Properties

Label 8624.2.a.cu.1.4
Level $8624$
Weight $2$
Character 8624.1
Self dual yes
Analytic conductor $68.863$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8624,2,Mod(1,8624)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8624, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8624.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8624 = 2^{4} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8624.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(68.8629867032\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.9248.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 539)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(0.662153\) of defining polynomial
Character \(\chi\) \(=\) 8624.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.35829 q^{3} +3.68260 q^{5} +2.56155 q^{9} +1.00000 q^{11} -3.39228 q^{13} +8.68466 q^{15} +1.32431 q^{17} -4.71659 q^{19} +5.56155 q^{23} +8.56155 q^{25} -1.03399 q^{27} +2.00000 q^{29} +5.00691 q^{31} +2.35829 q^{33} +4.43845 q^{37} -8.00000 q^{39} +1.32431 q^{41} +10.2462 q^{43} +9.43318 q^{45} -1.32431 q^{47} +3.12311 q^{51} -2.00000 q^{53} +3.68260 q^{55} -11.1231 q^{57} +11.7915 q^{59} -13.4061 q^{61} -12.4924 q^{65} +4.68466 q^{67} +13.1158 q^{69} -3.80776 q^{71} +3.97292 q^{73} +20.1907 q^{75} -4.87689 q^{79} -10.1231 q^{81} +2.64861 q^{83} +4.87689 q^{85} +4.71659 q^{87} +15.1838 q^{89} +11.8078 q^{93} -17.3693 q^{95} -17.8324 q^{97} +2.56155 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{9} + 4 q^{11} + 10 q^{15} + 14 q^{23} + 26 q^{25} + 8 q^{29} + 26 q^{37} - 32 q^{39} + 8 q^{43} - 4 q^{51} - 8 q^{53} - 28 q^{57} + 16 q^{65} - 6 q^{67} + 26 q^{71} - 36 q^{79} - 24 q^{81} + 36 q^{85}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.35829 1.36156 0.680781 0.732487i \(-0.261641\pi\)
0.680781 + 0.732487i \(0.261641\pi\)
\(4\) 0 0
\(5\) 3.68260 1.64691 0.823455 0.567382i \(-0.192044\pi\)
0.823455 + 0.567382i \(0.192044\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 2.56155 0.853851
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) −3.39228 −0.940850 −0.470425 0.882440i \(-0.655899\pi\)
−0.470425 + 0.882440i \(0.655899\pi\)
\(14\) 0 0
\(15\) 8.68466 2.24237
\(16\) 0 0
\(17\) 1.32431 0.321192 0.160596 0.987020i \(-0.448658\pi\)
0.160596 + 0.987020i \(0.448658\pi\)
\(18\) 0 0
\(19\) −4.71659 −1.08206 −0.541030 0.841003i \(-0.681965\pi\)
−0.541030 + 0.841003i \(0.681965\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 5.56155 1.15966 0.579832 0.814736i \(-0.303118\pi\)
0.579832 + 0.814736i \(0.303118\pi\)
\(24\) 0 0
\(25\) 8.56155 1.71231
\(26\) 0 0
\(27\) −1.03399 −0.198991
\(28\) 0 0
\(29\) 2.00000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) 0 0
\(31\) 5.00691 0.899267 0.449634 0.893213i \(-0.351555\pi\)
0.449634 + 0.893213i \(0.351555\pi\)
\(32\) 0 0
\(33\) 2.35829 0.410526
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 4.43845 0.729676 0.364838 0.931071i \(-0.381124\pi\)
0.364838 + 0.931071i \(0.381124\pi\)
\(38\) 0 0
\(39\) −8.00000 −1.28103
\(40\) 0 0
\(41\) 1.32431 0.206822 0.103411 0.994639i \(-0.467024\pi\)
0.103411 + 0.994639i \(0.467024\pi\)
\(42\) 0 0
\(43\) 10.2462 1.56253 0.781266 0.624198i \(-0.214574\pi\)
0.781266 + 0.624198i \(0.214574\pi\)
\(44\) 0 0
\(45\) 9.43318 1.40622
\(46\) 0 0
\(47\) −1.32431 −0.193170 −0.0965850 0.995325i \(-0.530792\pi\)
−0.0965850 + 0.995325i \(0.530792\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 3.12311 0.437322
\(52\) 0 0
\(53\) −2.00000 −0.274721 −0.137361 0.990521i \(-0.543862\pi\)
−0.137361 + 0.990521i \(0.543862\pi\)
\(54\) 0 0
\(55\) 3.68260 0.496562
\(56\) 0 0
\(57\) −11.1231 −1.47329
\(58\) 0 0
\(59\) 11.7915 1.53512 0.767559 0.640978i \(-0.221471\pi\)
0.767559 + 0.640978i \(0.221471\pi\)
\(60\) 0 0
\(61\) −13.4061 −1.71648 −0.858238 0.513253i \(-0.828440\pi\)
−0.858238 + 0.513253i \(0.828440\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −12.4924 −1.54949
\(66\) 0 0
\(67\) 4.68466 0.572322 0.286161 0.958182i \(-0.407621\pi\)
0.286161 + 0.958182i \(0.407621\pi\)
\(68\) 0 0
\(69\) 13.1158 1.57895
\(70\) 0 0
\(71\) −3.80776 −0.451898 −0.225949 0.974139i \(-0.572548\pi\)
−0.225949 + 0.974139i \(0.572548\pi\)
\(72\) 0 0
\(73\) 3.97292 0.464995 0.232498 0.972597i \(-0.425310\pi\)
0.232498 + 0.972597i \(0.425310\pi\)
\(74\) 0 0
\(75\) 20.1907 2.33142
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −4.87689 −0.548693 −0.274347 0.961631i \(-0.588462\pi\)
−0.274347 + 0.961631i \(0.588462\pi\)
\(80\) 0 0
\(81\) −10.1231 −1.12479
\(82\) 0 0
\(83\) 2.64861 0.290723 0.145362 0.989379i \(-0.453565\pi\)
0.145362 + 0.989379i \(0.453565\pi\)
\(84\) 0 0
\(85\) 4.87689 0.528973
\(86\) 0 0
\(87\) 4.71659 0.505671
\(88\) 0 0
\(89\) 15.1838 1.60947 0.804737 0.593631i \(-0.202306\pi\)
0.804737 + 0.593631i \(0.202306\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 11.8078 1.22441
\(94\) 0 0
\(95\) −17.3693 −1.78205
\(96\) 0 0
\(97\) −17.8324 −1.81060 −0.905301 0.424770i \(-0.860355\pi\)
−0.905301 + 0.424770i \(0.860355\pi\)
\(98\) 0 0
\(99\) 2.56155 0.257446
\(100\) 0 0
\(101\) 0.743668 0.0739978 0.0369989 0.999315i \(-0.488220\pi\)
0.0369989 + 0.999315i \(0.488220\pi\)
\(102\) 0 0
\(103\) 8.10887 0.798991 0.399495 0.916735i \(-0.369185\pi\)
0.399495 + 0.916735i \(0.369185\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −7.12311 −0.688617 −0.344308 0.938857i \(-0.611887\pi\)
−0.344308 + 0.938857i \(0.611887\pi\)
\(108\) 0 0
\(109\) 19.3693 1.85524 0.927622 0.373520i \(-0.121849\pi\)
0.927622 + 0.373520i \(0.121849\pi\)
\(110\) 0 0
\(111\) 10.4672 0.993499
\(112\) 0 0
\(113\) 5.80776 0.546348 0.273174 0.961965i \(-0.411926\pi\)
0.273174 + 0.961965i \(0.411926\pi\)
\(114\) 0 0
\(115\) 20.4810 1.90986
\(116\) 0 0
\(117\) −8.68951 −0.803345
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 3.12311 0.281601
\(124\) 0 0
\(125\) 13.1158 1.17311
\(126\) 0 0
\(127\) 4.87689 0.432754 0.216377 0.976310i \(-0.430576\pi\)
0.216377 + 0.976310i \(0.430576\pi\)
\(128\) 0 0
\(129\) 24.1636 2.12748
\(130\) 0 0
\(131\) −7.36520 −0.643501 −0.321750 0.946825i \(-0.604271\pi\)
−0.321750 + 0.946825i \(0.604271\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −3.80776 −0.327720
\(136\) 0 0
\(137\) −4.43845 −0.379202 −0.189601 0.981861i \(-0.560719\pi\)
−0.189601 + 0.981861i \(0.560719\pi\)
\(138\) 0 0
\(139\) −4.71659 −0.400056 −0.200028 0.979790i \(-0.564103\pi\)
−0.200028 + 0.979790i \(0.564103\pi\)
\(140\) 0 0
\(141\) −3.12311 −0.263013
\(142\) 0 0
\(143\) −3.39228 −0.283677
\(144\) 0 0
\(145\) 7.36520 0.611647
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 0 0
\(151\) −17.3693 −1.41349 −0.706747 0.707466i \(-0.749838\pi\)
−0.706747 + 0.707466i \(0.749838\pi\)
\(152\) 0 0
\(153\) 3.39228 0.274250
\(154\) 0 0
\(155\) 18.4384 1.48101
\(156\) 0 0
\(157\) 5.75058 0.458946 0.229473 0.973315i \(-0.426300\pi\)
0.229473 + 0.973315i \(0.426300\pi\)
\(158\) 0 0
\(159\) −4.71659 −0.374050
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −8.49242 −0.665178 −0.332589 0.943072i \(-0.607922\pi\)
−0.332589 + 0.943072i \(0.607922\pi\)
\(164\) 0 0
\(165\) 8.68466 0.676100
\(166\) 0 0
\(167\) 12.6624 0.979848 0.489924 0.871765i \(-0.337024\pi\)
0.489924 + 0.871765i \(0.337024\pi\)
\(168\) 0 0
\(169\) −1.49242 −0.114802
\(170\) 0 0
\(171\) −12.0818 −0.923918
\(172\) 0 0
\(173\) 15.4741 1.17647 0.588236 0.808689i \(-0.299823\pi\)
0.588236 + 0.808689i \(0.299823\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 27.8078 2.09016
\(178\) 0 0
\(179\) 15.8078 1.18153 0.590764 0.806844i \(-0.298826\pi\)
0.590764 + 0.806844i \(0.298826\pi\)
\(180\) 0 0
\(181\) 10.4672 0.778018 0.389009 0.921234i \(-0.372817\pi\)
0.389009 + 0.921234i \(0.372817\pi\)
\(182\) 0 0
\(183\) −31.6155 −2.33709
\(184\) 0 0
\(185\) 16.3450 1.20171
\(186\) 0 0
\(187\) 1.32431 0.0968429
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 11.8078 0.854380 0.427190 0.904162i \(-0.359504\pi\)
0.427190 + 0.904162i \(0.359504\pi\)
\(192\) 0 0
\(193\) −26.4924 −1.90697 −0.953483 0.301446i \(-0.902531\pi\)
−0.953483 + 0.301446i \(0.902531\pi\)
\(194\) 0 0
\(195\) −29.4608 −2.10973
\(196\) 0 0
\(197\) 12.2462 0.872506 0.436253 0.899824i \(-0.356305\pi\)
0.436253 + 0.899824i \(0.356305\pi\)
\(198\) 0 0
\(199\) −20.1907 −1.43128 −0.715639 0.698470i \(-0.753864\pi\)
−0.715639 + 0.698470i \(0.753864\pi\)
\(200\) 0 0
\(201\) 11.0478 0.779252
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 4.87689 0.340617
\(206\) 0 0
\(207\) 14.2462 0.990180
\(208\) 0 0
\(209\) −4.71659 −0.326253
\(210\) 0 0
\(211\) −21.3693 −1.47112 −0.735562 0.677457i \(-0.763082\pi\)
−0.735562 + 0.677457i \(0.763082\pi\)
\(212\) 0 0
\(213\) −8.97983 −0.615288
\(214\) 0 0
\(215\) 37.7327 2.57335
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 9.36932 0.633120
\(220\) 0 0
\(221\) −4.49242 −0.302193
\(222\) 0 0
\(223\) −19.7373 −1.32171 −0.660854 0.750514i \(-0.729806\pi\)
−0.660854 + 0.750514i \(0.729806\pi\)
\(224\) 0 0
\(225\) 21.9309 1.46206
\(226\) 0 0
\(227\) −18.8664 −1.25220 −0.626102 0.779741i \(-0.715351\pi\)
−0.626102 + 0.779741i \(0.715351\pi\)
\(228\) 0 0
\(229\) 8.39919 0.555034 0.277517 0.960721i \(-0.410488\pi\)
0.277517 + 0.960721i \(0.410488\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 12.2462 0.802276 0.401138 0.916018i \(-0.368615\pi\)
0.401138 + 0.916018i \(0.368615\pi\)
\(234\) 0 0
\(235\) −4.87689 −0.318134
\(236\) 0 0
\(237\) −11.5012 −0.747080
\(238\) 0 0
\(239\) 6.24621 0.404034 0.202017 0.979382i \(-0.435250\pi\)
0.202017 + 0.979382i \(0.435250\pi\)
\(240\) 0 0
\(241\) −11.3381 −0.730353 −0.365176 0.930938i \(-0.618991\pi\)
−0.365176 + 0.930938i \(0.618991\pi\)
\(242\) 0 0
\(243\) −20.7713 −1.33248
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 16.0000 1.01806
\(248\) 0 0
\(249\) 6.24621 0.395838
\(250\) 0 0
\(251\) −15.9274 −1.00533 −0.502665 0.864481i \(-0.667647\pi\)
−0.502665 + 0.864481i \(0.667647\pi\)
\(252\) 0 0
\(253\) 5.56155 0.349652
\(254\) 0 0
\(255\) 11.5012 0.720230
\(256\) 0 0
\(257\) 24.1636 1.50728 0.753641 0.657286i \(-0.228296\pi\)
0.753641 + 0.657286i \(0.228296\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 5.12311 0.317112
\(262\) 0 0
\(263\) 1.36932 0.0844357 0.0422178 0.999108i \(-0.486558\pi\)
0.0422178 + 0.999108i \(0.486558\pi\)
\(264\) 0 0
\(265\) −7.36520 −0.452441
\(266\) 0 0
\(267\) 35.8078 2.19140
\(268\) 0 0
\(269\) −26.8122 −1.63477 −0.817384 0.576093i \(-0.804577\pi\)
−0.817384 + 0.576093i \(0.804577\pi\)
\(270\) 0 0
\(271\) −6.78456 −0.412133 −0.206066 0.978538i \(-0.566066\pi\)
−0.206066 + 0.978538i \(0.566066\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 8.56155 0.516281
\(276\) 0 0
\(277\) −17.6155 −1.05841 −0.529207 0.848493i \(-0.677511\pi\)
−0.529207 + 0.848493i \(0.677511\pi\)
\(278\) 0 0
\(279\) 12.8255 0.767840
\(280\) 0 0
\(281\) 29.6155 1.76671 0.883357 0.468700i \(-0.155278\pi\)
0.883357 + 0.468700i \(0.155278\pi\)
\(282\) 0 0
\(283\) 18.8664 1.12149 0.560744 0.827989i \(-0.310515\pi\)
0.560744 + 0.827989i \(0.310515\pi\)
\(284\) 0 0
\(285\) −40.9620 −2.42638
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −15.2462 −0.896836
\(290\) 0 0
\(291\) −42.0540 −2.46525
\(292\) 0 0
\(293\) −17.5420 −1.02482 −0.512409 0.858742i \(-0.671247\pi\)
−0.512409 + 0.858742i \(0.671247\pi\)
\(294\) 0 0
\(295\) 43.4233 2.52820
\(296\) 0 0
\(297\) −1.03399 −0.0599980
\(298\) 0 0
\(299\) −18.8664 −1.09107
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 1.75379 0.100753
\(304\) 0 0
\(305\) −49.3693 −2.82688
\(306\) 0 0
\(307\) −9.43318 −0.538380 −0.269190 0.963087i \(-0.586756\pi\)
−0.269190 + 0.963087i \(0.586756\pi\)
\(308\) 0 0
\(309\) 19.1231 1.08788
\(310\) 0 0
\(311\) 12.2448 0.694340 0.347170 0.937802i \(-0.387143\pi\)
0.347170 + 0.937802i \(0.387143\pi\)
\(312\) 0 0
\(313\) −0.453349 −0.0256248 −0.0128124 0.999918i \(-0.504078\pi\)
−0.0128124 + 0.999918i \(0.504078\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.80776 0.101534 0.0507671 0.998711i \(-0.483833\pi\)
0.0507671 + 0.998711i \(0.483833\pi\)
\(318\) 0 0
\(319\) 2.00000 0.111979
\(320\) 0 0
\(321\) −16.7984 −0.937594
\(322\) 0 0
\(323\) −6.24621 −0.347548
\(324\) 0 0
\(325\) −29.0432 −1.61103
\(326\) 0 0
\(327\) 45.6786 2.52603
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −7.80776 −0.429154 −0.214577 0.976707i \(-0.568837\pi\)
−0.214577 + 0.976707i \(0.568837\pi\)
\(332\) 0 0
\(333\) 11.3693 0.623035
\(334\) 0 0
\(335\) 17.2517 0.942563
\(336\) 0 0
\(337\) 14.0000 0.762629 0.381314 0.924445i \(-0.375472\pi\)
0.381314 + 0.924445i \(0.375472\pi\)
\(338\) 0 0
\(339\) 13.6964 0.743887
\(340\) 0 0
\(341\) 5.00691 0.271139
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 48.3002 2.60039
\(346\) 0 0
\(347\) −7.12311 −0.382388 −0.191194 0.981552i \(-0.561236\pi\)
−0.191194 + 0.981552i \(0.561236\pi\)
\(348\) 0 0
\(349\) 14.8934 0.797227 0.398614 0.917119i \(-0.369491\pi\)
0.398614 + 0.917119i \(0.369491\pi\)
\(350\) 0 0
\(351\) 3.50758 0.187221
\(352\) 0 0
\(353\) −11.0478 −0.588015 −0.294008 0.955803i \(-0.594989\pi\)
−0.294008 + 0.955803i \(0.594989\pi\)
\(354\) 0 0
\(355\) −14.0225 −0.744236
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 6.24621 0.329662 0.164831 0.986322i \(-0.447292\pi\)
0.164831 + 0.986322i \(0.447292\pi\)
\(360\) 0 0
\(361\) 3.24621 0.170853
\(362\) 0 0
\(363\) 2.35829 0.123778
\(364\) 0 0
\(365\) 14.6307 0.765805
\(366\) 0 0
\(367\) −23.8733 −1.24617 −0.623087 0.782152i \(-0.714122\pi\)
−0.623087 + 0.782152i \(0.714122\pi\)
\(368\) 0 0
\(369\) 3.39228 0.176595
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 7.36932 0.381569 0.190784 0.981632i \(-0.438897\pi\)
0.190784 + 0.981632i \(0.438897\pi\)
\(374\) 0 0
\(375\) 30.9309 1.59726
\(376\) 0 0
\(377\) −6.78456 −0.349423
\(378\) 0 0
\(379\) −28.6847 −1.47343 −0.736716 0.676202i \(-0.763625\pi\)
−0.736716 + 0.676202i \(0.763625\pi\)
\(380\) 0 0
\(381\) 11.5012 0.589222
\(382\) 0 0
\(383\) 10.3041 0.526517 0.263258 0.964725i \(-0.415203\pi\)
0.263258 + 0.964725i \(0.415203\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 26.2462 1.33417
\(388\) 0 0
\(389\) −32.0540 −1.62520 −0.812601 0.582821i \(-0.801949\pi\)
−0.812601 + 0.582821i \(0.801949\pi\)
\(390\) 0 0
\(391\) 7.36520 0.372474
\(392\) 0 0
\(393\) −17.3693 −0.876166
\(394\) 0 0
\(395\) −17.9597 −0.903648
\(396\) 0 0
\(397\) −20.0276 −1.00516 −0.502579 0.864531i \(-0.667615\pi\)
−0.502579 + 0.864531i \(0.667615\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −14.4924 −0.723717 −0.361859 0.932233i \(-0.617858\pi\)
−0.361859 + 0.932233i \(0.617858\pi\)
\(402\) 0 0
\(403\) −16.9848 −0.846075
\(404\) 0 0
\(405\) −37.2794 −1.85243
\(406\) 0 0
\(407\) 4.43845 0.220006
\(408\) 0 0
\(409\) −25.4879 −1.26030 −0.630148 0.776475i \(-0.717006\pi\)
−0.630148 + 0.776475i \(0.717006\pi\)
\(410\) 0 0
\(411\) −10.4672 −0.516307
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 9.75379 0.478795
\(416\) 0 0
\(417\) −11.1231 −0.544701
\(418\) 0 0
\(419\) −10.7575 −0.525538 −0.262769 0.964859i \(-0.584636\pi\)
−0.262769 + 0.964859i \(0.584636\pi\)
\(420\) 0 0
\(421\) 20.2462 0.986740 0.493370 0.869820i \(-0.335765\pi\)
0.493370 + 0.869820i \(0.335765\pi\)
\(422\) 0 0
\(423\) −3.39228 −0.164938
\(424\) 0 0
\(425\) 11.3381 0.549980
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −8.00000 −0.386244
\(430\) 0 0
\(431\) 20.4924 0.987085 0.493543 0.869722i \(-0.335702\pi\)
0.493543 + 0.869722i \(0.335702\pi\)
\(432\) 0 0
\(433\) 5.16994 0.248451 0.124226 0.992254i \(-0.460355\pi\)
0.124226 + 0.992254i \(0.460355\pi\)
\(434\) 0 0
\(435\) 17.3693 0.832795
\(436\) 0 0
\(437\) −26.2316 −1.25483
\(438\) 0 0
\(439\) −34.1774 −1.63120 −0.815599 0.578617i \(-0.803592\pi\)
−0.815599 + 0.578617i \(0.803592\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 11.3153 0.537608 0.268804 0.963195i \(-0.413372\pi\)
0.268804 + 0.963195i \(0.413372\pi\)
\(444\) 0 0
\(445\) 55.9157 2.65066
\(446\) 0 0
\(447\) 14.1498 0.669261
\(448\) 0 0
\(449\) −27.1771 −1.28257 −0.641283 0.767305i \(-0.721597\pi\)
−0.641283 + 0.767305i \(0.721597\pi\)
\(450\) 0 0
\(451\) 1.32431 0.0623592
\(452\) 0 0
\(453\) −40.9620 −1.92456
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −19.8617 −0.929093 −0.464546 0.885549i \(-0.653783\pi\)
−0.464546 + 0.885549i \(0.653783\pi\)
\(458\) 0 0
\(459\) −1.36932 −0.0639142
\(460\) 0 0
\(461\) 6.62153 0.308396 0.154198 0.988040i \(-0.450721\pi\)
0.154198 + 0.988040i \(0.450721\pi\)
\(462\) 0 0
\(463\) 6.93087 0.322105 0.161052 0.986946i \(-0.448511\pi\)
0.161052 + 0.986946i \(0.448511\pi\)
\(464\) 0 0
\(465\) 43.4833 2.01649
\(466\) 0 0
\(467\) 16.5081 0.763902 0.381951 0.924183i \(-0.375252\pi\)
0.381951 + 0.924183i \(0.375252\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 13.5616 0.624883
\(472\) 0 0
\(473\) 10.2462 0.471121
\(474\) 0 0
\(475\) −40.3813 −1.85282
\(476\) 0 0
\(477\) −5.12311 −0.234571
\(478\) 0 0
\(479\) −40.3813 −1.84507 −0.922535 0.385914i \(-0.873886\pi\)
−0.922535 + 0.385914i \(0.873886\pi\)
\(480\) 0 0
\(481\) −15.0565 −0.686516
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −65.6695 −2.98190
\(486\) 0 0
\(487\) −10.4384 −0.473011 −0.236506 0.971630i \(-0.576002\pi\)
−0.236506 + 0.971630i \(0.576002\pi\)
\(488\) 0 0
\(489\) −20.0276 −0.905681
\(490\) 0 0
\(491\) −5.36932 −0.242314 −0.121157 0.992633i \(-0.538660\pi\)
−0.121157 + 0.992633i \(0.538660\pi\)
\(492\) 0 0
\(493\) 2.64861 0.119288
\(494\) 0 0
\(495\) 9.43318 0.423990
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 12.0000 0.537194 0.268597 0.963253i \(-0.413440\pi\)
0.268597 + 0.963253i \(0.413440\pi\)
\(500\) 0 0
\(501\) 29.8617 1.33412
\(502\) 0 0
\(503\) 26.8122 1.19550 0.597748 0.801684i \(-0.296062\pi\)
0.597748 + 0.801684i \(0.296062\pi\)
\(504\) 0 0
\(505\) 2.73863 0.121868
\(506\) 0 0
\(507\) −3.51957 −0.156310
\(508\) 0 0
\(509\) 6.33122 0.280626 0.140313 0.990107i \(-0.455189\pi\)
0.140313 + 0.990107i \(0.455189\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 4.87689 0.215320
\(514\) 0 0
\(515\) 29.8617 1.31587
\(516\) 0 0
\(517\) −1.32431 −0.0582430
\(518\) 0 0
\(519\) 36.4924 1.60184
\(520\) 0 0
\(521\) −1.03399 −0.0452998 −0.0226499 0.999743i \(-0.507210\pi\)
−0.0226499 + 0.999743i \(0.507210\pi\)
\(522\) 0 0
\(523\) −14.7304 −0.644116 −0.322058 0.946720i \(-0.604375\pi\)
−0.322058 + 0.946720i \(0.604375\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6.63068 0.288837
\(528\) 0 0
\(529\) 7.93087 0.344820
\(530\) 0 0
\(531\) 30.2045 1.31076
\(532\) 0 0
\(533\) −4.49242 −0.194588
\(534\) 0 0
\(535\) −26.2316 −1.13409
\(536\) 0 0
\(537\) 37.2794 1.60872
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 41.1231 1.76802 0.884010 0.467468i \(-0.154834\pi\)
0.884010 + 0.467468i \(0.154834\pi\)
\(542\) 0 0
\(543\) 24.6847 1.05932
\(544\) 0 0
\(545\) 71.3295 3.05542
\(546\) 0 0
\(547\) −18.2462 −0.780152 −0.390076 0.920783i \(-0.627551\pi\)
−0.390076 + 0.920783i \(0.627551\pi\)
\(548\) 0 0
\(549\) −34.3404 −1.46561
\(550\) 0 0
\(551\) −9.43318 −0.401867
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 38.5464 1.63620
\(556\) 0 0
\(557\) −8.24621 −0.349403 −0.174702 0.984621i \(-0.555896\pi\)
−0.174702 + 0.984621i \(0.555896\pi\)
\(558\) 0 0
\(559\) −34.7580 −1.47011
\(560\) 0 0
\(561\) 3.12311 0.131858
\(562\) 0 0
\(563\) −16.2177 −0.683496 −0.341748 0.939792i \(-0.611019\pi\)
−0.341748 + 0.939792i \(0.611019\pi\)
\(564\) 0 0
\(565\) 21.3877 0.899786
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 15.7538 0.660433 0.330217 0.943905i \(-0.392878\pi\)
0.330217 + 0.943905i \(0.392878\pi\)
\(570\) 0 0
\(571\) −26.2462 −1.09837 −0.549185 0.835701i \(-0.685062\pi\)
−0.549185 + 0.835701i \(0.685062\pi\)
\(572\) 0 0
\(573\) 27.8462 1.16329
\(574\) 0 0
\(575\) 47.6155 1.98570
\(576\) 0 0
\(577\) 21.0616 0.876807 0.438403 0.898778i \(-0.355544\pi\)
0.438403 + 0.898778i \(0.355544\pi\)
\(578\) 0 0
\(579\) −62.4769 −2.59645
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −2.00000 −0.0828315
\(584\) 0 0
\(585\) −32.0000 −1.32304
\(586\) 0 0
\(587\) 39.0570 1.61206 0.806028 0.591878i \(-0.201613\pi\)
0.806028 + 0.591878i \(0.201613\pi\)
\(588\) 0 0
\(589\) −23.6155 −0.973061
\(590\) 0 0
\(591\) 28.8802 1.18797
\(592\) 0 0
\(593\) −34.9211 −1.43404 −0.717018 0.697054i \(-0.754494\pi\)
−0.717018 + 0.697054i \(0.754494\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −47.6155 −1.94877
\(598\) 0 0
\(599\) 32.0000 1.30748 0.653742 0.756717i \(-0.273198\pi\)
0.653742 + 0.756717i \(0.273198\pi\)
\(600\) 0 0
\(601\) −24.9073 −1.01599 −0.507994 0.861361i \(-0.669613\pi\)
−0.507994 + 0.861361i \(0.669613\pi\)
\(602\) 0 0
\(603\) 12.0000 0.488678
\(604\) 0 0
\(605\) 3.68260 0.149719
\(606\) 0 0
\(607\) −8.52648 −0.346079 −0.173040 0.984915i \(-0.555359\pi\)
−0.173040 + 0.984915i \(0.555359\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 4.49242 0.181744
\(612\) 0 0
\(613\) 8.63068 0.348590 0.174295 0.984693i \(-0.444235\pi\)
0.174295 + 0.984693i \(0.444235\pi\)
\(614\) 0 0
\(615\) 11.5012 0.463771
\(616\) 0 0
\(617\) −36.7386 −1.47904 −0.739521 0.673134i \(-0.764948\pi\)
−0.739521 + 0.673134i \(0.764948\pi\)
\(618\) 0 0
\(619\) −40.0910 −1.61139 −0.805697 0.592328i \(-0.798209\pi\)
−0.805697 + 0.592328i \(0.798209\pi\)
\(620\) 0 0
\(621\) −5.75058 −0.230763
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 5.49242 0.219697
\(626\) 0 0
\(627\) −11.1231 −0.444214
\(628\) 0 0
\(629\) 5.87787 0.234366
\(630\) 0 0
\(631\) −19.8078 −0.788535 −0.394267 0.918996i \(-0.629002\pi\)
−0.394267 + 0.918996i \(0.629002\pi\)
\(632\) 0 0
\(633\) −50.3951 −2.00303
\(634\) 0 0
\(635\) 17.9597 0.712707
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −9.75379 −0.385854
\(640\) 0 0
\(641\) 20.9309 0.826720 0.413360 0.910568i \(-0.364355\pi\)
0.413360 + 0.910568i \(0.364355\pi\)
\(642\) 0 0
\(643\) −31.8191 −1.25482 −0.627412 0.778688i \(-0.715886\pi\)
−0.627412 + 0.778688i \(0.715886\pi\)
\(644\) 0 0
\(645\) 88.9848 3.50377
\(646\) 0 0
\(647\) 15.6014 0.613353 0.306676 0.951814i \(-0.400783\pi\)
0.306676 + 0.951814i \(0.400783\pi\)
\(648\) 0 0
\(649\) 11.7915 0.462856
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −22.6847 −0.887719 −0.443860 0.896096i \(-0.646391\pi\)
−0.443860 + 0.896096i \(0.646391\pi\)
\(654\) 0 0
\(655\) −27.1231 −1.05979
\(656\) 0 0
\(657\) 10.1768 0.397037
\(658\) 0 0
\(659\) −5.36932 −0.209159 −0.104579 0.994517i \(-0.533350\pi\)
−0.104579 + 0.994517i \(0.533350\pi\)
\(660\) 0 0
\(661\) −22.5490 −0.877053 −0.438526 0.898718i \(-0.644499\pi\)
−0.438526 + 0.898718i \(0.644499\pi\)
\(662\) 0 0
\(663\) −10.5945 −0.411455
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 11.1231 0.430688
\(668\) 0 0
\(669\) −46.5464 −1.79959
\(670\) 0 0
\(671\) −13.4061 −0.517537
\(672\) 0 0
\(673\) −25.6155 −0.987406 −0.493703 0.869631i \(-0.664357\pi\)
−0.493703 + 0.869631i \(0.664357\pi\)
\(674\) 0 0
\(675\) −8.85254 −0.340734
\(676\) 0 0
\(677\) −6.62153 −0.254486 −0.127243 0.991872i \(-0.540613\pi\)
−0.127243 + 0.991872i \(0.540613\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −44.4924 −1.70495
\(682\) 0 0
\(683\) 4.00000 0.153056 0.0765279 0.997067i \(-0.475617\pi\)
0.0765279 + 0.997067i \(0.475617\pi\)
\(684\) 0 0
\(685\) −16.3450 −0.624512
\(686\) 0 0
\(687\) 19.8078 0.755713
\(688\) 0 0
\(689\) 6.78456 0.258471
\(690\) 0 0
\(691\) −11.2108 −0.426480 −0.213240 0.977000i \(-0.568402\pi\)
−0.213240 + 0.977000i \(0.568402\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −17.3693 −0.658856
\(696\) 0 0
\(697\) 1.75379 0.0664295
\(698\) 0 0
\(699\) 28.8802 1.09235
\(700\) 0 0
\(701\) 35.3693 1.33588 0.667940 0.744215i \(-0.267176\pi\)
0.667940 + 0.744215i \(0.267176\pi\)
\(702\) 0 0
\(703\) −20.9343 −0.789553
\(704\) 0 0
\(705\) −11.5012 −0.433158
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 29.8078 1.11945 0.559727 0.828677i \(-0.310906\pi\)
0.559727 + 0.828677i \(0.310906\pi\)
\(710\) 0 0
\(711\) −12.4924 −0.468502
\(712\) 0 0
\(713\) 27.8462 1.04285
\(714\) 0 0
\(715\) −12.4924 −0.467190
\(716\) 0 0
\(717\) 14.7304 0.550117
\(718\) 0 0
\(719\) 14.4401 0.538524 0.269262 0.963067i \(-0.413220\pi\)
0.269262 + 0.963067i \(0.413220\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −26.7386 −0.994420
\(724\) 0 0
\(725\) 17.1231 0.635936
\(726\) 0 0
\(727\) 43.9009 1.62819 0.814097 0.580729i \(-0.197232\pi\)
0.814097 + 0.580729i \(0.197232\pi\)
\(728\) 0 0
\(729\) −18.6155 −0.689464
\(730\) 0 0
\(731\) 13.5691 0.501872
\(732\) 0 0
\(733\) 3.39228 0.125297 0.0626484 0.998036i \(-0.480045\pi\)
0.0626484 + 0.998036i \(0.480045\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4.68466 0.172562
\(738\) 0 0
\(739\) 5.36932 0.197514 0.0987568 0.995112i \(-0.468513\pi\)
0.0987568 + 0.995112i \(0.468513\pi\)
\(740\) 0 0
\(741\) 37.7327 1.38615
\(742\) 0 0
\(743\) −46.2462 −1.69661 −0.848304 0.529509i \(-0.822376\pi\)
−0.848304 + 0.529509i \(0.822376\pi\)
\(744\) 0 0
\(745\) 22.0956 0.809520
\(746\) 0 0
\(747\) 6.78456 0.248234
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 21.1771 0.772763 0.386381 0.922339i \(-0.373725\pi\)
0.386381 + 0.922339i \(0.373725\pi\)
\(752\) 0 0
\(753\) −37.5616 −1.36882
\(754\) 0 0
\(755\) −63.9643 −2.32790
\(756\) 0 0
\(757\) 10.0000 0.363456 0.181728 0.983349i \(-0.441831\pi\)
0.181728 + 0.983349i \(0.441831\pi\)
\(758\) 0 0
\(759\) 13.1158 0.476073
\(760\) 0 0
\(761\) −51.7194 −1.87483 −0.937414 0.348216i \(-0.886788\pi\)
−0.937414 + 0.348216i \(0.886788\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 12.4924 0.451664
\(766\) 0 0
\(767\) −40.0000 −1.44432
\(768\) 0 0
\(769\) −12.8255 −0.462498 −0.231249 0.972895i \(-0.574281\pi\)
−0.231249 + 0.972895i \(0.574281\pi\)
\(770\) 0 0
\(771\) 56.9848 2.05226
\(772\) 0 0
\(773\) −44.5173 −1.60118 −0.800588 0.599216i \(-0.795479\pi\)
−0.800588 + 0.599216i \(0.795479\pi\)
\(774\) 0 0
\(775\) 42.8669 1.53982
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −6.24621 −0.223794
\(780\) 0 0
\(781\) −3.80776 −0.136253
\(782\) 0 0
\(783\) −2.06798 −0.0739034
\(784\) 0 0
\(785\) 21.1771 0.755842
\(786\) 0 0
\(787\) 24.7442 0.882036 0.441018 0.897498i \(-0.354617\pi\)
0.441018 + 0.897498i \(0.354617\pi\)
\(788\) 0 0
\(789\) 3.22925 0.114964
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 45.4773 1.61495
\(794\) 0 0
\(795\) −17.3693 −0.616026
\(796\) 0 0
\(797\) 17.2517 0.611088 0.305544 0.952178i \(-0.401162\pi\)
0.305544 + 0.952178i \(0.401162\pi\)
\(798\) 0 0
\(799\) −1.75379 −0.0620446
\(800\) 0 0
\(801\) 38.8940 1.37425
\(802\) 0 0
\(803\) 3.97292 0.140201
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −63.2311 −2.22584
\(808\) 0 0
\(809\) −38.0000 −1.33601 −0.668004 0.744157i \(-0.732851\pi\)
−0.668004 + 0.744157i \(0.732851\pi\)
\(810\) 0 0
\(811\) 2.06798 0.0726164 0.0363082 0.999341i \(-0.488440\pi\)
0.0363082 + 0.999341i \(0.488440\pi\)
\(812\) 0 0
\(813\) −16.0000 −0.561144
\(814\) 0 0
\(815\) −31.2742 −1.09549
\(816\) 0 0
\(817\) −48.3272 −1.69075
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −28.7386 −1.00299 −0.501493 0.865162i \(-0.667216\pi\)
−0.501493 + 0.865162i \(0.667216\pi\)
\(822\) 0 0
\(823\) −13.5616 −0.472726 −0.236363 0.971665i \(-0.575955\pi\)
−0.236363 + 0.971665i \(0.575955\pi\)
\(824\) 0 0
\(825\) 20.1907 0.702949
\(826\) 0 0
\(827\) 43.2311 1.50329 0.751646 0.659567i \(-0.229260\pi\)
0.751646 + 0.659567i \(0.229260\pi\)
\(828\) 0 0
\(829\) 23.7102 0.823490 0.411745 0.911299i \(-0.364919\pi\)
0.411745 + 0.911299i \(0.364919\pi\)
\(830\) 0 0
\(831\) −41.5426 −1.44110
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 46.6307 1.61372
\(836\) 0 0
\(837\) −5.17708 −0.178946
\(838\) 0 0
\(839\) 33.3064 1.14987 0.574933 0.818200i \(-0.305028\pi\)
0.574933 + 0.818200i \(0.305028\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) 69.8421 2.40549
\(844\) 0 0
\(845\) −5.49600 −0.189068
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 44.4924 1.52698
\(850\) 0 0
\(851\) 24.6847 0.846179
\(852\) 0 0
\(853\) 42.8669 1.46774 0.733868 0.679293i \(-0.237713\pi\)
0.733868 + 0.679293i \(0.237713\pi\)
\(854\) 0 0
\(855\) −44.4924 −1.52161
\(856\) 0 0
\(857\) −4.55356 −0.155547 −0.0777733 0.996971i \(-0.524781\pi\)
−0.0777733 + 0.996971i \(0.524781\pi\)
\(858\) 0 0
\(859\) 20.6440 0.704365 0.352182 0.935931i \(-0.385440\pi\)
0.352182 + 0.935931i \(0.385440\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 10.7386 0.365547 0.182774 0.983155i \(-0.441492\pi\)
0.182774 + 0.983155i \(0.441492\pi\)
\(864\) 0 0
\(865\) 56.9848 1.93754
\(866\) 0 0
\(867\) −35.9551 −1.22110
\(868\) 0 0
\(869\) −4.87689 −0.165437
\(870\) 0 0
\(871\) −15.8917 −0.538469
\(872\) 0 0
\(873\) −45.6786 −1.54598
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 30.4924 1.02966 0.514828 0.857294i \(-0.327856\pi\)
0.514828 + 0.857294i \(0.327856\pi\)
\(878\) 0 0
\(879\) −41.3693 −1.39535
\(880\) 0 0
\(881\) 32.5628 1.09707 0.548534 0.836128i \(-0.315186\pi\)
0.548534 + 0.836128i \(0.315186\pi\)
\(882\) 0 0
\(883\) 15.5076 0.521872 0.260936 0.965356i \(-0.415969\pi\)
0.260936 + 0.965356i \(0.415969\pi\)
\(884\) 0 0
\(885\) 102.405 3.44230
\(886\) 0 0
\(887\) 30.0414 1.00869 0.504347 0.863501i \(-0.331733\pi\)
0.504347 + 0.863501i \(0.331733\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −10.1231 −0.339137
\(892\) 0 0
\(893\) 6.24621 0.209021
\(894\) 0 0
\(895\) 58.2137 1.94587
\(896\) 0 0
\(897\) −44.4924 −1.48556
\(898\) 0 0
\(899\) 10.0138 0.333979
\(900\) 0 0
\(901\) −2.64861 −0.0882381
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 38.5464 1.28133
\(906\) 0 0
\(907\) −5.75379 −0.191051 −0.0955257 0.995427i \(-0.530453\pi\)
−0.0955257 + 0.995427i \(0.530453\pi\)
\(908\) 0 0
\(909\) 1.90495 0.0631831
\(910\) 0 0
\(911\) 3.50758 0.116211 0.0581056 0.998310i \(-0.481494\pi\)
0.0581056 + 0.998310i \(0.481494\pi\)
\(912\) 0 0
\(913\) 2.64861 0.0876563
\(914\) 0 0
\(915\) −116.427 −3.84897
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 54.2462 1.78942 0.894709 0.446650i \(-0.147383\pi\)
0.894709 + 0.446650i \(0.147383\pi\)
\(920\) 0 0
\(921\) −22.2462 −0.733038
\(922\) 0 0
\(923\) 12.9170 0.425169
\(924\) 0 0
\(925\) 38.0000 1.24943
\(926\) 0 0
\(927\) 20.7713 0.682219
\(928\) 0 0
\(929\) 5.62329 0.184494 0.0922470 0.995736i \(-0.470595\pi\)
0.0922470 + 0.995736i \(0.470595\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 28.8769 0.945387
\(934\) 0 0
\(935\) 4.87689 0.159492
\(936\) 0 0
\(937\) −31.6918 −1.03533 −0.517663 0.855584i \(-0.673198\pi\)
−0.517663 + 0.855584i \(0.673198\pi\)
\(938\) 0 0
\(939\) −1.06913 −0.0348897
\(940\) 0 0
\(941\) −14.5674 −0.474883 −0.237441 0.971402i \(-0.576309\pi\)
−0.237441 + 0.971402i \(0.576309\pi\)
\(942\) 0 0
\(943\) 7.36520 0.239844
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1.94602 −0.0632373 −0.0316187 0.999500i \(-0.510066\pi\)
−0.0316187 + 0.999500i \(0.510066\pi\)
\(948\) 0 0
\(949\) −13.4773 −0.437491
\(950\) 0 0
\(951\) 4.26324 0.138245
\(952\) 0 0
\(953\) 27.3693 0.886579 0.443290 0.896378i \(-0.353811\pi\)
0.443290 + 0.896378i \(0.353811\pi\)
\(954\) 0 0
\(955\) 43.4833 1.40709
\(956\) 0 0
\(957\) 4.71659 0.152466
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −5.93087 −0.191318
\(962\) 0 0
\(963\) −18.2462 −0.587976
\(964\) 0 0
\(965\) −97.5610 −3.14060
\(966\) 0 0
\(967\) 4.87689 0.156830 0.0784152 0.996921i \(-0.475014\pi\)
0.0784152 + 0.996921i \(0.475014\pi\)
\(968\) 0 0
\(969\) −14.7304 −0.473209
\(970\) 0 0
\(971\) 36.5357 1.17249 0.586243 0.810135i \(-0.300606\pi\)
0.586243 + 0.810135i \(0.300606\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −68.4924 −2.19351
\(976\) 0 0
\(977\) −46.7926 −1.49703 −0.748514 0.663119i \(-0.769232\pi\)
−0.748514 + 0.663119i \(0.769232\pi\)
\(978\) 0 0
\(979\) 15.1838 0.485275
\(980\) 0 0
\(981\) 49.6155 1.58410
\(982\) 0 0
\(983\) −39.7649 −1.26830 −0.634152 0.773208i \(-0.718651\pi\)
−0.634152 + 0.773208i \(0.718651\pi\)
\(984\) 0 0
\(985\) 45.0979 1.43694
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 56.9848 1.81201
\(990\) 0 0
\(991\) −4.49242 −0.142707 −0.0713533 0.997451i \(-0.522732\pi\)
−0.0713533 + 0.997451i \(0.522732\pi\)
\(992\) 0 0
\(993\) −18.4130 −0.584319
\(994\) 0 0
\(995\) −74.3542 −2.35719
\(996\) 0 0
\(997\) −22.2586 −0.704938 −0.352469 0.935823i \(-0.614658\pi\)
−0.352469 + 0.935823i \(0.614658\pi\)
\(998\) 0 0
\(999\) −4.58930 −0.145199
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8624.2.a.cu.1.4 4
4.3 odd 2 539.2.a.k.1.3 4
7.6 odd 2 inner 8624.2.a.cu.1.1 4
12.11 even 2 4851.2.a.bv.1.1 4
28.3 even 6 539.2.e.n.177.1 8
28.11 odd 6 539.2.e.n.177.2 8
28.19 even 6 539.2.e.n.67.1 8
28.23 odd 6 539.2.e.n.67.2 8
28.27 even 2 539.2.a.k.1.4 yes 4
44.43 even 2 5929.2.a.ba.1.1 4
84.83 odd 2 4851.2.a.bv.1.2 4
308.307 odd 2 5929.2.a.ba.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
539.2.a.k.1.3 4 4.3 odd 2
539.2.a.k.1.4 yes 4 28.27 even 2
539.2.e.n.67.1 8 28.19 even 6
539.2.e.n.67.2 8 28.23 odd 6
539.2.e.n.177.1 8 28.3 even 6
539.2.e.n.177.2 8 28.11 odd 6
4851.2.a.bv.1.1 4 12.11 even 2
4851.2.a.bv.1.2 4 84.83 odd 2
5929.2.a.ba.1.1 4 44.43 even 2
5929.2.a.ba.1.2 4 308.307 odd 2
8624.2.a.cu.1.1 4 7.6 odd 2 inner
8624.2.a.cu.1.4 4 1.1 even 1 trivial