Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [867,2,Mod(616,867)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(867, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([0, 3]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("867.616");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 867.e (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 51) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a primitive root of unity . We also show the integral -expansion of the trace form.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
616.1 |
|
2.00000i | −0.707107 | + | 0.707107i | −2.00000 | 2.12132 | − | 2.12132i | −1.41421 | − | 1.41421i | −1.41421 | − | 1.41421i | 0 | − | 1.00000i | 4.24264 | + | 4.24264i | |||||||||||||||||||
616.2 | 2.00000i | 0.707107 | − | 0.707107i | −2.00000 | −2.12132 | + | 2.12132i | 1.41421 | + | 1.41421i | 1.41421 | + | 1.41421i | 0 | − | 1.00000i | −4.24264 | − | 4.24264i | ||||||||||||||||||||
829.1 | − | 2.00000i | −0.707107 | − | 0.707107i | −2.00000 | 2.12132 | + | 2.12132i | −1.41421 | + | 1.41421i | −1.41421 | + | 1.41421i | 0 | 1.00000i | 4.24264 | − | 4.24264i | ||||||||||||||||||||
829.2 | − | 2.00000i | 0.707107 | + | 0.707107i | −2.00000 | −2.12132 | − | 2.12132i | 1.41421 | − | 1.41421i | 1.41421 | − | 1.41421i | 0 | 1.00000i | −4.24264 | + | 4.24264i | ||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
17.b | even | 2 | 1 | inner |
17.c | even | 4 | 2 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 867.2.e.a | 4 | |
17.b | even | 2 | 1 | inner | 867.2.e.a | 4 | |
17.c | even | 4 | 2 | inner | 867.2.e.a | 4 | |
17.d | even | 8 | 2 | 51.2.d.a | ✓ | 2 | |
17.d | even | 8 | 1 | 867.2.a.d | 1 | ||
17.d | even | 8 | 1 | 867.2.a.e | 1 | ||
17.e | odd | 16 | 8 | 867.2.h.e | 8 | ||
51.g | odd | 8 | 2 | 153.2.d.c | 2 | ||
51.g | odd | 8 | 1 | 2601.2.a.a | 1 | ||
51.g | odd | 8 | 1 | 2601.2.a.c | 1 | ||
68.g | odd | 8 | 2 | 816.2.c.b | 2 | ||
85.k | odd | 8 | 1 | 1275.2.d.a | 2 | ||
85.k | odd | 8 | 1 | 1275.2.d.c | 2 | ||
85.m | even | 8 | 2 | 1275.2.g.b | 2 | ||
85.n | odd | 8 | 1 | 1275.2.d.a | 2 | ||
85.n | odd | 8 | 1 | 1275.2.d.c | 2 | ||
136.o | even | 8 | 2 | 3264.2.c.g | 2 | ||
136.p | odd | 8 | 2 | 3264.2.c.h | 2 | ||
204.p | even | 8 | 2 | 2448.2.c.f | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
51.2.d.a | ✓ | 2 | 17.d | even | 8 | 2 | |
153.2.d.c | 2 | 51.g | odd | 8 | 2 | ||
816.2.c.b | 2 | 68.g | odd | 8 | 2 | ||
867.2.a.d | 1 | 17.d | even | 8 | 1 | ||
867.2.a.e | 1 | 17.d | even | 8 | 1 | ||
867.2.e.a | 4 | 1.a | even | 1 | 1 | trivial | |
867.2.e.a | 4 | 17.b | even | 2 | 1 | inner | |
867.2.e.a | 4 | 17.c | even | 4 | 2 | inner | |
867.2.h.e | 8 | 17.e | odd | 16 | 8 | ||
1275.2.d.a | 2 | 85.k | odd | 8 | 1 | ||
1275.2.d.a | 2 | 85.n | odd | 8 | 1 | ||
1275.2.d.c | 2 | 85.k | odd | 8 | 1 | ||
1275.2.d.c | 2 | 85.n | odd | 8 | 1 | ||
1275.2.g.b | 2 | 85.m | even | 8 | 2 | ||
2448.2.c.f | 2 | 204.p | even | 8 | 2 | ||
2601.2.a.a | 1 | 51.g | odd | 8 | 1 | ||
2601.2.a.c | 1 | 51.g | odd | 8 | 1 | ||
3264.2.c.g | 2 | 136.o | even | 8 | 2 | ||
3264.2.c.h | 2 | 136.p | odd | 8 | 2 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|