Properties

Label 8664.2.a.bi
Level $8664$
Weight $2$
Character orbit 8664.a
Self dual yes
Analytic conductor $69.182$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8664,2,Mod(1,8664)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8664, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8664.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8664 = 2^{3} \cdot 3 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8664.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(69.1823883112\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.1528713.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 3x^{4} + 7x^{3} + 3x^{2} - 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 456)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{3} - \beta_1 q^{5} + (\beta_{2} + 2 \beta_1 - 1) q^{7} + q^{9} + ( - \beta_{5} + \beta_{4} - 2 \beta_{3} + \cdots + 2) q^{11} + (\beta_{5} + \beta_{4} + \cdots + \beta_{2}) q^{13} - \beta_1 q^{15}+ \cdots + ( - \beta_{5} + \beta_{4} - 2 \beta_{3} + \cdots + 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{3} - 3 q^{5} + 6 q^{9} + 3 q^{11} + 3 q^{13} - 3 q^{15} - 15 q^{17} - 12 q^{23} - 15 q^{25} + 6 q^{27} + 3 q^{29} - 3 q^{31} + 3 q^{33} - 24 q^{35} - 15 q^{37} + 3 q^{39} - 3 q^{41} + 12 q^{43}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 3x^{5} - 3x^{4} + 7x^{3} + 3x^{2} - 3x - 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{4} - 3\nu^{3} - 2\nu^{2} + 4\nu + 1 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{5} - 3\nu^{4} - 2\nu^{3} + 4\nu^{2} + \nu + 1 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{5} - 3\nu^{4} - 2\nu^{3} + 5\nu^{2} - \nu - 1 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} - 4\nu^{4} + 9\nu^{2} - 2\nu - 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{4} - \beta_{3} + 2\beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{5} + 3\beta_{4} - 2\beta_{3} - \beta_{2} + 7\beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -3\beta_{5} + 11\beta_{4} - 8\beta_{3} - 2\beta_{2} + 21\beta _1 + 12 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -11\beta_{5} + 35\beta_{4} - 23\beta_{3} - 8\beta_{2} + 68\beta _1 + 33 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.19261
1.37826
0.768740
−0.313223
−0.725554
−1.30083
0 1.00000 0 −3.19261 0 5.03792 0 1.00000 0
1.2 0 1.00000 0 −1.37826 0 0.224426 0 1.00000 0
1.3 0 1.00000 0 −0.768740 0 2.41687 0 1.00000 0
1.4 0 1.00000 0 0.313223 0 −1.97374 0 1.00000 0
1.5 0 1.00000 0 0.725554 0 −3.98320 0 1.00000 0
1.6 0 1.00000 0 1.30083 0 −1.72227 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8664.2.a.bi 6
19.b odd 2 1 8664.2.a.bf 6
19.e even 9 2 456.2.bg.a 12
76.l odd 18 2 912.2.bo.h 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
456.2.bg.a 12 19.e even 9 2
912.2.bo.h 12 76.l odd 18 2
8664.2.a.bf 6 19.b odd 2 1
8664.2.a.bi 6 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8664))\):

\( T_{5}^{6} + 3T_{5}^{5} - 3T_{5}^{4} - 7T_{5}^{3} + 3T_{5}^{2} + 3T_{5} - 1 \) Copy content Toggle raw display
\( T_{7}^{6} - 27T_{7}^{4} - 22T_{7}^{3} + 126T_{7}^{2} + 138T_{7} - 37 \) Copy content Toggle raw display
\( T_{13}^{6} - 3T_{13}^{5} - 24T_{13}^{4} + 71T_{13}^{3} + 42T_{13}^{2} - 60T_{13} - 19 \) Copy content Toggle raw display
\( T_{29}^{6} - 3T_{29}^{5} - 54T_{29}^{4} + 87T_{29}^{3} + 312T_{29}^{2} + 204T_{29} + 37 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( (T - 1)^{6} \) Copy content Toggle raw display
$5$ \( T^{6} + 3 T^{5} + \cdots - 1 \) Copy content Toggle raw display
$7$ \( T^{6} - 27 T^{4} + \cdots - 37 \) Copy content Toggle raw display
$11$ \( T^{6} - 3 T^{5} + \cdots + 53 \) Copy content Toggle raw display
$13$ \( T^{6} - 3 T^{5} + \cdots - 19 \) Copy content Toggle raw display
$17$ \( T^{6} + 15 T^{5} + \cdots + 1117 \) Copy content Toggle raw display
$19$ \( T^{6} \) Copy content Toggle raw display
$23$ \( T^{6} + 12 T^{5} + \cdots + 53 \) Copy content Toggle raw display
$29$ \( T^{6} - 3 T^{5} + \cdots + 37 \) Copy content Toggle raw display
$31$ \( T^{6} + 3 T^{5} + \cdots - 7307 \) Copy content Toggle raw display
$37$ \( T^{6} + 15 T^{5} + \cdots - 107 \) Copy content Toggle raw display
$41$ \( T^{6} + 3 T^{5} + \cdots + 2393 \) Copy content Toggle raw display
$43$ \( T^{6} - 12 T^{5} + \cdots + 83231 \) Copy content Toggle raw display
$47$ \( T^{6} - 141 T^{4} + \cdots + 9253 \) Copy content Toggle raw display
$53$ \( T^{6} + 3 T^{5} + \cdots - 1 \) Copy content Toggle raw display
$59$ \( T^{6} + 33 T^{5} + \cdots + 1773 \) Copy content Toggle raw display
$61$ \( T^{6} - 87 T^{4} + \cdots - 251 \) Copy content Toggle raw display
$67$ \( T^{6} + 12 T^{5} + \cdots + 90872 \) Copy content Toggle raw display
$71$ \( T^{6} + 18 T^{5} + \cdots + 6813 \) Copy content Toggle raw display
$73$ \( T^{6} + 27 T^{5} + \cdots - 15427 \) Copy content Toggle raw display
$79$ \( T^{6} + 30 T^{5} + \cdots + 37 \) Copy content Toggle raw display
$83$ \( T^{6} + 6 T^{5} + \cdots - 348947 \) Copy content Toggle raw display
$89$ \( T^{6} + 15 T^{5} + \cdots - 6813 \) Copy content Toggle raw display
$97$ \( T^{6} + 18 T^{5} + \cdots + 42281 \) Copy content Toggle raw display
show more
show less