$ \( T + 4 \) Copy content Toggle raw display
$43$ \( T + 12 \) Copy content Toggle raw display
$47$ \( T + 10 \) Copy content Toggle raw display
$53$ \( T + 6 \) Copy content Toggle raw display
$59$ \( T - 2 \) Copy content Toggle raw display
$61$ \( T \) Copy content Toggle raw display
$67$ \( T + 8 \) Copy content Toggle raw display
$71$ \( T - 12 \) Copy content Toggle raw display
$73$ \( T - 8 \) Copy content Toggle raw display
$79$ \( T + 8 \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T - 6 \) Copy content Toggle raw display
$97$ \( T - 10 \) Copy content Toggle raw display
show more
show less