Properties

Label 8664.2.a.br.1.2
Level $8664$
Weight $2$
Character 8664.1
Self dual yes
Analytic conductor $69.182$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8664,2,Mod(1,8664)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8664, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8664.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8664 = 2^{3} \cdot 3 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8664.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(69.1823883112\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2 x^{11} - 37 x^{10} + 52 x^{9} + 526 x^{8} - 414 x^{7} - 3501 x^{6} + 832 x^{5} + 10258 x^{4} + \cdots + 361 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2.78590\) of defining polynomial
Character \(\chi\) \(=\) 8664.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} -2.78590 q^{5} -4.08002 q^{7} +1.00000 q^{9} +5.94993 q^{11} -6.50317 q^{13} +2.78590 q^{15} -7.02253 q^{17} +4.08002 q^{21} +3.16242 q^{23} +2.76126 q^{25} -1.00000 q^{27} -2.36833 q^{29} -1.04900 q^{31} -5.94993 q^{33} +11.3666 q^{35} -4.23995 q^{37} +6.50317 q^{39} +0.889974 q^{41} -9.87935 q^{43} -2.78590 q^{45} -6.29928 q^{47} +9.64658 q^{49} +7.02253 q^{51} -7.08537 q^{53} -16.5759 q^{55} +6.50012 q^{59} -12.7346 q^{61} -4.08002 q^{63} +18.1172 q^{65} -1.33860 q^{67} -3.16242 q^{69} -9.70111 q^{71} -13.8287 q^{73} -2.76126 q^{75} -24.2758 q^{77} -11.8181 q^{79} +1.00000 q^{81} -1.31483 q^{83} +19.5641 q^{85} +2.36833 q^{87} -15.5577 q^{89} +26.5331 q^{91} +1.04900 q^{93} -2.18852 q^{97} +5.94993 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{3} + 2 q^{5} + 4 q^{7} + 12 q^{9} + 14 q^{11} + 4 q^{13} - 2 q^{15} - 4 q^{21} + 26 q^{23} + 18 q^{25} - 12 q^{27} - 10 q^{29} + 8 q^{31} - 14 q^{33} + 30 q^{35} - 8 q^{37} - 4 q^{39} + 18 q^{41}+ \cdots + 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) −2.78590 −1.24589 −0.622947 0.782264i \(-0.714065\pi\)
−0.622947 + 0.782264i \(0.714065\pi\)
\(6\) 0 0
\(7\) −4.08002 −1.54210 −0.771052 0.636772i \(-0.780269\pi\)
−0.771052 + 0.636772i \(0.780269\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 5.94993 1.79397 0.896986 0.442060i \(-0.145752\pi\)
0.896986 + 0.442060i \(0.145752\pi\)
\(12\) 0 0
\(13\) −6.50317 −1.80366 −0.901828 0.432096i \(-0.857774\pi\)
−0.901828 + 0.432096i \(0.857774\pi\)
\(14\) 0 0
\(15\) 2.78590 0.719317
\(16\) 0 0
\(17\) −7.02253 −1.70321 −0.851607 0.524182i \(-0.824371\pi\)
−0.851607 + 0.524182i \(0.824371\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) 0 0
\(21\) 4.08002 0.890334
\(22\) 0 0
\(23\) 3.16242 0.659410 0.329705 0.944084i \(-0.393051\pi\)
0.329705 + 0.944084i \(0.393051\pi\)
\(24\) 0 0
\(25\) 2.76126 0.552252
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −2.36833 −0.439787 −0.219894 0.975524i \(-0.570571\pi\)
−0.219894 + 0.975524i \(0.570571\pi\)
\(30\) 0 0
\(31\) −1.04900 −0.188406 −0.0942028 0.995553i \(-0.530030\pi\)
−0.0942028 + 0.995553i \(0.530030\pi\)
\(32\) 0 0
\(33\) −5.94993 −1.03575
\(34\) 0 0
\(35\) 11.3666 1.92130
\(36\) 0 0
\(37\) −4.23995 −0.697043 −0.348522 0.937301i \(-0.613316\pi\)
−0.348522 + 0.937301i \(0.613316\pi\)
\(38\) 0 0
\(39\) 6.50317 1.04134
\(40\) 0 0
\(41\) 0.889974 0.138991 0.0694953 0.997582i \(-0.477861\pi\)
0.0694953 + 0.997582i \(0.477861\pi\)
\(42\) 0 0
\(43\) −9.87935 −1.50659 −0.753294 0.657684i \(-0.771536\pi\)
−0.753294 + 0.657684i \(0.771536\pi\)
\(44\) 0 0
\(45\) −2.78590 −0.415298
\(46\) 0 0
\(47\) −6.29928 −0.918844 −0.459422 0.888218i \(-0.651943\pi\)
−0.459422 + 0.888218i \(0.651943\pi\)
\(48\) 0 0
\(49\) 9.64658 1.37808
\(50\) 0 0
\(51\) 7.02253 0.983351
\(52\) 0 0
\(53\) −7.08537 −0.973251 −0.486625 0.873611i \(-0.661772\pi\)
−0.486625 + 0.873611i \(0.661772\pi\)
\(54\) 0 0
\(55\) −16.5759 −2.23510
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 6.50012 0.846244 0.423122 0.906073i \(-0.360934\pi\)
0.423122 + 0.906073i \(0.360934\pi\)
\(60\) 0 0
\(61\) −12.7346 −1.63049 −0.815246 0.579114i \(-0.803399\pi\)
−0.815246 + 0.579114i \(0.803399\pi\)
\(62\) 0 0
\(63\) −4.08002 −0.514035
\(64\) 0 0
\(65\) 18.1172 2.24716
\(66\) 0 0
\(67\) −1.33860 −0.163537 −0.0817683 0.996651i \(-0.526057\pi\)
−0.0817683 + 0.996651i \(0.526057\pi\)
\(68\) 0 0
\(69\) −3.16242 −0.380710
\(70\) 0 0
\(71\) −9.70111 −1.15131 −0.575655 0.817693i \(-0.695253\pi\)
−0.575655 + 0.817693i \(0.695253\pi\)
\(72\) 0 0
\(73\) −13.8287 −1.61853 −0.809264 0.587445i \(-0.800134\pi\)
−0.809264 + 0.587445i \(0.800134\pi\)
\(74\) 0 0
\(75\) −2.76126 −0.318843
\(76\) 0 0
\(77\) −24.2758 −2.76649
\(78\) 0 0
\(79\) −11.8181 −1.32964 −0.664820 0.747003i \(-0.731492\pi\)
−0.664820 + 0.747003i \(0.731492\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −1.31483 −0.144321 −0.0721605 0.997393i \(-0.522989\pi\)
−0.0721605 + 0.997393i \(0.522989\pi\)
\(84\) 0 0
\(85\) 19.5641 2.12202
\(86\) 0 0
\(87\) 2.36833 0.253911
\(88\) 0 0
\(89\) −15.5577 −1.64911 −0.824555 0.565782i \(-0.808574\pi\)
−0.824555 + 0.565782i \(0.808574\pi\)
\(90\) 0 0
\(91\) 26.5331 2.78142
\(92\) 0 0
\(93\) 1.04900 0.108776
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −2.18852 −0.222211 −0.111105 0.993809i \(-0.535439\pi\)
−0.111105 + 0.993809i \(0.535439\pi\)
\(98\) 0 0
\(99\) 5.94993 0.597990
\(100\) 0 0
\(101\) 0.288061 0.0286631 0.0143316 0.999897i \(-0.495438\pi\)
0.0143316 + 0.999897i \(0.495438\pi\)
\(102\) 0 0
\(103\) −7.11901 −0.701457 −0.350728 0.936477i \(-0.614066\pi\)
−0.350728 + 0.936477i \(0.614066\pi\)
\(104\) 0 0
\(105\) −11.3666 −1.10926
\(106\) 0 0
\(107\) 8.13769 0.786701 0.393350 0.919389i \(-0.371316\pi\)
0.393350 + 0.919389i \(0.371316\pi\)
\(108\) 0 0
\(109\) −1.45359 −0.139229 −0.0696144 0.997574i \(-0.522177\pi\)
−0.0696144 + 0.997574i \(0.522177\pi\)
\(110\) 0 0
\(111\) 4.23995 0.402438
\(112\) 0 0
\(113\) 7.67440 0.721947 0.360973 0.932576i \(-0.382444\pi\)
0.360973 + 0.932576i \(0.382444\pi\)
\(114\) 0 0
\(115\) −8.81019 −0.821555
\(116\) 0 0
\(117\) −6.50317 −0.601219
\(118\) 0 0
\(119\) 28.6521 2.62653
\(120\) 0 0
\(121\) 24.4017 2.21833
\(122\) 0 0
\(123\) −0.889974 −0.0802463
\(124\) 0 0
\(125\) 6.23691 0.557846
\(126\) 0 0
\(127\) −1.19191 −0.105765 −0.0528826 0.998601i \(-0.516841\pi\)
−0.0528826 + 0.998601i \(0.516841\pi\)
\(128\) 0 0
\(129\) 9.87935 0.869828
\(130\) 0 0
\(131\) −2.87735 −0.251395 −0.125697 0.992069i \(-0.540117\pi\)
−0.125697 + 0.992069i \(0.540117\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 2.78590 0.239772
\(136\) 0 0
\(137\) 5.85903 0.500570 0.250285 0.968172i \(-0.419476\pi\)
0.250285 + 0.968172i \(0.419476\pi\)
\(138\) 0 0
\(139\) −9.54067 −0.809229 −0.404615 0.914487i \(-0.632594\pi\)
−0.404615 + 0.914487i \(0.632594\pi\)
\(140\) 0 0
\(141\) 6.29928 0.530495
\(142\) 0 0
\(143\) −38.6934 −3.23571
\(144\) 0 0
\(145\) 6.59793 0.547928
\(146\) 0 0
\(147\) −9.64658 −0.795637
\(148\) 0 0
\(149\) 10.4298 0.854443 0.427222 0.904147i \(-0.359492\pi\)
0.427222 + 0.904147i \(0.359492\pi\)
\(150\) 0 0
\(151\) −8.51391 −0.692852 −0.346426 0.938077i \(-0.612605\pi\)
−0.346426 + 0.938077i \(0.612605\pi\)
\(152\) 0 0
\(153\) −7.02253 −0.567738
\(154\) 0 0
\(155\) 2.92241 0.234733
\(156\) 0 0
\(157\) 5.11635 0.408329 0.204165 0.978937i \(-0.434552\pi\)
0.204165 + 0.978937i \(0.434552\pi\)
\(158\) 0 0
\(159\) 7.08537 0.561907
\(160\) 0 0
\(161\) −12.9027 −1.01688
\(162\) 0 0
\(163\) 1.52781 0.119667 0.0598337 0.998208i \(-0.480943\pi\)
0.0598337 + 0.998208i \(0.480943\pi\)
\(164\) 0 0
\(165\) 16.5759 1.29043
\(166\) 0 0
\(167\) 0.0473249 0.00366211 0.00183106 0.999998i \(-0.499417\pi\)
0.00183106 + 0.999998i \(0.499417\pi\)
\(168\) 0 0
\(169\) 29.2913 2.25317
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −16.6260 −1.26405 −0.632025 0.774948i \(-0.717776\pi\)
−0.632025 + 0.774948i \(0.717776\pi\)
\(174\) 0 0
\(175\) −11.2660 −0.851630
\(176\) 0 0
\(177\) −6.50012 −0.488579
\(178\) 0 0
\(179\) −23.1274 −1.72862 −0.864310 0.502960i \(-0.832244\pi\)
−0.864310 + 0.502960i \(0.832244\pi\)
\(180\) 0 0
\(181\) 6.56843 0.488227 0.244114 0.969747i \(-0.421503\pi\)
0.244114 + 0.969747i \(0.421503\pi\)
\(182\) 0 0
\(183\) 12.7346 0.941365
\(184\) 0 0
\(185\) 11.8121 0.868442
\(186\) 0 0
\(187\) −41.7835 −3.05552
\(188\) 0 0
\(189\) 4.08002 0.296778
\(190\) 0 0
\(191\) 6.87840 0.497704 0.248852 0.968542i \(-0.419947\pi\)
0.248852 + 0.968542i \(0.419947\pi\)
\(192\) 0 0
\(193\) 13.7087 0.986774 0.493387 0.869810i \(-0.335759\pi\)
0.493387 + 0.869810i \(0.335759\pi\)
\(194\) 0 0
\(195\) −18.1172 −1.29740
\(196\) 0 0
\(197\) 3.18942 0.227236 0.113618 0.993524i \(-0.463756\pi\)
0.113618 + 0.993524i \(0.463756\pi\)
\(198\) 0 0
\(199\) 25.4804 1.80625 0.903127 0.429373i \(-0.141266\pi\)
0.903127 + 0.429373i \(0.141266\pi\)
\(200\) 0 0
\(201\) 1.33860 0.0944179
\(202\) 0 0
\(203\) 9.66282 0.678197
\(204\) 0 0
\(205\) −2.47938 −0.173168
\(206\) 0 0
\(207\) 3.16242 0.219803
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −26.0450 −1.79301 −0.896505 0.443033i \(-0.853903\pi\)
−0.896505 + 0.443033i \(0.853903\pi\)
\(212\) 0 0
\(213\) 9.70111 0.664709
\(214\) 0 0
\(215\) 27.5229 1.87705
\(216\) 0 0
\(217\) 4.27994 0.290541
\(218\) 0 0
\(219\) 13.8287 0.934458
\(220\) 0 0
\(221\) 45.6687 3.07201
\(222\) 0 0
\(223\) 0.708891 0.0474709 0.0237354 0.999718i \(-0.492444\pi\)
0.0237354 + 0.999718i \(0.492444\pi\)
\(224\) 0 0
\(225\) 2.76126 0.184084
\(226\) 0 0
\(227\) −4.07740 −0.270627 −0.135313 0.990803i \(-0.543204\pi\)
−0.135313 + 0.990803i \(0.543204\pi\)
\(228\) 0 0
\(229\) −24.7578 −1.63604 −0.818021 0.575188i \(-0.804929\pi\)
−0.818021 + 0.575188i \(0.804929\pi\)
\(230\) 0 0
\(231\) 24.2758 1.59723
\(232\) 0 0
\(233\) −6.71057 −0.439624 −0.219812 0.975542i \(-0.570544\pi\)
−0.219812 + 0.975542i \(0.570544\pi\)
\(234\) 0 0
\(235\) 17.5492 1.14478
\(236\) 0 0
\(237\) 11.8181 0.767668
\(238\) 0 0
\(239\) −17.8550 −1.15494 −0.577472 0.816411i \(-0.695961\pi\)
−0.577472 + 0.816411i \(0.695961\pi\)
\(240\) 0 0
\(241\) −19.2356 −1.23907 −0.619537 0.784967i \(-0.712680\pi\)
−0.619537 + 0.784967i \(0.712680\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) −26.8745 −1.71695
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 1.31483 0.0833237
\(250\) 0 0
\(251\) 16.7225 1.05551 0.527757 0.849396i \(-0.323033\pi\)
0.527757 + 0.849396i \(0.323033\pi\)
\(252\) 0 0
\(253\) 18.8162 1.18296
\(254\) 0 0
\(255\) −19.5641 −1.22515
\(256\) 0 0
\(257\) −2.13312 −0.133060 −0.0665302 0.997784i \(-0.521193\pi\)
−0.0665302 + 0.997784i \(0.521193\pi\)
\(258\) 0 0
\(259\) 17.2991 1.07491
\(260\) 0 0
\(261\) −2.36833 −0.146596
\(262\) 0 0
\(263\) −2.68398 −0.165501 −0.0827506 0.996570i \(-0.526370\pi\)
−0.0827506 + 0.996570i \(0.526370\pi\)
\(264\) 0 0
\(265\) 19.7392 1.21257
\(266\) 0 0
\(267\) 15.5577 0.952114
\(268\) 0 0
\(269\) −1.41658 −0.0863704 −0.0431852 0.999067i \(-0.513751\pi\)
−0.0431852 + 0.999067i \(0.513751\pi\)
\(270\) 0 0
\(271\) −3.58596 −0.217832 −0.108916 0.994051i \(-0.534738\pi\)
−0.108916 + 0.994051i \(0.534738\pi\)
\(272\) 0 0
\(273\) −26.5331 −1.60586
\(274\) 0 0
\(275\) 16.4293 0.990725
\(276\) 0 0
\(277\) 13.6785 0.821860 0.410930 0.911667i \(-0.365204\pi\)
0.410930 + 0.911667i \(0.365204\pi\)
\(278\) 0 0
\(279\) −1.04900 −0.0628019
\(280\) 0 0
\(281\) 8.58284 0.512009 0.256005 0.966676i \(-0.417594\pi\)
0.256005 + 0.966676i \(0.417594\pi\)
\(282\) 0 0
\(283\) −11.7942 −0.701091 −0.350545 0.936546i \(-0.614004\pi\)
−0.350545 + 0.936546i \(0.614004\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −3.63112 −0.214338
\(288\) 0 0
\(289\) 32.3159 1.90094
\(290\) 0 0
\(291\) 2.18852 0.128294
\(292\) 0 0
\(293\) −9.96188 −0.581979 −0.290990 0.956726i \(-0.593985\pi\)
−0.290990 + 0.956726i \(0.593985\pi\)
\(294\) 0 0
\(295\) −18.1087 −1.05433
\(296\) 0 0
\(297\) −5.94993 −0.345250
\(298\) 0 0
\(299\) −20.5658 −1.18935
\(300\) 0 0
\(301\) 40.3080 2.32331
\(302\) 0 0
\(303\) −0.288061 −0.0165487
\(304\) 0 0
\(305\) 35.4773 2.03142
\(306\) 0 0
\(307\) 7.02029 0.400669 0.200335 0.979728i \(-0.435797\pi\)
0.200335 + 0.979728i \(0.435797\pi\)
\(308\) 0 0
\(309\) 7.11901 0.404986
\(310\) 0 0
\(311\) 2.49946 0.141731 0.0708657 0.997486i \(-0.477424\pi\)
0.0708657 + 0.997486i \(0.477424\pi\)
\(312\) 0 0
\(313\) 12.7406 0.720142 0.360071 0.932925i \(-0.382752\pi\)
0.360071 + 0.932925i \(0.382752\pi\)
\(314\) 0 0
\(315\) 11.3666 0.640433
\(316\) 0 0
\(317\) 2.22620 0.125036 0.0625179 0.998044i \(-0.480087\pi\)
0.0625179 + 0.998044i \(0.480087\pi\)
\(318\) 0 0
\(319\) −14.0914 −0.788965
\(320\) 0 0
\(321\) −8.13769 −0.454202
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −17.9570 −0.996073
\(326\) 0 0
\(327\) 1.45359 0.0803838
\(328\) 0 0
\(329\) 25.7012 1.41695
\(330\) 0 0
\(331\) 15.4633 0.849942 0.424971 0.905207i \(-0.360284\pi\)
0.424971 + 0.905207i \(0.360284\pi\)
\(332\) 0 0
\(333\) −4.23995 −0.232348
\(334\) 0 0
\(335\) 3.72922 0.203749
\(336\) 0 0
\(337\) −26.7323 −1.45620 −0.728100 0.685471i \(-0.759596\pi\)
−0.728100 + 0.685471i \(0.759596\pi\)
\(338\) 0 0
\(339\) −7.67440 −0.416816
\(340\) 0 0
\(341\) −6.24146 −0.337994
\(342\) 0 0
\(343\) −10.7981 −0.583044
\(344\) 0 0
\(345\) 8.81019 0.474325
\(346\) 0 0
\(347\) −3.27507 −0.175815 −0.0879075 0.996129i \(-0.528018\pi\)
−0.0879075 + 0.996129i \(0.528018\pi\)
\(348\) 0 0
\(349\) −13.7099 −0.733876 −0.366938 0.930245i \(-0.619594\pi\)
−0.366938 + 0.930245i \(0.619594\pi\)
\(350\) 0 0
\(351\) 6.50317 0.347114
\(352\) 0 0
\(353\) 3.16539 0.168477 0.0842385 0.996446i \(-0.473154\pi\)
0.0842385 + 0.996446i \(0.473154\pi\)
\(354\) 0 0
\(355\) 27.0264 1.43441
\(356\) 0 0
\(357\) −28.6521 −1.51643
\(358\) 0 0
\(359\) 7.48651 0.395123 0.197561 0.980291i \(-0.436698\pi\)
0.197561 + 0.980291i \(0.436698\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 0 0
\(363\) −24.4017 −1.28075
\(364\) 0 0
\(365\) 38.5255 2.01651
\(366\) 0 0
\(367\) 19.3834 1.01181 0.505903 0.862591i \(-0.331159\pi\)
0.505903 + 0.862591i \(0.331159\pi\)
\(368\) 0 0
\(369\) 0.889974 0.0463302
\(370\) 0 0
\(371\) 28.9085 1.50085
\(372\) 0 0
\(373\) −1.19704 −0.0619802 −0.0309901 0.999520i \(-0.509866\pi\)
−0.0309901 + 0.999520i \(0.509866\pi\)
\(374\) 0 0
\(375\) −6.23691 −0.322073
\(376\) 0 0
\(377\) 15.4016 0.793224
\(378\) 0 0
\(379\) −29.0179 −1.49055 −0.745275 0.666757i \(-0.767682\pi\)
−0.745275 + 0.666757i \(0.767682\pi\)
\(380\) 0 0
\(381\) 1.19191 0.0610636
\(382\) 0 0
\(383\) −14.3727 −0.734410 −0.367205 0.930140i \(-0.619685\pi\)
−0.367205 + 0.930140i \(0.619685\pi\)
\(384\) 0 0
\(385\) 67.6302 3.44675
\(386\) 0 0
\(387\) −9.87935 −0.502196
\(388\) 0 0
\(389\) 18.9939 0.963028 0.481514 0.876438i \(-0.340087\pi\)
0.481514 + 0.876438i \(0.340087\pi\)
\(390\) 0 0
\(391\) −22.2082 −1.12312
\(392\) 0 0
\(393\) 2.87735 0.145143
\(394\) 0 0
\(395\) 32.9241 1.65659
\(396\) 0 0
\(397\) 30.3149 1.52146 0.760731 0.649067i \(-0.224841\pi\)
0.760731 + 0.649067i \(0.224841\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −24.7329 −1.23510 −0.617550 0.786532i \(-0.711875\pi\)
−0.617550 + 0.786532i \(0.711875\pi\)
\(402\) 0 0
\(403\) 6.82182 0.339819
\(404\) 0 0
\(405\) −2.78590 −0.138433
\(406\) 0 0
\(407\) −25.2274 −1.25048
\(408\) 0 0
\(409\) 15.7141 0.777011 0.388505 0.921446i \(-0.372991\pi\)
0.388505 + 0.921446i \(0.372991\pi\)
\(410\) 0 0
\(411\) −5.85903 −0.289004
\(412\) 0 0
\(413\) −26.5206 −1.30500
\(414\) 0 0
\(415\) 3.66298 0.179809
\(416\) 0 0
\(417\) 9.54067 0.467209
\(418\) 0 0
\(419\) 13.5283 0.660899 0.330450 0.943824i \(-0.392800\pi\)
0.330450 + 0.943824i \(0.392800\pi\)
\(420\) 0 0
\(421\) 16.9424 0.825720 0.412860 0.910795i \(-0.364530\pi\)
0.412860 + 0.910795i \(0.364530\pi\)
\(422\) 0 0
\(423\) −6.29928 −0.306281
\(424\) 0 0
\(425\) −19.3910 −0.940603
\(426\) 0 0
\(427\) 51.9573 2.51439
\(428\) 0 0
\(429\) 38.6934 1.86814
\(430\) 0 0
\(431\) −29.6535 −1.42836 −0.714178 0.699964i \(-0.753199\pi\)
−0.714178 + 0.699964i \(0.753199\pi\)
\(432\) 0 0
\(433\) 27.8381 1.33781 0.668907 0.743346i \(-0.266762\pi\)
0.668907 + 0.743346i \(0.266762\pi\)
\(434\) 0 0
\(435\) −6.59793 −0.316346
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 36.8561 1.75905 0.879523 0.475857i \(-0.157862\pi\)
0.879523 + 0.475857i \(0.157862\pi\)
\(440\) 0 0
\(441\) 9.64658 0.459361
\(442\) 0 0
\(443\) −2.14225 −0.101781 −0.0508906 0.998704i \(-0.516206\pi\)
−0.0508906 + 0.998704i \(0.516206\pi\)
\(444\) 0 0
\(445\) 43.3422 2.05462
\(446\) 0 0
\(447\) −10.4298 −0.493313
\(448\) 0 0
\(449\) 7.35267 0.346994 0.173497 0.984834i \(-0.444493\pi\)
0.173497 + 0.984834i \(0.444493\pi\)
\(450\) 0 0
\(451\) 5.29528 0.249345
\(452\) 0 0
\(453\) 8.51391 0.400018
\(454\) 0 0
\(455\) −73.9186 −3.46536
\(456\) 0 0
\(457\) 21.3157 0.997107 0.498553 0.866859i \(-0.333865\pi\)
0.498553 + 0.866859i \(0.333865\pi\)
\(458\) 0 0
\(459\) 7.02253 0.327784
\(460\) 0 0
\(461\) −17.2827 −0.804938 −0.402469 0.915434i \(-0.631848\pi\)
−0.402469 + 0.915434i \(0.631848\pi\)
\(462\) 0 0
\(463\) 25.5416 1.18702 0.593509 0.804828i \(-0.297742\pi\)
0.593509 + 0.804828i \(0.297742\pi\)
\(464\) 0 0
\(465\) −2.92241 −0.135523
\(466\) 0 0
\(467\) −19.6071 −0.907308 −0.453654 0.891178i \(-0.649880\pi\)
−0.453654 + 0.891178i \(0.649880\pi\)
\(468\) 0 0
\(469\) 5.46154 0.252190
\(470\) 0 0
\(471\) −5.11635 −0.235749
\(472\) 0 0
\(473\) −58.7815 −2.70277
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −7.08537 −0.324417
\(478\) 0 0
\(479\) 17.6604 0.806926 0.403463 0.914996i \(-0.367806\pi\)
0.403463 + 0.914996i \(0.367806\pi\)
\(480\) 0 0
\(481\) 27.5731 1.25723
\(482\) 0 0
\(483\) 12.9027 0.587095
\(484\) 0 0
\(485\) 6.09702 0.276851
\(486\) 0 0
\(487\) 10.4736 0.474606 0.237303 0.971436i \(-0.423737\pi\)
0.237303 + 0.971436i \(0.423737\pi\)
\(488\) 0 0
\(489\) −1.52781 −0.0690900
\(490\) 0 0
\(491\) 29.7515 1.34267 0.671333 0.741156i \(-0.265722\pi\)
0.671333 + 0.741156i \(0.265722\pi\)
\(492\) 0 0
\(493\) 16.6316 0.749051
\(494\) 0 0
\(495\) −16.5759 −0.745033
\(496\) 0 0
\(497\) 39.5808 1.77544
\(498\) 0 0
\(499\) 12.7752 0.571896 0.285948 0.958245i \(-0.407692\pi\)
0.285948 + 0.958245i \(0.407692\pi\)
\(500\) 0 0
\(501\) −0.0473249 −0.00211432
\(502\) 0 0
\(503\) 7.61172 0.339390 0.169695 0.985497i \(-0.445722\pi\)
0.169695 + 0.985497i \(0.445722\pi\)
\(504\) 0 0
\(505\) −0.802510 −0.0357112
\(506\) 0 0
\(507\) −29.2913 −1.30087
\(508\) 0 0
\(509\) −40.9674 −1.81585 −0.907924 0.419134i \(-0.862334\pi\)
−0.907924 + 0.419134i \(0.862334\pi\)
\(510\) 0 0
\(511\) 56.4214 2.49594
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 19.8329 0.873941
\(516\) 0 0
\(517\) −37.4803 −1.64838
\(518\) 0 0
\(519\) 16.6260 0.729799
\(520\) 0 0
\(521\) 1.63438 0.0716033 0.0358016 0.999359i \(-0.488602\pi\)
0.0358016 + 0.999359i \(0.488602\pi\)
\(522\) 0 0
\(523\) 7.75496 0.339101 0.169550 0.985522i \(-0.445768\pi\)
0.169550 + 0.985522i \(0.445768\pi\)
\(524\) 0 0
\(525\) 11.2660 0.491689
\(526\) 0 0
\(527\) 7.36662 0.320895
\(528\) 0 0
\(529\) −12.9991 −0.565179
\(530\) 0 0
\(531\) 6.50012 0.282081
\(532\) 0 0
\(533\) −5.78766 −0.250691
\(534\) 0 0
\(535\) −22.6708 −0.980146
\(536\) 0 0
\(537\) 23.1274 0.998019
\(538\) 0 0
\(539\) 57.3965 2.47224
\(540\) 0 0
\(541\) −28.5190 −1.22613 −0.613063 0.790034i \(-0.710063\pi\)
−0.613063 + 0.790034i \(0.710063\pi\)
\(542\) 0 0
\(543\) −6.56843 −0.281878
\(544\) 0 0
\(545\) 4.04957 0.173464
\(546\) 0 0
\(547\) 28.0509 1.19937 0.599685 0.800236i \(-0.295292\pi\)
0.599685 + 0.800236i \(0.295292\pi\)
\(548\) 0 0
\(549\) −12.7346 −0.543498
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 48.2181 2.05044
\(554\) 0 0
\(555\) −11.8121 −0.501395
\(556\) 0 0
\(557\) 20.6767 0.876099 0.438049 0.898951i \(-0.355670\pi\)
0.438049 + 0.898951i \(0.355670\pi\)
\(558\) 0 0
\(559\) 64.2471 2.71736
\(560\) 0 0
\(561\) 41.7835 1.76410
\(562\) 0 0
\(563\) −43.6876 −1.84121 −0.920606 0.390493i \(-0.872304\pi\)
−0.920606 + 0.390493i \(0.872304\pi\)
\(564\) 0 0
\(565\) −21.3801 −0.899469
\(566\) 0 0
\(567\) −4.08002 −0.171345
\(568\) 0 0
\(569\) −31.3932 −1.31607 −0.658035 0.752987i \(-0.728612\pi\)
−0.658035 + 0.752987i \(0.728612\pi\)
\(570\) 0 0
\(571\) −31.5929 −1.32212 −0.661062 0.750332i \(-0.729894\pi\)
−0.661062 + 0.750332i \(0.729894\pi\)
\(572\) 0 0
\(573\) −6.87840 −0.287349
\(574\) 0 0
\(575\) 8.73226 0.364161
\(576\) 0 0
\(577\) 17.3989 0.724325 0.362163 0.932115i \(-0.382038\pi\)
0.362163 + 0.932115i \(0.382038\pi\)
\(578\) 0 0
\(579\) −13.7087 −0.569714
\(580\) 0 0
\(581\) 5.36452 0.222558
\(582\) 0 0
\(583\) −42.1575 −1.74598
\(584\) 0 0
\(585\) 18.1172 0.749055
\(586\) 0 0
\(587\) 26.9657 1.11299 0.556497 0.830850i \(-0.312145\pi\)
0.556497 + 0.830850i \(0.312145\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −3.18942 −0.131195
\(592\) 0 0
\(593\) −32.8354 −1.34839 −0.674195 0.738554i \(-0.735509\pi\)
−0.674195 + 0.738554i \(0.735509\pi\)
\(594\) 0 0
\(595\) −79.8219 −3.27238
\(596\) 0 0
\(597\) −25.4804 −1.04284
\(598\) 0 0
\(599\) −41.6188 −1.70050 −0.850249 0.526380i \(-0.823549\pi\)
−0.850249 + 0.526380i \(0.823549\pi\)
\(600\) 0 0
\(601\) 39.3982 1.60708 0.803542 0.595248i \(-0.202946\pi\)
0.803542 + 0.595248i \(0.202946\pi\)
\(602\) 0 0
\(603\) −1.33860 −0.0545122
\(604\) 0 0
\(605\) −67.9807 −2.76381
\(606\) 0 0
\(607\) 3.10672 0.126098 0.0630490 0.998010i \(-0.479918\pi\)
0.0630490 + 0.998010i \(0.479918\pi\)
\(608\) 0 0
\(609\) −9.66282 −0.391557
\(610\) 0 0
\(611\) 40.9653 1.65728
\(612\) 0 0
\(613\) −5.75470 −0.232430 −0.116215 0.993224i \(-0.537076\pi\)
−0.116215 + 0.993224i \(0.537076\pi\)
\(614\) 0 0
\(615\) 2.47938 0.0999784
\(616\) 0 0
\(617\) 30.8052 1.24017 0.620086 0.784534i \(-0.287098\pi\)
0.620086 + 0.784534i \(0.287098\pi\)
\(618\) 0 0
\(619\) 12.3636 0.496937 0.248468 0.968640i \(-0.420073\pi\)
0.248468 + 0.968640i \(0.420073\pi\)
\(620\) 0 0
\(621\) −3.16242 −0.126903
\(622\) 0 0
\(623\) 63.4756 2.54310
\(624\) 0 0
\(625\) −31.1817 −1.24727
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 29.7752 1.18721
\(630\) 0 0
\(631\) 23.6601 0.941892 0.470946 0.882162i \(-0.343913\pi\)
0.470946 + 0.882162i \(0.343913\pi\)
\(632\) 0 0
\(633\) 26.0450 1.03520
\(634\) 0 0
\(635\) 3.32056 0.131772
\(636\) 0 0
\(637\) −62.7334 −2.48559
\(638\) 0 0
\(639\) −9.70111 −0.383770
\(640\) 0 0
\(641\) 3.52353 0.139171 0.0695855 0.997576i \(-0.477832\pi\)
0.0695855 + 0.997576i \(0.477832\pi\)
\(642\) 0 0
\(643\) −6.53942 −0.257889 −0.128945 0.991652i \(-0.541159\pi\)
−0.128945 + 0.991652i \(0.541159\pi\)
\(644\) 0 0
\(645\) −27.5229 −1.08371
\(646\) 0 0
\(647\) −12.8400 −0.504792 −0.252396 0.967624i \(-0.581218\pi\)
−0.252396 + 0.967624i \(0.581218\pi\)
\(648\) 0 0
\(649\) 38.6753 1.51814
\(650\) 0 0
\(651\) −4.27994 −0.167744
\(652\) 0 0
\(653\) −42.3347 −1.65668 −0.828342 0.560223i \(-0.810716\pi\)
−0.828342 + 0.560223i \(0.810716\pi\)
\(654\) 0 0
\(655\) 8.01601 0.313212
\(656\) 0 0
\(657\) −13.8287 −0.539509
\(658\) 0 0
\(659\) 6.51944 0.253961 0.126981 0.991905i \(-0.459471\pi\)
0.126981 + 0.991905i \(0.459471\pi\)
\(660\) 0 0
\(661\) 48.4750 1.88546 0.942729 0.333558i \(-0.108249\pi\)
0.942729 + 0.333558i \(0.108249\pi\)
\(662\) 0 0
\(663\) −45.6687 −1.77363
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −7.48964 −0.290000
\(668\) 0 0
\(669\) −0.708891 −0.0274073
\(670\) 0 0
\(671\) −75.7697 −2.92506
\(672\) 0 0
\(673\) 25.2740 0.974241 0.487120 0.873335i \(-0.338047\pi\)
0.487120 + 0.873335i \(0.338047\pi\)
\(674\) 0 0
\(675\) −2.76126 −0.106281
\(676\) 0 0
\(677\) −3.47921 −0.133717 −0.0668585 0.997762i \(-0.521298\pi\)
−0.0668585 + 0.997762i \(0.521298\pi\)
\(678\) 0 0
\(679\) 8.92923 0.342672
\(680\) 0 0
\(681\) 4.07740 0.156246
\(682\) 0 0
\(683\) 29.5183 1.12949 0.564744 0.825266i \(-0.308975\pi\)
0.564744 + 0.825266i \(0.308975\pi\)
\(684\) 0 0
\(685\) −16.3227 −0.623658
\(686\) 0 0
\(687\) 24.7578 0.944569
\(688\) 0 0
\(689\) 46.0774 1.75541
\(690\) 0 0
\(691\) −38.2711 −1.45590 −0.727951 0.685629i \(-0.759527\pi\)
−0.727951 + 0.685629i \(0.759527\pi\)
\(692\) 0 0
\(693\) −24.2758 −0.922163
\(694\) 0 0
\(695\) 26.5794 1.00821
\(696\) 0 0
\(697\) −6.24987 −0.236731
\(698\) 0 0
\(699\) 6.71057 0.253817
\(700\) 0 0
\(701\) −6.33265 −0.239181 −0.119590 0.992823i \(-0.538158\pi\)
−0.119590 + 0.992823i \(0.538158\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −17.5492 −0.660940
\(706\) 0 0
\(707\) −1.17529 −0.0442015
\(708\) 0 0
\(709\) −19.7945 −0.743398 −0.371699 0.928353i \(-0.621225\pi\)
−0.371699 + 0.928353i \(0.621225\pi\)
\(710\) 0 0
\(711\) −11.8181 −0.443214
\(712\) 0 0
\(713\) −3.31737 −0.124237
\(714\) 0 0
\(715\) 107.796 4.03135
\(716\) 0 0
\(717\) 17.8550 0.666807
\(718\) 0 0
\(719\) 25.4290 0.948341 0.474171 0.880433i \(-0.342748\pi\)
0.474171 + 0.880433i \(0.342748\pi\)
\(720\) 0 0
\(721\) 29.0457 1.08172
\(722\) 0 0
\(723\) 19.2356 0.715380
\(724\) 0 0
\(725\) −6.53957 −0.242873
\(726\) 0 0
\(727\) 11.3695 0.421670 0.210835 0.977522i \(-0.432382\pi\)
0.210835 + 0.977522i \(0.432382\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 69.3780 2.56604
\(732\) 0 0
\(733\) 11.3712 0.420006 0.210003 0.977701i \(-0.432653\pi\)
0.210003 + 0.977701i \(0.432653\pi\)
\(734\) 0 0
\(735\) 26.8745 0.991279
\(736\) 0 0
\(737\) −7.96460 −0.293380
\(738\) 0 0
\(739\) 15.3000 0.562820 0.281410 0.959588i \(-0.409198\pi\)
0.281410 + 0.959588i \(0.409198\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −35.0696 −1.28658 −0.643289 0.765623i \(-0.722431\pi\)
−0.643289 + 0.765623i \(0.722431\pi\)
\(744\) 0 0
\(745\) −29.0564 −1.06455
\(746\) 0 0
\(747\) −1.31483 −0.0481070
\(748\) 0 0
\(749\) −33.2020 −1.21317
\(750\) 0 0
\(751\) 6.29180 0.229591 0.114796 0.993389i \(-0.463379\pi\)
0.114796 + 0.993389i \(0.463379\pi\)
\(752\) 0 0
\(753\) −16.7225 −0.609401
\(754\) 0 0
\(755\) 23.7189 0.863221
\(756\) 0 0
\(757\) 15.8615 0.576494 0.288247 0.957556i \(-0.406928\pi\)
0.288247 + 0.957556i \(0.406928\pi\)
\(758\) 0 0
\(759\) −18.8162 −0.682984
\(760\) 0 0
\(761\) −23.4325 −0.849427 −0.424714 0.905328i \(-0.639625\pi\)
−0.424714 + 0.905328i \(0.639625\pi\)
\(762\) 0 0
\(763\) 5.93069 0.214705
\(764\) 0 0
\(765\) 19.5641 0.707341
\(766\) 0 0
\(767\) −42.2714 −1.52633
\(768\) 0 0
\(769\) −36.0085 −1.29850 −0.649250 0.760575i \(-0.724917\pi\)
−0.649250 + 0.760575i \(0.724917\pi\)
\(770\) 0 0
\(771\) 2.13312 0.0768224
\(772\) 0 0
\(773\) −49.9914 −1.79806 −0.899032 0.437882i \(-0.855729\pi\)
−0.899032 + 0.437882i \(0.855729\pi\)
\(774\) 0 0
\(775\) −2.89656 −0.104047
\(776\) 0 0
\(777\) −17.2991 −0.620601
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −57.7209 −2.06542
\(782\) 0 0
\(783\) 2.36833 0.0846371
\(784\) 0 0
\(785\) −14.2537 −0.508735
\(786\) 0 0
\(787\) −19.2999 −0.687966 −0.343983 0.938976i \(-0.611776\pi\)
−0.343983 + 0.938976i \(0.611776\pi\)
\(788\) 0 0
\(789\) 2.68398 0.0955522
\(790\) 0 0
\(791\) −31.3117 −1.11332
\(792\) 0 0
\(793\) 82.8150 2.94085
\(794\) 0 0
\(795\) −19.7392 −0.700076
\(796\) 0 0
\(797\) −1.93075 −0.0683906 −0.0341953 0.999415i \(-0.510887\pi\)
−0.0341953 + 0.999415i \(0.510887\pi\)
\(798\) 0 0
\(799\) 44.2368 1.56499
\(800\) 0 0
\(801\) −15.5577 −0.549703
\(802\) 0 0
\(803\) −82.2798 −2.90359
\(804\) 0 0
\(805\) 35.9458 1.26692
\(806\) 0 0
\(807\) 1.41658 0.0498660
\(808\) 0 0
\(809\) 4.69817 0.165179 0.0825895 0.996584i \(-0.473681\pi\)
0.0825895 + 0.996584i \(0.473681\pi\)
\(810\) 0 0
\(811\) −39.6396 −1.39194 −0.695968 0.718073i \(-0.745024\pi\)
−0.695968 + 0.718073i \(0.745024\pi\)
\(812\) 0 0
\(813\) 3.58596 0.125765
\(814\) 0 0
\(815\) −4.25634 −0.149093
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 26.5331 0.927141
\(820\) 0 0
\(821\) −29.7394 −1.03791 −0.518957 0.854800i \(-0.673679\pi\)
−0.518957 + 0.854800i \(0.673679\pi\)
\(822\) 0 0
\(823\) −32.6170 −1.13696 −0.568479 0.822698i \(-0.692468\pi\)
−0.568479 + 0.822698i \(0.692468\pi\)
\(824\) 0 0
\(825\) −16.4293 −0.571995
\(826\) 0 0
\(827\) −33.0538 −1.14939 −0.574697 0.818366i \(-0.694880\pi\)
−0.574697 + 0.818366i \(0.694880\pi\)
\(828\) 0 0
\(829\) −3.66392 −0.127253 −0.0636266 0.997974i \(-0.520267\pi\)
−0.0636266 + 0.997974i \(0.520267\pi\)
\(830\) 0 0
\(831\) −13.6785 −0.474501
\(832\) 0 0
\(833\) −67.7434 −2.34717
\(834\) 0 0
\(835\) −0.131843 −0.00456260
\(836\) 0 0
\(837\) 1.04900 0.0362587
\(838\) 0 0
\(839\) −36.5289 −1.26112 −0.630558 0.776142i \(-0.717174\pi\)
−0.630558 + 0.776142i \(0.717174\pi\)
\(840\) 0 0
\(841\) −23.3910 −0.806587
\(842\) 0 0
\(843\) −8.58284 −0.295609
\(844\) 0 0
\(845\) −81.6026 −2.80722
\(846\) 0 0
\(847\) −99.5593 −3.42090
\(848\) 0 0
\(849\) 11.7942 0.404775
\(850\) 0 0
\(851\) −13.4085 −0.459637
\(852\) 0 0
\(853\) −57.2479 −1.96013 −0.980066 0.198673i \(-0.936337\pi\)
−0.980066 + 0.198673i \(0.936337\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 9.67922 0.330636 0.165318 0.986240i \(-0.447135\pi\)
0.165318 + 0.986240i \(0.447135\pi\)
\(858\) 0 0
\(859\) −11.5237 −0.393182 −0.196591 0.980486i \(-0.562987\pi\)
−0.196591 + 0.980486i \(0.562987\pi\)
\(860\) 0 0
\(861\) 3.63112 0.123748
\(862\) 0 0
\(863\) −11.5861 −0.394397 −0.197198 0.980364i \(-0.563184\pi\)
−0.197198 + 0.980364i \(0.563184\pi\)
\(864\) 0 0
\(865\) 46.3184 1.57487
\(866\) 0 0
\(867\) −32.3159 −1.09751
\(868\) 0 0
\(869\) −70.3169 −2.38534
\(870\) 0 0
\(871\) 8.70517 0.294964
\(872\) 0 0
\(873\) −2.18852 −0.0740703
\(874\) 0 0
\(875\) −25.4467 −0.860257
\(876\) 0 0
\(877\) −12.8240 −0.433034 −0.216517 0.976279i \(-0.569470\pi\)
−0.216517 + 0.976279i \(0.569470\pi\)
\(878\) 0 0
\(879\) 9.96188 0.336006
\(880\) 0 0
\(881\) 20.6998 0.697394 0.348697 0.937236i \(-0.386624\pi\)
0.348697 + 0.937236i \(0.386624\pi\)
\(882\) 0 0
\(883\) 3.73167 0.125581 0.0627904 0.998027i \(-0.480000\pi\)
0.0627904 + 0.998027i \(0.480000\pi\)
\(884\) 0 0
\(885\) 18.1087 0.608718
\(886\) 0 0
\(887\) 8.92721 0.299746 0.149873 0.988705i \(-0.452113\pi\)
0.149873 + 0.988705i \(0.452113\pi\)
\(888\) 0 0
\(889\) 4.86304 0.163101
\(890\) 0 0
\(891\) 5.94993 0.199330
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 64.4306 2.15368
\(896\) 0 0
\(897\) 20.5658 0.686670
\(898\) 0 0
\(899\) 2.48437 0.0828584
\(900\) 0 0
\(901\) 49.7572 1.65765
\(902\) 0 0
\(903\) −40.3080 −1.34137
\(904\) 0 0
\(905\) −18.2990 −0.608280
\(906\) 0 0
\(907\) −40.3490 −1.33977 −0.669884 0.742466i \(-0.733656\pi\)
−0.669884 + 0.742466i \(0.733656\pi\)
\(908\) 0 0
\(909\) 0.288061 0.00955437
\(910\) 0 0
\(911\) 20.6148 0.682998 0.341499 0.939882i \(-0.389065\pi\)
0.341499 + 0.939882i \(0.389065\pi\)
\(912\) 0 0
\(913\) −7.82312 −0.258908
\(914\) 0 0
\(915\) −35.4773 −1.17284
\(916\) 0 0
\(917\) 11.7396 0.387677
\(918\) 0 0
\(919\) 22.3348 0.736757 0.368379 0.929676i \(-0.379913\pi\)
0.368379 + 0.929676i \(0.379913\pi\)
\(920\) 0 0
\(921\) −7.02029 −0.231326
\(922\) 0 0
\(923\) 63.0880 2.07657
\(924\) 0 0
\(925\) −11.7076 −0.384944
\(926\) 0 0
\(927\) −7.11901 −0.233819
\(928\) 0 0
\(929\) −20.4139 −0.669759 −0.334880 0.942261i \(-0.608696\pi\)
−0.334880 + 0.942261i \(0.608696\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −2.49946 −0.0818287
\(934\) 0 0
\(935\) 116.405 3.80685
\(936\) 0 0
\(937\) −28.5544 −0.932833 −0.466417 0.884565i \(-0.654455\pi\)
−0.466417 + 0.884565i \(0.654455\pi\)
\(938\) 0 0
\(939\) −12.7406 −0.415774
\(940\) 0 0
\(941\) 40.8481 1.33161 0.665804 0.746127i \(-0.268089\pi\)
0.665804 + 0.746127i \(0.268089\pi\)
\(942\) 0 0
\(943\) 2.81447 0.0916518
\(944\) 0 0
\(945\) −11.3666 −0.369754
\(946\) 0 0
\(947\) −0.182758 −0.00593883 −0.00296941 0.999996i \(-0.500945\pi\)
−0.00296941 + 0.999996i \(0.500945\pi\)
\(948\) 0 0
\(949\) 89.9305 2.91927
\(950\) 0 0
\(951\) −2.22620 −0.0721895
\(952\) 0 0
\(953\) 54.0511 1.75089 0.875444 0.483320i \(-0.160569\pi\)
0.875444 + 0.483320i \(0.160569\pi\)
\(954\) 0 0
\(955\) −19.1626 −0.620086
\(956\) 0 0
\(957\) 14.0914 0.455509
\(958\) 0 0
\(959\) −23.9050 −0.771931
\(960\) 0 0
\(961\) −29.8996 −0.964503
\(962\) 0 0
\(963\) 8.13769 0.262234
\(964\) 0 0
\(965\) −38.1911 −1.22942
\(966\) 0 0
\(967\) −1.12580 −0.0362033 −0.0181016 0.999836i \(-0.505762\pi\)
−0.0181016 + 0.999836i \(0.505762\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −21.0600 −0.675848 −0.337924 0.941173i \(-0.609725\pi\)
−0.337924 + 0.941173i \(0.609725\pi\)
\(972\) 0 0
\(973\) 38.9262 1.24792
\(974\) 0 0
\(975\) 17.9570 0.575083
\(976\) 0 0
\(977\) 25.8203 0.826064 0.413032 0.910717i \(-0.364470\pi\)
0.413032 + 0.910717i \(0.364470\pi\)
\(978\) 0 0
\(979\) −92.5670 −2.95845
\(980\) 0 0
\(981\) −1.45359 −0.0464096
\(982\) 0 0
\(983\) −44.9028 −1.43218 −0.716089 0.698009i \(-0.754069\pi\)
−0.716089 + 0.698009i \(0.754069\pi\)
\(984\) 0 0
\(985\) −8.88541 −0.283113
\(986\) 0 0
\(987\) −25.7012 −0.818078
\(988\) 0 0
\(989\) −31.2426 −0.993458
\(990\) 0 0
\(991\) −5.86794 −0.186401 −0.0932006 0.995647i \(-0.529710\pi\)
−0.0932006 + 0.995647i \(0.529710\pi\)
\(992\) 0 0
\(993\) −15.4633 −0.490714
\(994\) 0 0
\(995\) −70.9858 −2.25040
\(996\) 0 0
\(997\) 37.9629 1.20230 0.601149 0.799137i \(-0.294710\pi\)
0.601149 + 0.799137i \(0.294710\pi\)
\(998\) 0 0
\(999\) 4.23995 0.134146
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8664.2.a.br.1.2 12
19.18 odd 2 8664.2.a.bs.1.2 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
8664.2.a.br.1.2 12 1.1 even 1 trivial
8664.2.a.bs.1.2 yes 12 19.18 odd 2