Properties

Label 867.2.e.a
Level 867867
Weight 22
Character orbit 867.e
Analytic conductor 6.9236.923
Analytic rank 00
Dimension 44
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [867,2,Mod(616,867)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(867, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("867.616");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 867=3172 867 = 3 \cdot 17^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 867.e (of order 44, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 6.923029855256.92302985525
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(i)\Q(i)
Coefficient field: Q(ζ8)\Q(\zeta_{8})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+1 x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ8\zeta_{8}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q2ζ82q2ζ8q32q4+3ζ8q5+2ζ83q6+2ζ83q7+ζ82q96ζ83q10+5ζ83q11+2ζ8q12+5ζ8q99+O(q100) q - 2 \zeta_{8}^{2} q^{2} - \zeta_{8} q^{3} - 2 q^{4} + 3 \zeta_{8} q^{5} + 2 \zeta_{8}^{3} q^{6} + 2 \zeta_{8}^{3} q^{7} + \zeta_{8}^{2} q^{9} - 6 \zeta_{8}^{3} q^{10} + 5 \zeta_{8}^{3} q^{11} + 2 \zeta_{8} q^{12} + \cdots - 5 \zeta_{8} q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q8q4+4q1316q16+8q18+8q2124q30+20q3324q35+40q38+8q47+32q508q5260q55+32q6448q67+4q694q8116q84++24q98+O(q100) 4 q - 8 q^{4} + 4 q^{13} - 16 q^{16} + 8 q^{18} + 8 q^{21} - 24 q^{30} + 20 q^{33} - 24 q^{35} + 40 q^{38} + 8 q^{47} + 32 q^{50} - 8 q^{52} - 60 q^{55} + 32 q^{64} - 48 q^{67} + 4 q^{69} - 4 q^{81} - 16 q^{84}+ \cdots + 24 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/867Z)×\left(\mathbb{Z}/867\mathbb{Z}\right)^\times.

nn 290290 292292
χ(n)\chi(n) 11 ζ82\zeta_{8}^{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
616.1
0.707107 0.707107i
−0.707107 + 0.707107i
0.707107 + 0.707107i
−0.707107 0.707107i
2.00000i −0.707107 + 0.707107i −2.00000 2.12132 2.12132i −1.41421 1.41421i −1.41421 1.41421i 0 1.00000i 4.24264 + 4.24264i
616.2 2.00000i 0.707107 0.707107i −2.00000 −2.12132 + 2.12132i 1.41421 + 1.41421i 1.41421 + 1.41421i 0 1.00000i −4.24264 4.24264i
829.1 2.00000i −0.707107 0.707107i −2.00000 2.12132 + 2.12132i −1.41421 + 1.41421i −1.41421 + 1.41421i 0 1.00000i 4.24264 4.24264i
829.2 2.00000i 0.707107 + 0.707107i −2.00000 −2.12132 2.12132i 1.41421 1.41421i 1.41421 1.41421i 0 1.00000i −4.24264 + 4.24264i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.b even 2 1 inner
17.c even 4 2 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 867.2.e.a 4
17.b even 2 1 inner 867.2.e.a 4
17.c even 4 2 inner 867.2.e.a 4
17.d even 8 2 51.2.d.a 2
17.d even 8 1 867.2.a.d 1
17.d even 8 1 867.2.a.e 1
17.e odd 16 8 867.2.h.e 8
51.g odd 8 2 153.2.d.c 2
51.g odd 8 1 2601.2.a.a 1
51.g odd 8 1 2601.2.a.c 1
68.g odd 8 2 816.2.c.b 2
85.k odd 8 1 1275.2.d.a 2
85.k odd 8 1 1275.2.d.c 2
85.m even 8 2 1275.2.g.b 2
85.n odd 8 1 1275.2.d.a 2
85.n odd 8 1 1275.2.d.c 2
136.o even 8 2 3264.2.c.g 2
136.p odd 8 2 3264.2.c.h 2
204.p even 8 2 2448.2.c.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
51.2.d.a 2 17.d even 8 2
153.2.d.c 2 51.g odd 8 2
816.2.c.b 2 68.g odd 8 2
867.2.a.d 1 17.d even 8 1
867.2.a.e 1 17.d even 8 1
867.2.e.a 4 1.a even 1 1 trivial
867.2.e.a 4 17.b even 2 1 inner
867.2.e.a 4 17.c even 4 2 inner
867.2.h.e 8 17.e odd 16 8
1275.2.d.a 2 85.k odd 8 1
1275.2.d.a 2 85.n odd 8 1
1275.2.d.c 2 85.k odd 8 1
1275.2.d.c 2 85.n odd 8 1
1275.2.g.b 2 85.m even 8 2
2448.2.c.f 2 204.p even 8 2
2601.2.a.a 1 51.g odd 8 1
2601.2.a.c 1 51.g odd 8 1
3264.2.c.g 2 136.o even 8 2
3264.2.c.h 2 136.p odd 8 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(867,[χ])S_{2}^{\mathrm{new}}(867, [\chi]):

T22+4 T_{2}^{2} + 4 Copy content Toggle raw display
T54+81 T_{5}^{4} + 81 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2+4)2 (T^{2} + 4)^{2} Copy content Toggle raw display
33 T4+1 T^{4} + 1 Copy content Toggle raw display
55 T4+81 T^{4} + 81 Copy content Toggle raw display
77 T4+16 T^{4} + 16 Copy content Toggle raw display
1111 T4+625 T^{4} + 625 Copy content Toggle raw display
1313 (T1)4 (T - 1)^{4} Copy content Toggle raw display
1717 T4 T^{4} Copy content Toggle raw display
1919 (T2+25)2 (T^{2} + 25)^{2} Copy content Toggle raw display
2323 T4+1 T^{4} + 1 Copy content Toggle raw display
2929 T4+1296 T^{4} + 1296 Copy content Toggle raw display
3131 T4+10000 T^{4} + 10000 Copy content Toggle raw display
3737 T4+16 T^{4} + 16 Copy content Toggle raw display
4141 T4+625 T^{4} + 625 Copy content Toggle raw display
4343 (T2+1)2 (T^{2} + 1)^{2} Copy content Toggle raw display
4747 (T2)4 (T - 2)^{4} Copy content Toggle raw display
5353 (T2+36)2 (T^{2} + 36)^{2} Copy content Toggle raw display
5959 T4 T^{4} Copy content Toggle raw display
6161 T4+10000 T^{4} + 10000 Copy content Toggle raw display
6767 (T+12)4 (T + 12)^{4} Copy content Toggle raw display
7171 T4 T^{4} Copy content Toggle raw display
7373 T4+1296 T^{4} + 1296 Copy content Toggle raw display
7979 T4+256 T^{4} + 256 Copy content Toggle raw display
8383 (T2+36)2 (T^{2} + 36)^{2} Copy content Toggle raw display
8989 (T10)4 (T - 10)^{4} Copy content Toggle raw display
9797 T4+4096 T^{4} + 4096 Copy content Toggle raw display
show more
show less