Properties

Label 8664.2.a.bs.1.11
Level $8664$
Weight $2$
Character 8664.1
Self dual yes
Analytic conductor $69.182$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8664,2,Mod(1,8664)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8664, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8664.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8664 = 2^{3} \cdot 3 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8664.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(69.1823883112\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2 x^{11} - 37 x^{10} + 52 x^{9} + 526 x^{8} - 414 x^{7} - 3501 x^{6} + 832 x^{5} + 10258 x^{4} + \cdots + 361 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.11
Root \(3.82351\) of defining polynomial
Character \(\chi\) \(=\) 8664.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +3.82351 q^{5} +4.76113 q^{7} +1.00000 q^{9} -1.67399 q^{11} -1.58781 q^{13} +3.82351 q^{15} +0.353653 q^{17} +4.76113 q^{21} +7.42529 q^{23} +9.61922 q^{25} +1.00000 q^{27} +2.19764 q^{29} +5.77759 q^{31} -1.67399 q^{33} +18.2042 q^{35} -0.763352 q^{37} -1.58781 q^{39} -10.8125 q^{41} -11.9267 q^{43} +3.82351 q^{45} -7.31189 q^{47} +15.6683 q^{49} +0.353653 q^{51} +10.3100 q^{53} -6.40053 q^{55} +0.254293 q^{59} -4.97487 q^{61} +4.76113 q^{63} -6.07102 q^{65} -3.98961 q^{67} +7.42529 q^{69} -11.3801 q^{71} +15.5961 q^{73} +9.61922 q^{75} -7.97009 q^{77} -6.52354 q^{79} +1.00000 q^{81} +15.0766 q^{83} +1.35220 q^{85} +2.19764 q^{87} +8.03077 q^{89} -7.55979 q^{91} +5.77759 q^{93} -15.3927 q^{97} -1.67399 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{3} + 2 q^{5} + 4 q^{7} + 12 q^{9} + 14 q^{11} - 4 q^{13} + 2 q^{15} + 4 q^{21} + 26 q^{23} + 18 q^{25} + 12 q^{27} + 10 q^{29} - 8 q^{31} + 14 q^{33} + 30 q^{35} + 8 q^{37} - 4 q^{39} - 18 q^{41}+ \cdots + 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 3.82351 1.70993 0.854963 0.518690i \(-0.173580\pi\)
0.854963 + 0.518690i \(0.173580\pi\)
\(6\) 0 0
\(7\) 4.76113 1.79954 0.899769 0.436367i \(-0.143735\pi\)
0.899769 + 0.436367i \(0.143735\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −1.67399 −0.504728 −0.252364 0.967632i \(-0.581208\pi\)
−0.252364 + 0.967632i \(0.581208\pi\)
\(12\) 0 0
\(13\) −1.58781 −0.440380 −0.220190 0.975457i \(-0.570668\pi\)
−0.220190 + 0.975457i \(0.570668\pi\)
\(14\) 0 0
\(15\) 3.82351 0.987226
\(16\) 0 0
\(17\) 0.353653 0.0857736 0.0428868 0.999080i \(-0.486345\pi\)
0.0428868 + 0.999080i \(0.486345\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) 0 0
\(21\) 4.76113 1.03896
\(22\) 0 0
\(23\) 7.42529 1.54828 0.774140 0.633015i \(-0.218183\pi\)
0.774140 + 0.633015i \(0.218183\pi\)
\(24\) 0 0
\(25\) 9.61922 1.92384
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 2.19764 0.408091 0.204045 0.978961i \(-0.434591\pi\)
0.204045 + 0.978961i \(0.434591\pi\)
\(30\) 0 0
\(31\) 5.77759 1.03769 0.518843 0.854870i \(-0.326363\pi\)
0.518843 + 0.854870i \(0.326363\pi\)
\(32\) 0 0
\(33\) −1.67399 −0.291405
\(34\) 0 0
\(35\) 18.2042 3.07707
\(36\) 0 0
\(37\) −0.763352 −0.125494 −0.0627471 0.998029i \(-0.519986\pi\)
−0.0627471 + 0.998029i \(0.519986\pi\)
\(38\) 0 0
\(39\) −1.58781 −0.254254
\(40\) 0 0
\(41\) −10.8125 −1.68863 −0.844316 0.535845i \(-0.819993\pi\)
−0.844316 + 0.535845i \(0.819993\pi\)
\(42\) 0 0
\(43\) −11.9267 −1.81880 −0.909402 0.415917i \(-0.863461\pi\)
−0.909402 + 0.415917i \(0.863461\pi\)
\(44\) 0 0
\(45\) 3.82351 0.569975
\(46\) 0 0
\(47\) −7.31189 −1.06655 −0.533275 0.845942i \(-0.679039\pi\)
−0.533275 + 0.845942i \(0.679039\pi\)
\(48\) 0 0
\(49\) 15.6683 2.23833
\(50\) 0 0
\(51\) 0.353653 0.0495214
\(52\) 0 0
\(53\) 10.3100 1.41618 0.708091 0.706121i \(-0.249557\pi\)
0.708091 + 0.706121i \(0.249557\pi\)
\(54\) 0 0
\(55\) −6.40053 −0.863047
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.254293 0.0331061 0.0165530 0.999863i \(-0.494731\pi\)
0.0165530 + 0.999863i \(0.494731\pi\)
\(60\) 0 0
\(61\) −4.97487 −0.636967 −0.318483 0.947928i \(-0.603173\pi\)
−0.318483 + 0.947928i \(0.603173\pi\)
\(62\) 0 0
\(63\) 4.76113 0.599846
\(64\) 0 0
\(65\) −6.07102 −0.753018
\(66\) 0 0
\(67\) −3.98961 −0.487409 −0.243704 0.969850i \(-0.578363\pi\)
−0.243704 + 0.969850i \(0.578363\pi\)
\(68\) 0 0
\(69\) 7.42529 0.893900
\(70\) 0 0
\(71\) −11.3801 −1.35057 −0.675285 0.737557i \(-0.735979\pi\)
−0.675285 + 0.737557i \(0.735979\pi\)
\(72\) 0 0
\(73\) 15.5961 1.82538 0.912692 0.408648i \(-0.134000\pi\)
0.912692 + 0.408648i \(0.134000\pi\)
\(74\) 0 0
\(75\) 9.61922 1.11073
\(76\) 0 0
\(77\) −7.97009 −0.908277
\(78\) 0 0
\(79\) −6.52354 −0.733955 −0.366978 0.930230i \(-0.619607\pi\)
−0.366978 + 0.930230i \(0.619607\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 15.0766 1.65487 0.827434 0.561563i \(-0.189800\pi\)
0.827434 + 0.561563i \(0.189800\pi\)
\(84\) 0 0
\(85\) 1.35220 0.146666
\(86\) 0 0
\(87\) 2.19764 0.235611
\(88\) 0 0
\(89\) 8.03077 0.851260 0.425630 0.904897i \(-0.360052\pi\)
0.425630 + 0.904897i \(0.360052\pi\)
\(90\) 0 0
\(91\) −7.55979 −0.792481
\(92\) 0 0
\(93\) 5.77759 0.599108
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −15.3927 −1.56289 −0.781446 0.623973i \(-0.785518\pi\)
−0.781446 + 0.623973i \(0.785518\pi\)
\(98\) 0 0
\(99\) −1.67399 −0.168243
\(100\) 0 0
\(101\) −9.79765 −0.974903 −0.487451 0.873150i \(-0.662073\pi\)
−0.487451 + 0.873150i \(0.662073\pi\)
\(102\) 0 0
\(103\) 14.4371 1.42253 0.711266 0.702923i \(-0.248122\pi\)
0.711266 + 0.702923i \(0.248122\pi\)
\(104\) 0 0
\(105\) 18.2042 1.77655
\(106\) 0 0
\(107\) 1.60927 0.155574 0.0777868 0.996970i \(-0.475215\pi\)
0.0777868 + 0.996970i \(0.475215\pi\)
\(108\) 0 0
\(109\) −12.3011 −1.17824 −0.589118 0.808047i \(-0.700525\pi\)
−0.589118 + 0.808047i \(0.700525\pi\)
\(110\) 0 0
\(111\) −0.763352 −0.0724541
\(112\) 0 0
\(113\) −8.81149 −0.828915 −0.414457 0.910069i \(-0.636029\pi\)
−0.414457 + 0.910069i \(0.636029\pi\)
\(114\) 0 0
\(115\) 28.3907 2.64744
\(116\) 0 0
\(117\) −1.58781 −0.146793
\(118\) 0 0
\(119\) 1.68379 0.154353
\(120\) 0 0
\(121\) −8.19775 −0.745250
\(122\) 0 0
\(123\) −10.8125 −0.974933
\(124\) 0 0
\(125\) 17.6616 1.57970
\(126\) 0 0
\(127\) 0.126292 0.0112066 0.00560332 0.999984i \(-0.498216\pi\)
0.00560332 + 0.999984i \(0.498216\pi\)
\(128\) 0 0
\(129\) −11.9267 −1.05009
\(130\) 0 0
\(131\) −5.49654 −0.480235 −0.240117 0.970744i \(-0.577186\pi\)
−0.240117 + 0.970744i \(0.577186\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 3.82351 0.329075
\(136\) 0 0
\(137\) 3.32189 0.283808 0.141904 0.989880i \(-0.454678\pi\)
0.141904 + 0.989880i \(0.454678\pi\)
\(138\) 0 0
\(139\) 13.3753 1.13448 0.567240 0.823552i \(-0.308011\pi\)
0.567240 + 0.823552i \(0.308011\pi\)
\(140\) 0 0
\(141\) −7.31189 −0.615772
\(142\) 0 0
\(143\) 2.65799 0.222272
\(144\) 0 0
\(145\) 8.40268 0.697804
\(146\) 0 0
\(147\) 15.6683 1.29230
\(148\) 0 0
\(149\) 15.1388 1.24022 0.620109 0.784515i \(-0.287088\pi\)
0.620109 + 0.784515i \(0.287088\pi\)
\(150\) 0 0
\(151\) −13.6459 −1.11049 −0.555245 0.831687i \(-0.687376\pi\)
−0.555245 + 0.831687i \(0.687376\pi\)
\(152\) 0 0
\(153\) 0.353653 0.0285912
\(154\) 0 0
\(155\) 22.0907 1.77437
\(156\) 0 0
\(157\) 5.30408 0.423311 0.211656 0.977344i \(-0.432114\pi\)
0.211656 + 0.977344i \(0.432114\pi\)
\(158\) 0 0
\(159\) 10.3100 0.817633
\(160\) 0 0
\(161\) 35.3528 2.78619
\(162\) 0 0
\(163\) −1.63770 −0.128274 −0.0641371 0.997941i \(-0.520430\pi\)
−0.0641371 + 0.997941i \(0.520430\pi\)
\(164\) 0 0
\(165\) −6.40053 −0.498280
\(166\) 0 0
\(167\) 5.82845 0.451019 0.225510 0.974241i \(-0.427595\pi\)
0.225510 + 0.974241i \(0.427595\pi\)
\(168\) 0 0
\(169\) −10.4788 −0.806065
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2.31759 0.176203 0.0881014 0.996112i \(-0.471920\pi\)
0.0881014 + 0.996112i \(0.471920\pi\)
\(174\) 0 0
\(175\) 45.7983 3.46203
\(176\) 0 0
\(177\) 0.254293 0.0191138
\(178\) 0 0
\(179\) 21.7635 1.62668 0.813341 0.581788i \(-0.197647\pi\)
0.813341 + 0.581788i \(0.197647\pi\)
\(180\) 0 0
\(181\) 19.3403 1.43755 0.718777 0.695241i \(-0.244702\pi\)
0.718777 + 0.695241i \(0.244702\pi\)
\(182\) 0 0
\(183\) −4.97487 −0.367753
\(184\) 0 0
\(185\) −2.91868 −0.214586
\(186\) 0 0
\(187\) −0.592013 −0.0432923
\(188\) 0 0
\(189\) 4.76113 0.346321
\(190\) 0 0
\(191\) −17.6975 −1.28055 −0.640273 0.768148i \(-0.721179\pi\)
−0.640273 + 0.768148i \(0.721179\pi\)
\(192\) 0 0
\(193\) −26.7460 −1.92522 −0.962610 0.270892i \(-0.912681\pi\)
−0.962610 + 0.270892i \(0.912681\pi\)
\(194\) 0 0
\(195\) −6.07102 −0.434755
\(196\) 0 0
\(197\) −7.51553 −0.535460 −0.267730 0.963494i \(-0.586273\pi\)
−0.267730 + 0.963494i \(0.586273\pi\)
\(198\) 0 0
\(199\) 4.05209 0.287245 0.143623 0.989633i \(-0.454125\pi\)
0.143623 + 0.989633i \(0.454125\pi\)
\(200\) 0 0
\(201\) −3.98961 −0.281406
\(202\) 0 0
\(203\) 10.4632 0.734374
\(204\) 0 0
\(205\) −41.3418 −2.88744
\(206\) 0 0
\(207\) 7.42529 0.516093
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 20.0320 1.37906 0.689528 0.724259i \(-0.257818\pi\)
0.689528 + 0.724259i \(0.257818\pi\)
\(212\) 0 0
\(213\) −11.3801 −0.779752
\(214\) 0 0
\(215\) −45.6018 −3.11002
\(216\) 0 0
\(217\) 27.5079 1.86735
\(218\) 0 0
\(219\) 15.5961 1.05389
\(220\) 0 0
\(221\) −0.561536 −0.0377730
\(222\) 0 0
\(223\) 4.32154 0.289392 0.144696 0.989476i \(-0.453780\pi\)
0.144696 + 0.989476i \(0.453780\pi\)
\(224\) 0 0
\(225\) 9.61922 0.641281
\(226\) 0 0
\(227\) 1.50250 0.0997247 0.0498623 0.998756i \(-0.484122\pi\)
0.0498623 + 0.998756i \(0.484122\pi\)
\(228\) 0 0
\(229\) 0.345009 0.0227988 0.0113994 0.999935i \(-0.496371\pi\)
0.0113994 + 0.999935i \(0.496371\pi\)
\(230\) 0 0
\(231\) −7.97009 −0.524394
\(232\) 0 0
\(233\) −10.5455 −0.690860 −0.345430 0.938444i \(-0.612267\pi\)
−0.345430 + 0.938444i \(0.612267\pi\)
\(234\) 0 0
\(235\) −27.9571 −1.82372
\(236\) 0 0
\(237\) −6.52354 −0.423749
\(238\) 0 0
\(239\) −22.6744 −1.46668 −0.733342 0.679860i \(-0.762040\pi\)
−0.733342 + 0.679860i \(0.762040\pi\)
\(240\) 0 0
\(241\) −27.9433 −1.79999 −0.899993 0.435904i \(-0.856429\pi\)
−0.899993 + 0.435904i \(0.856429\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 59.9080 3.82738
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 15.0766 0.955438
\(250\) 0 0
\(251\) 12.3285 0.778171 0.389085 0.921202i \(-0.372791\pi\)
0.389085 + 0.921202i \(0.372791\pi\)
\(252\) 0 0
\(253\) −12.4299 −0.781460
\(254\) 0 0
\(255\) 1.35220 0.0846779
\(256\) 0 0
\(257\) 20.0019 1.24769 0.623843 0.781550i \(-0.285570\pi\)
0.623843 + 0.781550i \(0.285570\pi\)
\(258\) 0 0
\(259\) −3.63441 −0.225832
\(260\) 0 0
\(261\) 2.19764 0.136030
\(262\) 0 0
\(263\) 7.44697 0.459200 0.229600 0.973285i \(-0.426258\pi\)
0.229600 + 0.973285i \(0.426258\pi\)
\(264\) 0 0
\(265\) 39.4202 2.42157
\(266\) 0 0
\(267\) 8.03077 0.491475
\(268\) 0 0
\(269\) −2.66000 −0.162183 −0.0810915 0.996707i \(-0.525841\pi\)
−0.0810915 + 0.996707i \(0.525841\pi\)
\(270\) 0 0
\(271\) −16.0348 −0.974044 −0.487022 0.873390i \(-0.661917\pi\)
−0.487022 + 0.873390i \(0.661917\pi\)
\(272\) 0 0
\(273\) −7.55979 −0.457539
\(274\) 0 0
\(275\) −16.1025 −0.971018
\(276\) 0 0
\(277\) −4.58411 −0.275433 −0.137716 0.990472i \(-0.543976\pi\)
−0.137716 + 0.990472i \(0.543976\pi\)
\(278\) 0 0
\(279\) 5.77759 0.345895
\(280\) 0 0
\(281\) −0.402371 −0.0240034 −0.0120017 0.999928i \(-0.503820\pi\)
−0.0120017 + 0.999928i \(0.503820\pi\)
\(282\) 0 0
\(283\) 3.96514 0.235703 0.117852 0.993031i \(-0.462399\pi\)
0.117852 + 0.993031i \(0.462399\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −51.4798 −3.03876
\(288\) 0 0
\(289\) −16.8749 −0.992643
\(290\) 0 0
\(291\) −15.3927 −0.902336
\(292\) 0 0
\(293\) −1.54649 −0.0903470 −0.0451735 0.998979i \(-0.514384\pi\)
−0.0451735 + 0.998979i \(0.514384\pi\)
\(294\) 0 0
\(295\) 0.972290 0.0566089
\(296\) 0 0
\(297\) −1.67399 −0.0971349
\(298\) 0 0
\(299\) −11.7900 −0.681832
\(300\) 0 0
\(301\) −56.7846 −3.27301
\(302\) 0 0
\(303\) −9.79765 −0.562861
\(304\) 0 0
\(305\) −19.0215 −1.08917
\(306\) 0 0
\(307\) 21.9797 1.25445 0.627225 0.778838i \(-0.284191\pi\)
0.627225 + 0.778838i \(0.284191\pi\)
\(308\) 0 0
\(309\) 14.4371 0.821300
\(310\) 0 0
\(311\) −16.2762 −0.922939 −0.461470 0.887156i \(-0.652678\pi\)
−0.461470 + 0.887156i \(0.652678\pi\)
\(312\) 0 0
\(313\) −5.24925 −0.296705 −0.148352 0.988935i \(-0.547397\pi\)
−0.148352 + 0.988935i \(0.547397\pi\)
\(314\) 0 0
\(315\) 18.2042 1.02569
\(316\) 0 0
\(317\) −22.0068 −1.23603 −0.618014 0.786167i \(-0.712062\pi\)
−0.618014 + 0.786167i \(0.712062\pi\)
\(318\) 0 0
\(319\) −3.67883 −0.205975
\(320\) 0 0
\(321\) 1.60927 0.0898205
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −15.2735 −0.847223
\(326\) 0 0
\(327\) −12.3011 −0.680255
\(328\) 0 0
\(329\) −34.8129 −1.91929
\(330\) 0 0
\(331\) 13.9254 0.765408 0.382704 0.923871i \(-0.374993\pi\)
0.382704 + 0.923871i \(0.374993\pi\)
\(332\) 0 0
\(333\) −0.763352 −0.0418314
\(334\) 0 0
\(335\) −15.2543 −0.833432
\(336\) 0 0
\(337\) −20.5738 −1.12073 −0.560364 0.828246i \(-0.689339\pi\)
−0.560364 + 0.828246i \(0.689339\pi\)
\(338\) 0 0
\(339\) −8.81149 −0.478574
\(340\) 0 0
\(341\) −9.67165 −0.523749
\(342\) 0 0
\(343\) 41.2711 2.22843
\(344\) 0 0
\(345\) 28.3907 1.52850
\(346\) 0 0
\(347\) 18.9266 1.01603 0.508017 0.861347i \(-0.330379\pi\)
0.508017 + 0.861347i \(0.330379\pi\)
\(348\) 0 0
\(349\) 24.4871 1.31077 0.655383 0.755297i \(-0.272507\pi\)
0.655383 + 0.755297i \(0.272507\pi\)
\(350\) 0 0
\(351\) −1.58781 −0.0847512
\(352\) 0 0
\(353\) −2.85109 −0.151748 −0.0758742 0.997117i \(-0.524175\pi\)
−0.0758742 + 0.997117i \(0.524175\pi\)
\(354\) 0 0
\(355\) −43.5119 −2.30937
\(356\) 0 0
\(357\) 1.68379 0.0891156
\(358\) 0 0
\(359\) −7.99965 −0.422205 −0.211103 0.977464i \(-0.567705\pi\)
−0.211103 + 0.977464i \(0.567705\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 0 0
\(363\) −8.19775 −0.430270
\(364\) 0 0
\(365\) 59.6318 3.12127
\(366\) 0 0
\(367\) −16.9866 −0.886696 −0.443348 0.896350i \(-0.646209\pi\)
−0.443348 + 0.896350i \(0.646209\pi\)
\(368\) 0 0
\(369\) −10.8125 −0.562878
\(370\) 0 0
\(371\) 49.0871 2.54847
\(372\) 0 0
\(373\) −37.3061 −1.93164 −0.965818 0.259221i \(-0.916534\pi\)
−0.965818 + 0.259221i \(0.916534\pi\)
\(374\) 0 0
\(375\) 17.6616 0.912043
\(376\) 0 0
\(377\) −3.48944 −0.179715
\(378\) 0 0
\(379\) 12.7303 0.653913 0.326957 0.945039i \(-0.393977\pi\)
0.326957 + 0.945039i \(0.393977\pi\)
\(380\) 0 0
\(381\) 0.126292 0.00647016
\(382\) 0 0
\(383\) 22.0194 1.12514 0.562568 0.826751i \(-0.309813\pi\)
0.562568 + 0.826751i \(0.309813\pi\)
\(384\) 0 0
\(385\) −30.4737 −1.55309
\(386\) 0 0
\(387\) −11.9267 −0.606268
\(388\) 0 0
\(389\) −29.3288 −1.48703 −0.743515 0.668719i \(-0.766843\pi\)
−0.743515 + 0.668719i \(0.766843\pi\)
\(390\) 0 0
\(391\) 2.62598 0.132801
\(392\) 0 0
\(393\) −5.49654 −0.277264
\(394\) 0 0
\(395\) −24.9428 −1.25501
\(396\) 0 0
\(397\) −16.1016 −0.808117 −0.404058 0.914733i \(-0.632401\pi\)
−0.404058 + 0.914733i \(0.632401\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −34.6674 −1.73121 −0.865604 0.500729i \(-0.833065\pi\)
−0.865604 + 0.500729i \(0.833065\pi\)
\(402\) 0 0
\(403\) −9.17374 −0.456977
\(404\) 0 0
\(405\) 3.82351 0.189992
\(406\) 0 0
\(407\) 1.27785 0.0633404
\(408\) 0 0
\(409\) 2.50498 0.123863 0.0619317 0.998080i \(-0.480274\pi\)
0.0619317 + 0.998080i \(0.480274\pi\)
\(410\) 0 0
\(411\) 3.32189 0.163857
\(412\) 0 0
\(413\) 1.21072 0.0595756
\(414\) 0 0
\(415\) 57.6454 2.82970
\(416\) 0 0
\(417\) 13.3753 0.654993
\(418\) 0 0
\(419\) −10.0915 −0.493004 −0.246502 0.969142i \(-0.579281\pi\)
−0.246502 + 0.969142i \(0.579281\pi\)
\(420\) 0 0
\(421\) 22.2877 1.08624 0.543119 0.839656i \(-0.317243\pi\)
0.543119 + 0.839656i \(0.317243\pi\)
\(422\) 0 0
\(423\) −7.31189 −0.355516
\(424\) 0 0
\(425\) 3.40187 0.165015
\(426\) 0 0
\(427\) −23.6860 −1.14625
\(428\) 0 0
\(429\) 2.65799 0.128329
\(430\) 0 0
\(431\) 6.80359 0.327718 0.163859 0.986484i \(-0.447606\pi\)
0.163859 + 0.986484i \(0.447606\pi\)
\(432\) 0 0
\(433\) −5.28533 −0.253997 −0.126998 0.991903i \(-0.540534\pi\)
−0.126998 + 0.991903i \(0.540534\pi\)
\(434\) 0 0
\(435\) 8.40268 0.402878
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −17.2492 −0.823258 −0.411629 0.911351i \(-0.635040\pi\)
−0.411629 + 0.911351i \(0.635040\pi\)
\(440\) 0 0
\(441\) 15.6683 0.746112
\(442\) 0 0
\(443\) 14.0426 0.667185 0.333593 0.942717i \(-0.391739\pi\)
0.333593 + 0.942717i \(0.391739\pi\)
\(444\) 0 0
\(445\) 30.7057 1.45559
\(446\) 0 0
\(447\) 15.1388 0.716041
\(448\) 0 0
\(449\) 25.2243 1.19041 0.595205 0.803574i \(-0.297071\pi\)
0.595205 + 0.803574i \(0.297071\pi\)
\(450\) 0 0
\(451\) 18.1001 0.852300
\(452\) 0 0
\(453\) −13.6459 −0.641142
\(454\) 0 0
\(455\) −28.9049 −1.35508
\(456\) 0 0
\(457\) −10.5402 −0.493050 −0.246525 0.969136i \(-0.579289\pi\)
−0.246525 + 0.969136i \(0.579289\pi\)
\(458\) 0 0
\(459\) 0.353653 0.0165071
\(460\) 0 0
\(461\) 17.0615 0.794635 0.397317 0.917681i \(-0.369941\pi\)
0.397317 + 0.917681i \(0.369941\pi\)
\(462\) 0 0
\(463\) −4.60101 −0.213827 −0.106913 0.994268i \(-0.534097\pi\)
−0.106913 + 0.994268i \(0.534097\pi\)
\(464\) 0 0
\(465\) 22.0907 1.02443
\(466\) 0 0
\(467\) 21.5496 0.997196 0.498598 0.866833i \(-0.333848\pi\)
0.498598 + 0.866833i \(0.333848\pi\)
\(468\) 0 0
\(469\) −18.9951 −0.877110
\(470\) 0 0
\(471\) 5.30408 0.244399
\(472\) 0 0
\(473\) 19.9652 0.918001
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 10.3100 0.472061
\(478\) 0 0
\(479\) −32.4671 −1.48346 −0.741730 0.670699i \(-0.765994\pi\)
−0.741730 + 0.670699i \(0.765994\pi\)
\(480\) 0 0
\(481\) 1.21206 0.0552652
\(482\) 0 0
\(483\) 35.3528 1.60861
\(484\) 0 0
\(485\) −58.8541 −2.67243
\(486\) 0 0
\(487\) 8.23919 0.373353 0.186677 0.982421i \(-0.440228\pi\)
0.186677 + 0.982421i \(0.440228\pi\)
\(488\) 0 0
\(489\) −1.63770 −0.0740592
\(490\) 0 0
\(491\) 5.93224 0.267718 0.133859 0.991000i \(-0.457263\pi\)
0.133859 + 0.991000i \(0.457263\pi\)
\(492\) 0 0
\(493\) 0.777201 0.0350034
\(494\) 0 0
\(495\) −6.40053 −0.287682
\(496\) 0 0
\(497\) −54.1821 −2.43040
\(498\) 0 0
\(499\) 21.0359 0.941698 0.470849 0.882214i \(-0.343948\pi\)
0.470849 + 0.882214i \(0.343948\pi\)
\(500\) 0 0
\(501\) 5.82845 0.260396
\(502\) 0 0
\(503\) 2.11646 0.0943685 0.0471842 0.998886i \(-0.484975\pi\)
0.0471842 + 0.998886i \(0.484975\pi\)
\(504\) 0 0
\(505\) −37.4614 −1.66701
\(506\) 0 0
\(507\) −10.4788 −0.465382
\(508\) 0 0
\(509\) −25.1963 −1.11681 −0.558404 0.829569i \(-0.688586\pi\)
−0.558404 + 0.829569i \(0.688586\pi\)
\(510\) 0 0
\(511\) 74.2550 3.28485
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 55.2005 2.43242
\(516\) 0 0
\(517\) 12.2401 0.538317
\(518\) 0 0
\(519\) 2.31759 0.101731
\(520\) 0 0
\(521\) 11.5814 0.507392 0.253696 0.967284i \(-0.418354\pi\)
0.253696 + 0.967284i \(0.418354\pi\)
\(522\) 0 0
\(523\) −8.30995 −0.363369 −0.181684 0.983357i \(-0.558155\pi\)
−0.181684 + 0.983357i \(0.558155\pi\)
\(524\) 0 0
\(525\) 45.7983 1.99880
\(526\) 0 0
\(527\) 2.04326 0.0890060
\(528\) 0 0
\(529\) 32.1349 1.39717
\(530\) 0 0
\(531\) 0.254293 0.0110354
\(532\) 0 0
\(533\) 17.1683 0.743641
\(534\) 0 0
\(535\) 6.15305 0.266019
\(536\) 0 0
\(537\) 21.7635 0.939165
\(538\) 0 0
\(539\) −26.2287 −1.12975
\(540\) 0 0
\(541\) −14.3093 −0.615206 −0.307603 0.951515i \(-0.599527\pi\)
−0.307603 + 0.951515i \(0.599527\pi\)
\(542\) 0 0
\(543\) 19.3403 0.829972
\(544\) 0 0
\(545\) −47.0335 −2.01470
\(546\) 0 0
\(547\) 20.0791 0.858522 0.429261 0.903181i \(-0.358774\pi\)
0.429261 + 0.903181i \(0.358774\pi\)
\(548\) 0 0
\(549\) −4.97487 −0.212322
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −31.0594 −1.32078
\(554\) 0 0
\(555\) −2.91868 −0.123891
\(556\) 0 0
\(557\) 2.17897 0.0923257 0.0461629 0.998934i \(-0.485301\pi\)
0.0461629 + 0.998934i \(0.485301\pi\)
\(558\) 0 0
\(559\) 18.9374 0.800966
\(560\) 0 0
\(561\) −0.592013 −0.0249948
\(562\) 0 0
\(563\) 19.1144 0.805574 0.402787 0.915294i \(-0.368041\pi\)
0.402787 + 0.915294i \(0.368041\pi\)
\(564\) 0 0
\(565\) −33.6908 −1.41738
\(566\) 0 0
\(567\) 4.76113 0.199949
\(568\) 0 0
\(569\) 25.0809 1.05144 0.525722 0.850656i \(-0.323795\pi\)
0.525722 + 0.850656i \(0.323795\pi\)
\(570\) 0 0
\(571\) 9.17104 0.383796 0.191898 0.981415i \(-0.438536\pi\)
0.191898 + 0.981415i \(0.438536\pi\)
\(572\) 0 0
\(573\) −17.6975 −0.739323
\(574\) 0 0
\(575\) 71.4255 2.97865
\(576\) 0 0
\(577\) 38.0492 1.58401 0.792004 0.610515i \(-0.209038\pi\)
0.792004 + 0.610515i \(0.209038\pi\)
\(578\) 0 0
\(579\) −26.7460 −1.11153
\(580\) 0 0
\(581\) 71.7814 2.97800
\(582\) 0 0
\(583\) −17.2588 −0.714787
\(584\) 0 0
\(585\) −6.07102 −0.251006
\(586\) 0 0
\(587\) −17.6209 −0.727291 −0.363645 0.931537i \(-0.618468\pi\)
−0.363645 + 0.931537i \(0.618468\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −7.51553 −0.309148
\(592\) 0 0
\(593\) 6.71083 0.275581 0.137790 0.990461i \(-0.456000\pi\)
0.137790 + 0.990461i \(0.456000\pi\)
\(594\) 0 0
\(595\) 6.43798 0.263932
\(596\) 0 0
\(597\) 4.05209 0.165841
\(598\) 0 0
\(599\) −13.5990 −0.555639 −0.277819 0.960633i \(-0.589612\pi\)
−0.277819 + 0.960633i \(0.589612\pi\)
\(600\) 0 0
\(601\) −18.6352 −0.760147 −0.380073 0.924956i \(-0.624101\pi\)
−0.380073 + 0.924956i \(0.624101\pi\)
\(602\) 0 0
\(603\) −3.98961 −0.162470
\(604\) 0 0
\(605\) −31.3442 −1.27432
\(606\) 0 0
\(607\) −31.8428 −1.29246 −0.646229 0.763143i \(-0.723655\pi\)
−0.646229 + 0.763143i \(0.723655\pi\)
\(608\) 0 0
\(609\) 10.4632 0.423991
\(610\) 0 0
\(611\) 11.6099 0.469687
\(612\) 0 0
\(613\) −25.2112 −1.01827 −0.509136 0.860686i \(-0.670035\pi\)
−0.509136 + 0.860686i \(0.670035\pi\)
\(614\) 0 0
\(615\) −41.3418 −1.66706
\(616\) 0 0
\(617\) 7.93215 0.319336 0.159668 0.987171i \(-0.448958\pi\)
0.159668 + 0.987171i \(0.448958\pi\)
\(618\) 0 0
\(619\) −37.5519 −1.50934 −0.754669 0.656106i \(-0.772203\pi\)
−0.754669 + 0.656106i \(0.772203\pi\)
\(620\) 0 0
\(621\) 7.42529 0.297967
\(622\) 0 0
\(623\) 38.2355 1.53187
\(624\) 0 0
\(625\) 19.4333 0.777333
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −0.269962 −0.0107641
\(630\) 0 0
\(631\) 19.1872 0.763831 0.381915 0.924197i \(-0.375265\pi\)
0.381915 + 0.924197i \(0.375265\pi\)
\(632\) 0 0
\(633\) 20.0320 0.796199
\(634\) 0 0
\(635\) 0.482880 0.0191625
\(636\) 0 0
\(637\) −24.8784 −0.985719
\(638\) 0 0
\(639\) −11.3801 −0.450190
\(640\) 0 0
\(641\) 32.2608 1.27422 0.637112 0.770771i \(-0.280129\pi\)
0.637112 + 0.770771i \(0.280129\pi\)
\(642\) 0 0
\(643\) −1.90975 −0.0753130 −0.0376565 0.999291i \(-0.511989\pi\)
−0.0376565 + 0.999291i \(0.511989\pi\)
\(644\) 0 0
\(645\) −45.6018 −1.79557
\(646\) 0 0
\(647\) 2.81194 0.110549 0.0552744 0.998471i \(-0.482397\pi\)
0.0552744 + 0.998471i \(0.482397\pi\)
\(648\) 0 0
\(649\) −0.425684 −0.0167096
\(650\) 0 0
\(651\) 27.5079 1.07812
\(652\) 0 0
\(653\) 25.8339 1.01096 0.505479 0.862839i \(-0.331316\pi\)
0.505479 + 0.862839i \(0.331316\pi\)
\(654\) 0 0
\(655\) −21.0161 −0.821166
\(656\) 0 0
\(657\) 15.5961 0.608461
\(658\) 0 0
\(659\) −19.4189 −0.756455 −0.378227 0.925713i \(-0.623466\pi\)
−0.378227 + 0.925713i \(0.623466\pi\)
\(660\) 0 0
\(661\) 1.99501 0.0775967 0.0387984 0.999247i \(-0.487647\pi\)
0.0387984 + 0.999247i \(0.487647\pi\)
\(662\) 0 0
\(663\) −0.561536 −0.0218082
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 16.3181 0.631838
\(668\) 0 0
\(669\) 4.32154 0.167081
\(670\) 0 0
\(671\) 8.32789 0.321495
\(672\) 0 0
\(673\) −37.1665 −1.43266 −0.716331 0.697761i \(-0.754180\pi\)
−0.716331 + 0.697761i \(0.754180\pi\)
\(674\) 0 0
\(675\) 9.61922 0.370244
\(676\) 0 0
\(677\) 26.1933 1.00669 0.503345 0.864086i \(-0.332102\pi\)
0.503345 + 0.864086i \(0.332102\pi\)
\(678\) 0 0
\(679\) −73.2866 −2.81248
\(680\) 0 0
\(681\) 1.50250 0.0575761
\(682\) 0 0
\(683\) −12.7168 −0.486596 −0.243298 0.969952i \(-0.578229\pi\)
−0.243298 + 0.969952i \(0.578229\pi\)
\(684\) 0 0
\(685\) 12.7013 0.485291
\(686\) 0 0
\(687\) 0.345009 0.0131629
\(688\) 0 0
\(689\) −16.3703 −0.623659
\(690\) 0 0
\(691\) 33.5596 1.27667 0.638333 0.769760i \(-0.279624\pi\)
0.638333 + 0.769760i \(0.279624\pi\)
\(692\) 0 0
\(693\) −7.97009 −0.302759
\(694\) 0 0
\(695\) 51.1407 1.93988
\(696\) 0 0
\(697\) −3.82389 −0.144840
\(698\) 0 0
\(699\) −10.5455 −0.398868
\(700\) 0 0
\(701\) −28.1443 −1.06300 −0.531498 0.847059i \(-0.678371\pi\)
−0.531498 + 0.847059i \(0.678371\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −27.9571 −1.05292
\(706\) 0 0
\(707\) −46.6479 −1.75437
\(708\) 0 0
\(709\) 7.48684 0.281174 0.140587 0.990068i \(-0.455101\pi\)
0.140587 + 0.990068i \(0.455101\pi\)
\(710\) 0 0
\(711\) −6.52354 −0.244652
\(712\) 0 0
\(713\) 42.9003 1.60663
\(714\) 0 0
\(715\) 10.1628 0.380069
\(716\) 0 0
\(717\) −22.6744 −0.846790
\(718\) 0 0
\(719\) 32.2294 1.20195 0.600976 0.799267i \(-0.294779\pi\)
0.600976 + 0.799267i \(0.294779\pi\)
\(720\) 0 0
\(721\) 68.7370 2.55990
\(722\) 0 0
\(723\) −27.9433 −1.03922
\(724\) 0 0
\(725\) 21.1395 0.785103
\(726\) 0 0
\(727\) 8.16204 0.302713 0.151357 0.988479i \(-0.451636\pi\)
0.151357 + 0.988479i \(0.451636\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −4.21792 −0.156005
\(732\) 0 0
\(733\) 28.3944 1.04877 0.524386 0.851481i \(-0.324295\pi\)
0.524386 + 0.851481i \(0.324295\pi\)
\(734\) 0 0
\(735\) 59.9080 2.20974
\(736\) 0 0
\(737\) 6.67858 0.246009
\(738\) 0 0
\(739\) 2.91255 0.107140 0.0535699 0.998564i \(-0.482940\pi\)
0.0535699 + 0.998564i \(0.482940\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0.622047 0.0228207 0.0114104 0.999935i \(-0.496368\pi\)
0.0114104 + 0.999935i \(0.496368\pi\)
\(744\) 0 0
\(745\) 57.8833 2.12068
\(746\) 0 0
\(747\) 15.0766 0.551622
\(748\) 0 0
\(749\) 7.66192 0.279961
\(750\) 0 0
\(751\) −1.60410 −0.0585343 −0.0292671 0.999572i \(-0.509317\pi\)
−0.0292671 + 0.999572i \(0.509317\pi\)
\(752\) 0 0
\(753\) 12.3285 0.449277
\(754\) 0 0
\(755\) −52.1754 −1.89886
\(756\) 0 0
\(757\) 13.7349 0.499202 0.249601 0.968349i \(-0.419701\pi\)
0.249601 + 0.968349i \(0.419701\pi\)
\(758\) 0 0
\(759\) −12.4299 −0.451176
\(760\) 0 0
\(761\) 9.67261 0.350632 0.175316 0.984512i \(-0.443905\pi\)
0.175316 + 0.984512i \(0.443905\pi\)
\(762\) 0 0
\(763\) −58.5673 −2.12028
\(764\) 0 0
\(765\) 1.35220 0.0488888
\(766\) 0 0
\(767\) −0.403769 −0.0145793
\(768\) 0 0
\(769\) −13.6514 −0.492281 −0.246140 0.969234i \(-0.579162\pi\)
−0.246140 + 0.969234i \(0.579162\pi\)
\(770\) 0 0
\(771\) 20.0019 0.720352
\(772\) 0 0
\(773\) 26.0616 0.937371 0.468685 0.883365i \(-0.344728\pi\)
0.468685 + 0.883365i \(0.344728\pi\)
\(774\) 0 0
\(775\) 55.5759 1.99635
\(776\) 0 0
\(777\) −3.63441 −0.130384
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 19.0502 0.681670
\(782\) 0 0
\(783\) 2.19764 0.0785371
\(784\) 0 0
\(785\) 20.2802 0.723831
\(786\) 0 0
\(787\) −31.0347 −1.10627 −0.553134 0.833092i \(-0.686568\pi\)
−0.553134 + 0.833092i \(0.686568\pi\)
\(788\) 0 0
\(789\) 7.44697 0.265119
\(790\) 0 0
\(791\) −41.9526 −1.49166
\(792\) 0 0
\(793\) 7.89917 0.280508
\(794\) 0 0
\(795\) 39.4202 1.39809
\(796\) 0 0
\(797\) −0.191379 −0.00677899 −0.00338950 0.999994i \(-0.501079\pi\)
−0.00338950 + 0.999994i \(0.501079\pi\)
\(798\) 0 0
\(799\) −2.58588 −0.0914817
\(800\) 0 0
\(801\) 8.03077 0.283753
\(802\) 0 0
\(803\) −26.1077 −0.921322
\(804\) 0 0
\(805\) 135.172 4.76417
\(806\) 0 0
\(807\) −2.66000 −0.0936364
\(808\) 0 0
\(809\) −1.87416 −0.0658919 −0.0329460 0.999457i \(-0.510489\pi\)
−0.0329460 + 0.999457i \(0.510489\pi\)
\(810\) 0 0
\(811\) 30.1680 1.05934 0.529672 0.848203i \(-0.322315\pi\)
0.529672 + 0.848203i \(0.322315\pi\)
\(812\) 0 0
\(813\) −16.0348 −0.562365
\(814\) 0 0
\(815\) −6.26175 −0.219339
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −7.55979 −0.264160
\(820\) 0 0
\(821\) −23.2065 −0.809912 −0.404956 0.914336i \(-0.632713\pi\)
−0.404956 + 0.914336i \(0.632713\pi\)
\(822\) 0 0
\(823\) −13.6392 −0.475433 −0.237716 0.971335i \(-0.576399\pi\)
−0.237716 + 0.971335i \(0.576399\pi\)
\(824\) 0 0
\(825\) −16.1025 −0.560617
\(826\) 0 0
\(827\) 45.8336 1.59379 0.796895 0.604118i \(-0.206475\pi\)
0.796895 + 0.604118i \(0.206475\pi\)
\(828\) 0 0
\(829\) −5.91274 −0.205358 −0.102679 0.994715i \(-0.532741\pi\)
−0.102679 + 0.994715i \(0.532741\pi\)
\(830\) 0 0
\(831\) −4.58411 −0.159021
\(832\) 0 0
\(833\) 5.54116 0.191990
\(834\) 0 0
\(835\) 22.2851 0.771209
\(836\) 0 0
\(837\) 5.77759 0.199703
\(838\) 0 0
\(839\) 19.7781 0.682817 0.341408 0.939915i \(-0.389096\pi\)
0.341408 + 0.939915i \(0.389096\pi\)
\(840\) 0 0
\(841\) −24.1704 −0.833462
\(842\) 0 0
\(843\) −0.402371 −0.0138584
\(844\) 0 0
\(845\) −40.0660 −1.37831
\(846\) 0 0
\(847\) −39.0305 −1.34110
\(848\) 0 0
\(849\) 3.96514 0.136083
\(850\) 0 0
\(851\) −5.66811 −0.194300
\(852\) 0 0
\(853\) −1.89746 −0.0649679 −0.0324839 0.999472i \(-0.510342\pi\)
−0.0324839 + 0.999472i \(0.510342\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 45.7599 1.56313 0.781565 0.623824i \(-0.214422\pi\)
0.781565 + 0.623824i \(0.214422\pi\)
\(858\) 0 0
\(859\) −46.7021 −1.59345 −0.796727 0.604340i \(-0.793437\pi\)
−0.796727 + 0.604340i \(0.793437\pi\)
\(860\) 0 0
\(861\) −51.4798 −1.75443
\(862\) 0 0
\(863\) 14.0945 0.479781 0.239890 0.970800i \(-0.422888\pi\)
0.239890 + 0.970800i \(0.422888\pi\)
\(864\) 0 0
\(865\) 8.86131 0.301294
\(866\) 0 0
\(867\) −16.8749 −0.573103
\(868\) 0 0
\(869\) 10.9204 0.370448
\(870\) 0 0
\(871\) 6.33476 0.214645
\(872\) 0 0
\(873\) −15.3927 −0.520964
\(874\) 0 0
\(875\) 84.0893 2.84274
\(876\) 0 0
\(877\) −2.38775 −0.0806286 −0.0403143 0.999187i \(-0.512836\pi\)
−0.0403143 + 0.999187i \(0.512836\pi\)
\(878\) 0 0
\(879\) −1.54649 −0.0521619
\(880\) 0 0
\(881\) 6.15032 0.207210 0.103605 0.994619i \(-0.466962\pi\)
0.103605 + 0.994619i \(0.466962\pi\)
\(882\) 0 0
\(883\) 41.2923 1.38960 0.694798 0.719205i \(-0.255494\pi\)
0.694798 + 0.719205i \(0.255494\pi\)
\(884\) 0 0
\(885\) 0.972290 0.0326832
\(886\) 0 0
\(887\) 52.6453 1.76766 0.883829 0.467811i \(-0.154957\pi\)
0.883829 + 0.467811i \(0.154957\pi\)
\(888\) 0 0
\(889\) 0.601295 0.0201668
\(890\) 0 0
\(891\) −1.67399 −0.0560809
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 83.2130 2.78150
\(896\) 0 0
\(897\) −11.7900 −0.393656
\(898\) 0 0
\(899\) 12.6970 0.423470
\(900\) 0 0
\(901\) 3.64615 0.121471
\(902\) 0 0
\(903\) −56.7846 −1.88967
\(904\) 0 0
\(905\) 73.9479 2.45811
\(906\) 0 0
\(907\) −0.306681 −0.0101832 −0.00509159 0.999987i \(-0.501621\pi\)
−0.00509159 + 0.999987i \(0.501621\pi\)
\(908\) 0 0
\(909\) −9.79765 −0.324968
\(910\) 0 0
\(911\) 13.7960 0.457081 0.228540 0.973534i \(-0.426605\pi\)
0.228540 + 0.973534i \(0.426605\pi\)
\(912\) 0 0
\(913\) −25.2381 −0.835258
\(914\) 0 0
\(915\) −19.0215 −0.628830
\(916\) 0 0
\(917\) −26.1697 −0.864200
\(918\) 0 0
\(919\) −15.9866 −0.527348 −0.263674 0.964612i \(-0.584934\pi\)
−0.263674 + 0.964612i \(0.584934\pi\)
\(920\) 0 0
\(921\) 21.9797 0.724257
\(922\) 0 0
\(923\) 18.0695 0.594764
\(924\) 0 0
\(925\) −7.34285 −0.241431
\(926\) 0 0
\(927\) 14.4371 0.474178
\(928\) 0 0
\(929\) −16.2033 −0.531614 −0.265807 0.964026i \(-0.585638\pi\)
−0.265807 + 0.964026i \(0.585638\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −16.2762 −0.532859
\(934\) 0 0
\(935\) −2.26357 −0.0740266
\(936\) 0 0
\(937\) 3.01980 0.0986526 0.0493263 0.998783i \(-0.484293\pi\)
0.0493263 + 0.998783i \(0.484293\pi\)
\(938\) 0 0
\(939\) −5.24925 −0.171303
\(940\) 0 0
\(941\) −23.6675 −0.771537 −0.385769 0.922596i \(-0.626064\pi\)
−0.385769 + 0.922596i \(0.626064\pi\)
\(942\) 0 0
\(943\) −80.2861 −2.61448
\(944\) 0 0
\(945\) 18.2042 0.592183
\(946\) 0 0
\(947\) 24.2901 0.789323 0.394662 0.918827i \(-0.370862\pi\)
0.394662 + 0.918827i \(0.370862\pi\)
\(948\) 0 0
\(949\) −24.7637 −0.803863
\(950\) 0 0
\(951\) −22.0068 −0.713621
\(952\) 0 0
\(953\) −55.6335 −1.80214 −0.901072 0.433669i \(-0.857219\pi\)
−0.901072 + 0.433669i \(0.857219\pi\)
\(954\) 0 0
\(955\) −67.6665 −2.18964
\(956\) 0 0
\(957\) −3.67883 −0.118920
\(958\) 0 0
\(959\) 15.8159 0.510723
\(960\) 0 0
\(961\) 2.38056 0.0767921
\(962\) 0 0
\(963\) 1.60927 0.0518579
\(964\) 0 0
\(965\) −102.264 −3.29198
\(966\) 0 0
\(967\) 40.3589 1.29786 0.648928 0.760850i \(-0.275218\pi\)
0.648928 + 0.760850i \(0.275218\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −53.0229 −1.70159 −0.850793 0.525501i \(-0.823878\pi\)
−0.850793 + 0.525501i \(0.823878\pi\)
\(972\) 0 0
\(973\) 63.6817 2.04154
\(974\) 0 0
\(975\) −15.2735 −0.489145
\(976\) 0 0
\(977\) 10.4167 0.333260 0.166630 0.986020i \(-0.446712\pi\)
0.166630 + 0.986020i \(0.446712\pi\)
\(978\) 0 0
\(979\) −13.4435 −0.429655
\(980\) 0 0
\(981\) −12.3011 −0.392745
\(982\) 0 0
\(983\) 47.8416 1.52591 0.762955 0.646452i \(-0.223748\pi\)
0.762955 + 0.646452i \(0.223748\pi\)
\(984\) 0 0
\(985\) −28.7357 −0.915596
\(986\) 0 0
\(987\) −34.8129 −1.10811
\(988\) 0 0
\(989\) −88.5592 −2.81602
\(990\) 0 0
\(991\) −41.6088 −1.32175 −0.660873 0.750497i \(-0.729814\pi\)
−0.660873 + 0.750497i \(0.729814\pi\)
\(992\) 0 0
\(993\) 13.9254 0.441909
\(994\) 0 0
\(995\) 15.4932 0.491168
\(996\) 0 0
\(997\) −20.0117 −0.633776 −0.316888 0.948463i \(-0.602638\pi\)
−0.316888 + 0.948463i \(0.602638\pi\)
\(998\) 0 0
\(999\) −0.763352 −0.0241514
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8664.2.a.bs.1.11 yes 12
19.18 odd 2 8664.2.a.br.1.11 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
8664.2.a.br.1.11 12 19.18 odd 2
8664.2.a.bs.1.11 yes 12 1.1 even 1 trivial