Properties

Label 867.2.h.k.733.2
Level $867$
Weight $2$
Character 867.733
Analytic conductor $6.923$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [867,2,Mod(688,867)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(867, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("867.688");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 867.h (of order \(8\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.92302985525\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{8})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8x^{14} + 32x^{12} + 296x^{10} + 1057x^{8} + 1184x^{6} + 512x^{4} - 512x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 733.2
Root \(-2.83302 + 1.17347i\) of defining polynomial
Character \(\chi\) \(=\) 867.733
Dual form 867.2.h.k.757.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.16830 - 1.16830i) q^{2} +(0.923880 - 0.382683i) q^{3} +0.729840i q^{4} +(-1.55616 - 3.75690i) q^{5} +(-1.52645 - 0.632278i) q^{6} +(0.352980 - 0.852170i) q^{7} +(-1.48392 + 1.48392i) q^{8} +(0.707107 - 0.707107i) q^{9} +(-2.57112 + 6.20723i) q^{10} +(-2.09735 - 0.868752i) q^{11} +(0.279298 + 0.674285i) q^{12} -3.57461i q^{13} +(-1.40798 + 0.583202i) q^{14} +(-2.87540 - 2.87540i) q^{15} +4.92701 q^{16} -1.65222 q^{18} +(1.22318 + 1.22318i) q^{19} +(2.74194 - 1.13575i) q^{20} -0.922382i q^{21} +(1.43537 + 3.46530i) q^{22} +(-4.71048 - 1.95114i) q^{23} +(-0.803094 + 1.93884i) q^{24} +(-8.15712 + 8.15712i) q^{25} +(-4.17620 + 4.17620i) q^{26} +(0.382683 - 0.923880i) q^{27} +(0.621948 + 0.257619i) q^{28} +(0.843328 + 2.03597i) q^{29} +6.71866i q^{30} +(3.81828 - 1.58158i) q^{31} +(-2.78837 - 2.78837i) q^{32} -2.27016 q^{33} -3.75081 q^{35} +(0.516075 + 0.516075i) q^{36} +(5.50127 - 2.27870i) q^{37} -2.85808i q^{38} +(-1.36794 - 3.30250i) q^{39} +(7.88417 + 3.26573i) q^{40} +(1.93259 - 4.66568i) q^{41} +(-1.07762 + 1.07762i) q^{42} +(-3.69920 + 3.69920i) q^{43} +(0.634051 - 1.53073i) q^{44} +(-3.75690 - 1.55616i) q^{45} +(3.22373 + 7.78276i) q^{46} +6.96130i q^{47} +(4.55197 - 1.88549i) q^{48} +(4.34815 + 4.34815i) q^{49} +19.0599 q^{50} +2.60889 q^{52} +(-1.90604 - 1.90604i) q^{53} +(-1.52645 + 0.632278i) q^{54} +9.23146i q^{55} +(0.740760 + 1.78835i) q^{56} +(1.59816 + 0.661981i) q^{57} +(1.39337 - 3.36388i) q^{58} +(5.23146 - 5.23146i) q^{59} +(2.09859 - 2.09859i) q^{60} +(1.48873 - 3.59411i) q^{61} +(-6.30864 - 2.61313i) q^{62} +(-0.352980 - 0.852170i) q^{63} -3.33873i q^{64} +(-13.4294 + 5.56265i) q^{65} +(2.65222 + 2.65222i) q^{66} -12.0419 q^{67} -5.09859 q^{69} +(4.38206 + 4.38206i) q^{70} +(1.40798 - 0.583202i) q^{71} +2.09859i q^{72} +(0.445835 + 1.07634i) q^{73} +(-9.08933 - 3.76492i) q^{74} +(-4.41460 + 10.6578i) q^{75} +(-0.892728 + 0.892728i) q^{76} +(-1.48065 + 1.48065i) q^{77} +(-2.26015 + 5.45647i) q^{78} +(-10.9791 - 4.54769i) q^{79} +(-7.66721 - 18.5103i) q^{80} -1.00000i q^{81} +(-7.70875 + 3.19307i) q^{82} +(4.51494 + 4.51494i) q^{83} +0.673192 q^{84} +8.64354 q^{86} +(1.55827 + 1.55827i) q^{87} +(4.40148 - 1.82315i) q^{88} +10.3597i q^{89} +(2.57112 + 6.20723i) q^{90} +(-3.04617 - 1.26177i) q^{91} +(1.42402 - 3.43790i) q^{92} +(2.92238 - 2.92238i) q^{93} +(8.13287 - 8.13287i) q^{94} +(2.69190 - 6.49883i) q^{95} +(-3.64318 - 1.50906i) q^{96} +(5.53723 + 13.3680i) q^{97} -10.1599i q^{98} +(-2.09735 + 0.868752i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{2} - 32 q^{8} - 8 q^{15} - 24 q^{16} - 8 q^{18} - 32 q^{25} - 40 q^{26} - 16 q^{32} - 24 q^{33} + 16 q^{35} - 48 q^{42} - 48 q^{43} - 32 q^{49} + 120 q^{50} - 32 q^{52} - 16 q^{53} - 56 q^{59}+ \cdots + 48 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/867\mathbb{Z}\right)^\times\).

\(n\) \(290\) \(292\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.16830 1.16830i −0.826111 0.826111i 0.160865 0.986976i \(-0.448572\pi\)
−0.986976 + 0.160865i \(0.948572\pi\)
\(3\) 0.923880 0.382683i 0.533402 0.220942i
\(4\) 0.729840i 0.364920i
\(5\) −1.55616 3.75690i −0.695935 1.68014i −0.732466 0.680803i \(-0.761631\pi\)
0.0365315 0.999333i \(-0.488369\pi\)
\(6\) −1.52645 0.632278i −0.623173 0.258127i
\(7\) 0.352980 0.852170i 0.133414 0.322090i −0.843028 0.537870i \(-0.819229\pi\)
0.976442 + 0.215780i \(0.0692293\pi\)
\(8\) −1.48392 + 1.48392i −0.524647 + 0.524647i
\(9\) 0.707107 0.707107i 0.235702 0.235702i
\(10\) −2.57112 + 6.20723i −0.813059 + 1.96290i
\(11\) −2.09735 0.868752i −0.632376 0.261939i 0.0433862 0.999058i \(-0.486185\pi\)
−0.675762 + 0.737120i \(0.736185\pi\)
\(12\) 0.279298 + 0.674285i 0.0806263 + 0.194649i
\(13\) 3.57461i 0.991417i −0.868489 0.495709i \(-0.834908\pi\)
0.868489 0.495709i \(-0.165092\pi\)
\(14\) −1.40798 + 0.583202i −0.376297 + 0.155867i
\(15\) −2.87540 2.87540i −0.742426 0.742426i
\(16\) 4.92701 1.23175
\(17\) 0 0
\(18\) −1.65222 −0.389433
\(19\) 1.22318 + 1.22318i 0.280617 + 0.280617i 0.833355 0.552738i \(-0.186417\pi\)
−0.552738 + 0.833355i \(0.686417\pi\)
\(20\) 2.74194 1.13575i 0.613115 0.253961i
\(21\) 0.922382i 0.201280i
\(22\) 1.43537 + 3.46530i 0.306022 + 0.738804i
\(23\) −4.71048 1.95114i −0.982203 0.406842i −0.166962 0.985963i \(-0.553396\pi\)
−0.815241 + 0.579122i \(0.803396\pi\)
\(24\) −0.803094 + 1.93884i −0.163931 + 0.395764i
\(25\) −8.15712 + 8.15712i −1.63142 + 1.63142i
\(26\) −4.17620 + 4.17620i −0.819021 + 0.819021i
\(27\) 0.382683 0.923880i 0.0736475 0.177801i
\(28\) 0.621948 + 0.257619i 0.117537 + 0.0486855i
\(29\) 0.843328 + 2.03597i 0.156602 + 0.378071i 0.982635 0.185552i \(-0.0594072\pi\)
−0.826032 + 0.563623i \(0.809407\pi\)
\(30\) 6.71866i 1.22665i
\(31\) 3.81828 1.58158i 0.685783 0.284061i −0.0124592 0.999922i \(-0.503966\pi\)
0.698242 + 0.715862i \(0.253966\pi\)
\(32\) −2.78837 2.78837i −0.492919 0.492919i
\(33\) −2.27016 −0.395184
\(34\) 0 0
\(35\) −3.75081 −0.634003
\(36\) 0.516075 + 0.516075i 0.0860125 + 0.0860125i
\(37\) 5.50127 2.27870i 0.904403 0.374616i 0.118492 0.992955i \(-0.462194\pi\)
0.785912 + 0.618339i \(0.212194\pi\)
\(38\) 2.85808i 0.463642i
\(39\) −1.36794 3.30250i −0.219046 0.528824i
\(40\) 7.88417 + 3.26573i 1.24660 + 0.516358i
\(41\) 1.93259 4.66568i 0.301820 0.728657i −0.698100 0.716000i \(-0.745971\pi\)
0.999920 0.0126571i \(-0.00402900\pi\)
\(42\) −1.07762 + 1.07762i −0.166280 + 0.166280i
\(43\) −3.69920 + 3.69920i −0.564123 + 0.564123i −0.930476 0.366353i \(-0.880606\pi\)
0.366353 + 0.930476i \(0.380606\pi\)
\(44\) 0.634051 1.53073i 0.0955867 0.230767i
\(45\) −3.75690 1.55616i −0.560045 0.231978i
\(46\) 3.22373 + 7.78276i 0.475312 + 1.14751i
\(47\) 6.96130i 1.01541i 0.861531 + 0.507705i \(0.169506\pi\)
−0.861531 + 0.507705i \(0.830494\pi\)
\(48\) 4.55197 1.88549i 0.657020 0.272147i
\(49\) 4.34815 + 4.34815i 0.621164 + 0.621164i
\(50\) 19.0599 2.69548
\(51\) 0 0
\(52\) 2.60889 0.361788
\(53\) −1.90604 1.90604i −0.261815 0.261815i 0.563976 0.825791i \(-0.309271\pi\)
−0.825791 + 0.563976i \(0.809271\pi\)
\(54\) −1.52645 + 0.632278i −0.207724 + 0.0860422i
\(55\) 9.23146i 1.24477i
\(56\) 0.740760 + 1.78835i 0.0989882 + 0.238979i
\(57\) 1.59816 + 0.661981i 0.211682 + 0.0876816i
\(58\) 1.39337 3.36388i 0.182958 0.441700i
\(59\) 5.23146 5.23146i 0.681078 0.681078i −0.279165 0.960243i \(-0.590058\pi\)
0.960243 + 0.279165i \(0.0900577\pi\)
\(60\) 2.09859 2.09859i 0.270926 0.270926i
\(61\) 1.48873 3.59411i 0.190612 0.460178i −0.799463 0.600715i \(-0.794883\pi\)
0.990075 + 0.140537i \(0.0448828\pi\)
\(62\) −6.30864 2.61313i −0.801199 0.331867i
\(63\) −0.352980 0.852170i −0.0444714 0.107363i
\(64\) 3.33873i 0.417341i
\(65\) −13.4294 + 5.56265i −1.66572 + 0.689962i
\(66\) 2.65222 + 2.65222i 0.326466 + 0.326466i
\(67\) −12.0419 −1.47116 −0.735578 0.677440i \(-0.763090\pi\)
−0.735578 + 0.677440i \(0.763090\pi\)
\(68\) 0 0
\(69\) −5.09859 −0.613798
\(70\) 4.38206 + 4.38206i 0.523757 + 0.523757i
\(71\) 1.40798 0.583202i 0.167096 0.0692134i −0.297567 0.954701i \(-0.596175\pi\)
0.464663 + 0.885487i \(0.346175\pi\)
\(72\) 2.09859i 0.247321i
\(73\) 0.445835 + 1.07634i 0.0521810 + 0.125976i 0.947820 0.318805i \(-0.103281\pi\)
−0.895639 + 0.444781i \(0.853281\pi\)
\(74\) −9.08933 3.76492i −1.05661 0.437663i
\(75\) −4.41460 + 10.6578i −0.509754 + 1.23066i
\(76\) −0.892728 + 0.892728i −0.102403 + 0.102403i
\(77\) −1.48065 + 1.48065i −0.168736 + 0.168736i
\(78\) −2.26015 + 5.45647i −0.255911 + 0.617824i
\(79\) −10.9791 4.54769i −1.23524 0.511655i −0.333019 0.942920i \(-0.608067\pi\)
−0.902225 + 0.431265i \(0.858067\pi\)
\(80\) −7.66721 18.5103i −0.857220 2.06951i
\(81\) 1.00000i 0.111111i
\(82\) −7.70875 + 3.19307i −0.851289 + 0.352615i
\(83\) 4.51494 + 4.51494i 0.495579 + 0.495579i 0.910058 0.414480i \(-0.136036\pi\)
−0.414480 + 0.910058i \(0.636036\pi\)
\(84\) 0.673192 0.0734513
\(85\) 0 0
\(86\) 8.64354 0.932057
\(87\) 1.55827 + 1.55827i 0.167064 + 0.167064i
\(88\) 4.40148 1.82315i 0.469199 0.194349i
\(89\) 10.3597i 1.09813i 0.835781 + 0.549063i \(0.185015\pi\)
−0.835781 + 0.549063i \(0.814985\pi\)
\(90\) 2.57112 + 6.20723i 0.271020 + 0.654300i
\(91\) −3.04617 1.26177i −0.319326 0.132269i
\(92\) 1.42402 3.43790i 0.148465 0.358426i
\(93\) 2.92238 2.92238i 0.303037 0.303037i
\(94\) 8.13287 8.13287i 0.838842 0.838842i
\(95\) 2.69190 6.49883i 0.276184 0.666766i
\(96\) −3.64318 1.50906i −0.371831 0.154017i
\(97\) 5.53723 + 13.3680i 0.562220 + 1.35732i 0.907987 + 0.418999i \(0.137619\pi\)
−0.345767 + 0.938321i \(0.612381\pi\)
\(98\) 10.1599i 1.02630i
\(99\) −2.09735 + 0.868752i −0.210792 + 0.0873129i
\(100\) −5.95339 5.95339i −0.595339 0.595339i
\(101\) −0.265746 −0.0264427 −0.0132213 0.999913i \(-0.504209\pi\)
−0.0132213 + 0.999913i \(0.504209\pi\)
\(102\) 0 0
\(103\) −3.03429 −0.298977 −0.149489 0.988763i \(-0.547763\pi\)
−0.149489 + 0.988763i \(0.547763\pi\)
\(104\) 5.30445 + 5.30445i 0.520144 + 0.520144i
\(105\) −3.46530 + 1.43537i −0.338178 + 0.140078i
\(106\) 4.45366i 0.432577i
\(107\) −7.52066 18.1565i −0.727050 1.75525i −0.652185 0.758060i \(-0.726147\pi\)
−0.0748654 0.997194i \(-0.523853\pi\)
\(108\) 0.674285 + 0.279298i 0.0648831 + 0.0268754i
\(109\) −0.273863 + 0.661164i −0.0262313 + 0.0633280i −0.936452 0.350795i \(-0.885912\pi\)
0.910221 + 0.414123i \(0.135912\pi\)
\(110\) 10.7851 10.7851i 1.02832 1.02832i
\(111\) 4.21049 4.21049i 0.399642 0.399642i
\(112\) 1.73914 4.19865i 0.164333 0.396736i
\(113\) 10.8903 + 4.51092i 1.02447 + 0.424351i 0.830715 0.556698i \(-0.187932\pi\)
0.193759 + 0.981049i \(0.437932\pi\)
\(114\) −1.09374 2.64052i −0.102438 0.247308i
\(115\) 20.7331i 1.93337i
\(116\) −1.48594 + 0.615495i −0.137966 + 0.0571473i
\(117\) −2.52763 2.52763i −0.233679 0.233679i
\(118\) −12.2238 −1.12529
\(119\) 0 0
\(120\) 8.53377 0.779023
\(121\) −4.13401 4.13401i −0.375819 0.375819i
\(122\) −5.93826 + 2.45971i −0.537625 + 0.222692i
\(123\) 5.05010i 0.455352i
\(124\) 1.15430 + 2.78673i 0.103659 + 0.250256i
\(125\) 24.5547 + 10.1709i 2.19624 + 0.909713i
\(126\) −0.583202 + 1.40798i −0.0519558 + 0.125432i
\(127\) −1.98731 + 1.98731i −0.176345 + 0.176345i −0.789760 0.613415i \(-0.789795\pi\)
0.613415 + 0.789760i \(0.289795\pi\)
\(128\) −9.47738 + 9.47738i −0.837690 + 0.837690i
\(129\) −2.00199 + 4.83324i −0.176266 + 0.425543i
\(130\) 22.1884 + 9.19074i 1.94605 + 0.806081i
\(131\) −3.03354 7.32361i −0.265041 0.639866i 0.734195 0.678939i \(-0.237560\pi\)
−0.999236 + 0.0390722i \(0.987560\pi\)
\(132\) 1.65685i 0.144211i
\(133\) 1.47412 0.610600i 0.127822 0.0529457i
\(134\) 14.0686 + 14.0686i 1.21534 + 1.21534i
\(135\) −4.06644 −0.349983
\(136\) 0 0
\(137\) −0.103218 −0.00881851 −0.00440926 0.999990i \(-0.501404\pi\)
−0.00440926 + 0.999990i \(0.501404\pi\)
\(138\) 5.95667 + 5.95667i 0.507065 + 0.507065i
\(139\) −13.3467 + 5.52838i −1.13205 + 0.468911i −0.868478 0.495728i \(-0.834901\pi\)
−0.263574 + 0.964639i \(0.584901\pi\)
\(140\) 2.73749i 0.231360i
\(141\) 2.66397 + 6.43140i 0.224347 + 0.541622i
\(142\) −2.32629 0.963580i −0.195218 0.0808619i
\(143\) −3.10545 + 7.49721i −0.259691 + 0.626948i
\(144\) 3.48392 3.48392i 0.290327 0.290327i
\(145\) 6.33660 6.33660i 0.526226 0.526226i
\(146\) 0.736619 1.77836i 0.0609630 0.147178i
\(147\) 5.68113 + 2.35320i 0.468572 + 0.194089i
\(148\) 1.66309 + 4.01505i 0.136705 + 0.330035i
\(149\) 3.59557i 0.294561i −0.989095 0.147280i \(-0.952948\pi\)
0.989095 0.147280i \(-0.0470520\pi\)
\(150\) 17.6090 7.29390i 1.43777 0.595545i
\(151\) −5.36573 5.36573i −0.436657 0.436657i 0.454229 0.890885i \(-0.349915\pi\)
−0.890885 + 0.454229i \(0.849915\pi\)
\(152\) −3.63022 −0.294450
\(153\) 0 0
\(154\) 3.45968 0.278789
\(155\) −11.8837 11.8837i −0.954520 0.954520i
\(156\) 2.41030 0.998380i 0.192979 0.0799343i
\(157\) 18.9569i 1.51292i −0.654038 0.756462i \(-0.726926\pi\)
0.654038 0.756462i \(-0.273074\pi\)
\(158\) 7.51379 + 18.1399i 0.597765 + 1.44313i
\(159\) −2.49037 1.03154i −0.197499 0.0818068i
\(160\) −6.13648 + 14.8148i −0.485131 + 1.17121i
\(161\) −3.32541 + 3.32541i −0.262079 + 0.262079i
\(162\) −1.16830 + 1.16830i −0.0917902 + 0.0917902i
\(163\) 5.14060 12.4105i 0.402643 0.972067i −0.584379 0.811481i \(-0.698662\pi\)
0.987022 0.160586i \(-0.0513383\pi\)
\(164\) 3.40520 + 1.41048i 0.265902 + 0.110140i
\(165\) 3.53273 + 8.52876i 0.275022 + 0.663963i
\(166\) 10.5496i 0.818806i
\(167\) 1.97460 0.817904i 0.152799 0.0632913i −0.304973 0.952361i \(-0.598648\pi\)
0.457772 + 0.889070i \(0.348648\pi\)
\(168\) 1.36875 + 1.36875i 0.105601 + 0.105601i
\(169\) 0.222197 0.0170921
\(170\) 0 0
\(171\) 1.72984 0.132284
\(172\) −2.69983 2.69983i −0.205860 0.205860i
\(173\) −4.87804 + 2.02055i −0.370870 + 0.153619i −0.560331 0.828269i \(-0.689326\pi\)
0.189461 + 0.981888i \(0.439326\pi\)
\(174\) 3.64104i 0.276027i
\(175\) 4.07195 + 9.83056i 0.307810 + 0.743120i
\(176\) −10.3337 4.28036i −0.778931 0.322644i
\(177\) 2.83125 6.83523i 0.212809 0.513767i
\(178\) 12.1032 12.1032i 0.907175 0.907175i
\(179\) −5.49860 + 5.49860i −0.410985 + 0.410985i −0.882081 0.471097i \(-0.843858\pi\)
0.471097 + 0.882081i \(0.343858\pi\)
\(180\) 1.13575 2.74194i 0.0846536 0.204372i
\(181\) −0.846119 0.350474i −0.0628915 0.0260505i 0.351016 0.936369i \(-0.385836\pi\)
−0.413907 + 0.910319i \(0.635836\pi\)
\(182\) 2.08472 + 5.03296i 0.154530 + 0.373067i
\(183\) 3.89023i 0.287574i
\(184\) 9.88535 4.09465i 0.728758 0.301861i
\(185\) −17.1217 17.1217i −1.25881 1.25881i
\(186\) −6.82843 −0.500685
\(187\) 0 0
\(188\) −5.08064 −0.370544
\(189\) −0.652223 0.652223i −0.0474422 0.0474422i
\(190\) −10.7375 + 4.44763i −0.778982 + 0.322665i
\(191\) 19.1658i 1.38679i −0.720560 0.693393i \(-0.756115\pi\)
0.720560 0.693393i \(-0.243885\pi\)
\(192\) −1.27768 3.08459i −0.0922084 0.222611i
\(193\) 4.35274 + 1.80296i 0.313317 + 0.129780i 0.533800 0.845611i \(-0.320763\pi\)
−0.220483 + 0.975391i \(0.570763\pi\)
\(194\) 9.14873 22.0870i 0.656841 1.58575i
\(195\) −10.2784 + 10.2784i −0.736054 + 0.736054i
\(196\) −3.17345 + 3.17345i −0.226675 + 0.226675i
\(197\) 5.70002 13.7611i 0.406109 0.980435i −0.580042 0.814587i \(-0.696964\pi\)
0.986151 0.165848i \(-0.0530362\pi\)
\(198\) 3.46530 + 1.43537i 0.246268 + 0.102007i
\(199\) −7.18821 17.3539i −0.509559 1.23018i −0.944138 0.329550i \(-0.893103\pi\)
0.434579 0.900634i \(-0.356897\pi\)
\(200\) 24.2091i 1.71184i
\(201\) −11.1253 + 4.60825i −0.784718 + 0.325041i
\(202\) 0.310470 + 0.310470i 0.0218446 + 0.0218446i
\(203\) 2.03268 0.142666
\(204\) 0 0
\(205\) −20.5359 −1.43429
\(206\) 3.54495 + 3.54495i 0.246988 + 0.246988i
\(207\) −4.71048 + 1.95114i −0.327401 + 0.135614i
\(208\) 17.6121i 1.22118i
\(209\) −1.50280 3.62809i −0.103951 0.250960i
\(210\) 5.72544 + 2.37156i 0.395093 + 0.163653i
\(211\) 2.25043 5.43302i 0.154926 0.374025i −0.827291 0.561774i \(-0.810119\pi\)
0.982217 + 0.187749i \(0.0601192\pi\)
\(212\) 1.39111 1.39111i 0.0955417 0.0955417i
\(213\) 1.07762 1.07762i 0.0738371 0.0738371i
\(214\) −12.4258 + 29.9986i −0.849411 + 2.05066i
\(215\) 19.6541 + 8.14098i 1.34040 + 0.555210i
\(216\) 0.803094 + 1.93884i 0.0546436 + 0.131921i
\(217\) 3.81209i 0.258781i
\(218\) 1.09239 0.452483i 0.0739860 0.0306460i
\(219\) 0.823796 + 0.823796i 0.0556670 + 0.0556670i
\(220\) −6.73749 −0.454242
\(221\) 0 0
\(222\) −9.83822 −0.660298
\(223\) −3.94839 3.94839i −0.264404 0.264404i 0.562437 0.826840i \(-0.309864\pi\)
−0.826840 + 0.562437i \(0.809864\pi\)
\(224\) −3.36041 + 1.39193i −0.224527 + 0.0930020i
\(225\) 11.5359i 0.769060i
\(226\) −7.45304 17.9932i −0.495769 1.19689i
\(227\) −25.4343 10.5352i −1.68813 0.699248i −0.688472 0.725263i \(-0.741718\pi\)
−0.999662 + 0.0260154i \(0.991718\pi\)
\(228\) −0.483141 + 1.16640i −0.0319968 + 0.0772470i
\(229\) 2.52451 2.52451i 0.166824 0.166824i −0.618758 0.785582i \(-0.712364\pi\)
0.785582 + 0.618758i \(0.212364\pi\)
\(230\) 24.2224 24.2224i 1.59718 1.59718i
\(231\) −0.801322 + 1.93456i −0.0527231 + 0.127285i
\(232\) −4.27267 1.76980i −0.280514 0.116193i
\(233\) −0.524614 1.26653i −0.0343686 0.0829731i 0.905763 0.423784i \(-0.139298\pi\)
−0.940132 + 0.340811i \(0.889298\pi\)
\(234\) 5.90604i 0.386090i
\(235\) 26.1529 10.8329i 1.70603 0.706659i
\(236\) 3.81813 + 3.81813i 0.248539 + 0.248539i
\(237\) −11.8837 −0.771928
\(238\) 0 0
\(239\) 21.6121 1.39797 0.698986 0.715135i \(-0.253635\pi\)
0.698986 + 0.715135i \(0.253635\pi\)
\(240\) −14.1672 14.1672i −0.914486 0.914486i
\(241\) 0.980980 0.406335i 0.0631905 0.0261744i −0.350864 0.936426i \(-0.614112\pi\)
0.414055 + 0.910252i \(0.364112\pi\)
\(242\) 9.65952i 0.620937i
\(243\) −0.382683 0.923880i −0.0245492 0.0592669i
\(244\) 2.62312 + 1.08653i 0.167928 + 0.0695582i
\(245\) 9.56914 23.1020i 0.611350 1.47593i
\(246\) −5.90002 + 5.90002i −0.376172 + 0.376172i
\(247\) 4.37239 4.37239i 0.278209 0.278209i
\(248\) −3.31909 + 8.01298i −0.210762 + 0.508825i
\(249\) 5.89905 + 2.44347i 0.373837 + 0.154848i
\(250\) −16.8046 40.5699i −1.06282 2.56586i
\(251\) 7.29715i 0.460592i 0.973121 + 0.230296i \(0.0739695\pi\)
−0.973121 + 0.230296i \(0.926031\pi\)
\(252\) 0.621948 0.257619i 0.0391791 0.0162285i
\(253\) 8.18448 + 8.18448i 0.514554 + 0.514554i
\(254\) 4.64354 0.291361
\(255\) 0 0
\(256\) 15.4673 0.966708
\(257\) −15.9501 15.9501i −0.994941 0.994941i 0.00504619 0.999987i \(-0.498394\pi\)
−0.999987 + 0.00504619i \(0.998394\pi\)
\(258\) 7.98559 3.30774i 0.497161 0.205931i
\(259\) 5.49236i 0.341278i
\(260\) −4.05985 9.80134i −0.251781 0.607853i
\(261\) 2.03597 + 0.843328i 0.126024 + 0.0522007i
\(262\) −5.01208 + 12.1002i −0.309647 + 0.747555i
\(263\) 3.00463 3.00463i 0.185274 0.185274i −0.608376 0.793649i \(-0.708179\pi\)
0.793649 + 0.608376i \(0.208179\pi\)
\(264\) 3.36875 3.36875i 0.207332 0.207332i
\(265\) −4.19471 + 10.1269i −0.257679 + 0.622092i
\(266\) −2.43557 1.00885i −0.149335 0.0618564i
\(267\) 3.96449 + 9.57112i 0.242623 + 0.585743i
\(268\) 8.78869i 0.536855i
\(269\) 10.9330 4.52860i 0.666597 0.276114i −0.0236145 0.999721i \(-0.507517\pi\)
0.690212 + 0.723608i \(0.257517\pi\)
\(270\) 4.75081 + 4.75081i 0.289125 + 0.289125i
\(271\) 11.8045 0.717070 0.358535 0.933516i \(-0.383276\pi\)
0.358535 + 0.933516i \(0.383276\pi\)
\(272\) 0 0
\(273\) −3.29715 −0.199553
\(274\) 0.120589 + 0.120589i 0.00728508 + 0.00728508i
\(275\) 24.1949 10.0218i 1.45901 0.604340i
\(276\) 3.72115i 0.223987i
\(277\) −3.99044 9.63378i −0.239762 0.578838i 0.757496 0.652840i \(-0.226423\pi\)
−0.997258 + 0.0740024i \(0.976423\pi\)
\(278\) 22.0517 + 9.13412i 1.32257 + 0.547828i
\(279\) 1.58158 3.81828i 0.0946868 0.228594i
\(280\) 5.56592 5.56592i 0.332627 0.332627i
\(281\) −3.86573 + 3.86573i −0.230610 + 0.230610i −0.812947 0.582337i \(-0.802138\pi\)
0.582337 + 0.812947i \(0.302138\pi\)
\(282\) 4.40148 10.6261i 0.262104 0.632776i
\(283\) −16.2949 6.74958i −0.968633 0.401221i −0.158430 0.987370i \(-0.550643\pi\)
−0.810203 + 0.586149i \(0.800643\pi\)
\(284\) 0.425645 + 1.02760i 0.0252574 + 0.0609767i
\(285\) 7.03429i 0.416675i
\(286\) 12.3871 5.13089i 0.732463 0.303396i
\(287\) −3.29379 3.29379i −0.194426 0.194426i
\(288\) −3.94335 −0.232364
\(289\) 0 0
\(290\) −14.8061 −0.869442
\(291\) 10.2315 + 10.2315i 0.599779 + 0.599779i
\(292\) −0.785557 + 0.325388i −0.0459713 + 0.0190419i
\(293\) 8.25845i 0.482464i −0.970467 0.241232i \(-0.922449\pi\)
0.970467 0.241232i \(-0.0775515\pi\)
\(294\) −3.88801 9.38649i −0.226753 0.547431i
\(295\) −27.7950 11.5131i −1.61829 0.670317i
\(296\) −4.78205 + 11.5449i −0.277951 + 0.671033i
\(297\) −1.60525 + 1.60525i −0.0931458 + 0.0931458i
\(298\) −4.20070 + 4.20070i −0.243340 + 0.243340i
\(299\) −6.97457 + 16.8381i −0.403350 + 0.973773i
\(300\) −7.77848 3.22195i −0.449091 0.186020i
\(301\) 1.84660 + 4.45809i 0.106436 + 0.256960i
\(302\) 12.5375i 0.721454i
\(303\) −0.245517 + 0.101697i −0.0141046 + 0.00584231i
\(304\) 6.02663 + 6.02663i 0.345651 + 0.345651i
\(305\) −15.8194 −0.905815
\(306\) 0 0
\(307\) −9.94601 −0.567649 −0.283824 0.958876i \(-0.591603\pi\)
−0.283824 + 0.958876i \(0.591603\pi\)
\(308\) −1.08064 1.08064i −0.0615751 0.0615751i
\(309\) −2.80331 + 1.16117i −0.159475 + 0.0660567i
\(310\) 27.7674i 1.57708i
\(311\) 6.34739 + 15.3240i 0.359927 + 0.868942i 0.995309 + 0.0967437i \(0.0308427\pi\)
−0.635382 + 0.772198i \(0.719157\pi\)
\(312\) 6.93059 + 2.87075i 0.392368 + 0.162524i
\(313\) −7.88772 + 19.0426i −0.445840 + 1.07635i 0.528025 + 0.849229i \(0.322933\pi\)
−0.973866 + 0.227125i \(0.927067\pi\)
\(314\) −22.1473 + 22.1473i −1.24984 + 1.24984i
\(315\) −2.65222 + 2.65222i −0.149436 + 0.149436i
\(316\) 3.31909 8.01298i 0.186713 0.450766i
\(317\) −3.94314 1.63330i −0.221469 0.0917354i 0.269190 0.963087i \(-0.413244\pi\)
−0.490659 + 0.871352i \(0.663244\pi\)
\(318\) 1.70434 + 4.11464i 0.0955747 + 0.230738i
\(319\) 5.00280i 0.280103i
\(320\) −12.5433 + 5.19559i −0.701190 + 0.290443i
\(321\) −13.8964 13.8964i −0.775620 0.775620i
\(322\) 7.77015 0.433014
\(323\) 0 0
\(324\) 0.729840 0.0405467
\(325\) 29.1585 + 29.1585i 1.61742 + 1.61742i
\(326\) −20.5049 + 8.49342i −1.13566 + 0.470407i
\(327\) 0.715639i 0.0395749i
\(328\) 4.05571 + 9.79134i 0.223939 + 0.540636i
\(329\) 5.93221 + 2.45720i 0.327053 + 0.135470i
\(330\) 5.83685 14.0914i 0.321308 0.775706i
\(331\) 20.2307 20.2307i 1.11198 1.11198i 0.119097 0.992883i \(-0.462000\pi\)
0.992883 0.119097i \(-0.0379999\pi\)
\(332\) −3.29518 + 3.29518i −0.180847 + 0.180847i
\(333\) 2.27870 5.50127i 0.124872 0.301468i
\(334\) −3.26247 1.35136i −0.178515 0.0739431i
\(335\) 18.7392 + 45.2403i 1.02383 + 2.47174i
\(336\) 4.54459i 0.247928i
\(337\) −28.9514 + 11.9921i −1.57709 + 0.653250i −0.987948 0.154783i \(-0.950532\pi\)
−0.589137 + 0.808033i \(0.700532\pi\)
\(338\) −0.259592 0.259592i −0.0141199 0.0141199i
\(339\) 11.7876 0.640214
\(340\) 0 0
\(341\) −9.38228 −0.508079
\(342\) −2.02097 2.02097i −0.109281 0.109281i
\(343\) 11.2054 4.64141i 0.605033 0.250613i
\(344\) 10.9787i 0.591930i
\(345\) 7.93421 + 19.1549i 0.427163 + 1.03126i
\(346\) 8.05960 + 3.33840i 0.433287 + 0.179473i
\(347\) −4.60594 + 11.1197i −0.247260 + 0.596938i −0.997969 0.0636944i \(-0.979712\pi\)
0.750710 + 0.660632i \(0.229712\pi\)
\(348\) −1.13729 + 1.13729i −0.0609650 + 0.0609650i
\(349\) 23.5829 23.5829i 1.26236 1.26236i 0.312418 0.949945i \(-0.398861\pi\)
0.949945 0.312418i \(-0.101139\pi\)
\(350\) 6.72777 16.2423i 0.359614 0.868186i
\(351\) −3.30250 1.36794i −0.176275 0.0730154i
\(352\) 3.42580 + 8.27060i 0.182596 + 0.440825i
\(353\) 6.56570i 0.349457i 0.984617 + 0.174729i \(0.0559048\pi\)
−0.984617 + 0.174729i \(0.944095\pi\)
\(354\) −11.2933 + 4.67785i −0.600233 + 0.248625i
\(355\) −4.38206 4.38206i −0.232576 0.232576i
\(356\) −7.56093 −0.400728
\(357\) 0 0
\(358\) 12.8480 0.679038
\(359\) 15.2388 + 15.2388i 0.804271 + 0.804271i 0.983760 0.179489i \(-0.0574445\pi\)
−0.179489 + 0.983760i \(0.557445\pi\)
\(360\) 7.88417 3.26573i 0.415533 0.172119i
\(361\) 16.0077i 0.842508i
\(362\) 0.579061 + 1.39798i 0.0304348 + 0.0734761i
\(363\) −5.40135 2.23731i −0.283497 0.117428i
\(364\) 0.920888 2.22322i 0.0482676 0.116528i
\(365\) 3.34991 3.34991i 0.175342 0.175342i
\(366\) −4.54495 + 4.54495i −0.237568 + 0.237568i
\(367\) 13.6099 32.8572i 0.710431 1.71513i 0.0115096 0.999934i \(-0.496336\pi\)
0.698921 0.715198i \(-0.253664\pi\)
\(368\) −23.2086 9.61332i −1.20983 0.501129i
\(369\) −1.93259 4.66568i −0.100607 0.242886i
\(370\) 40.0065i 2.07984i
\(371\) −2.29707 + 0.951478i −0.119258 + 0.0493983i
\(372\) 2.13287 + 2.13287i 0.110584 + 0.110584i
\(373\) 35.8452 1.85599 0.927997 0.372588i \(-0.121529\pi\)
0.927997 + 0.372588i \(0.121529\pi\)
\(374\) 0 0
\(375\) 26.5778 1.37247
\(376\) −10.3300 10.3300i −0.532731 0.532731i
\(377\) 7.27781 3.01457i 0.374826 0.155258i
\(378\) 1.52398i 0.0783851i
\(379\) 8.38866 + 20.2520i 0.430897 + 1.04028i 0.978999 + 0.203865i \(0.0653504\pi\)
−0.548102 + 0.836411i \(0.684650\pi\)
\(380\) 4.74311 + 1.96466i 0.243316 + 0.100785i
\(381\) −1.07552 + 2.59654i −0.0551007 + 0.133025i
\(382\) −22.3913 + 22.3913i −1.14564 + 1.14564i
\(383\) −24.2615 + 24.2615i −1.23970 + 1.23970i −0.279581 + 0.960122i \(0.590196\pi\)
−0.960122 + 0.279581i \(0.909804\pi\)
\(384\) −5.12912 + 12.3828i −0.261744 + 0.631906i
\(385\) 7.86678 + 3.25853i 0.400928 + 0.166070i
\(386\) −2.97890 7.19169i −0.151622 0.366047i
\(387\) 5.23146i 0.265930i
\(388\) −9.75654 + 4.04129i −0.495313 + 0.205165i
\(389\) 24.1800 + 24.1800i 1.22597 + 1.22597i 0.965474 + 0.260499i \(0.0838870\pi\)
0.260499 + 0.965474i \(0.416113\pi\)
\(390\) 24.0166 1.21613
\(391\) 0 0
\(392\) −12.9047 −0.651783
\(393\) −5.60525 5.60525i −0.282747 0.282747i
\(394\) −22.7363 + 9.41770i −1.14544 + 0.474457i
\(395\) 48.3242i 2.43146i
\(396\) −0.634051 1.53073i −0.0318622 0.0769223i
\(397\) 0.212822 + 0.0881539i 0.0106812 + 0.00442432i 0.388018 0.921652i \(-0.373160\pi\)
−0.377336 + 0.926076i \(0.623160\pi\)
\(398\) −11.8765 + 28.6725i −0.595317 + 1.43722i
\(399\) 1.12824 1.12824i 0.0564827 0.0564827i
\(400\) −40.1902 + 40.1902i −2.00951 + 2.00951i
\(401\) 0.232195 0.560569i 0.0115953 0.0279935i −0.917976 0.396636i \(-0.870177\pi\)
0.929571 + 0.368643i \(0.120177\pi\)
\(402\) 18.3815 + 7.61386i 0.916785 + 0.379745i
\(403\) −5.65353 13.6488i −0.281622 0.679897i
\(404\) 0.193952i 0.00964947i
\(405\) −3.75690 + 1.55616i −0.186682 + 0.0773261i
\(406\) −2.37477 2.37477i −0.117858 0.117858i
\(407\) −13.5177 −0.670049
\(408\) 0 0
\(409\) −1.50925 −0.0746278 −0.0373139 0.999304i \(-0.511880\pi\)
−0.0373139 + 0.999304i \(0.511880\pi\)
\(410\) 23.9921 + 23.9921i 1.18488 + 1.18488i
\(411\) −0.0953611 + 0.0394998i −0.00470381 + 0.00194838i
\(412\) 2.21454i 0.109103i
\(413\) −2.61149 6.30470i −0.128503 0.310234i
\(414\) 7.78276 + 3.22373i 0.382502 + 0.158437i
\(415\) 9.93620 23.9881i 0.487749 1.17753i
\(416\) −9.96732 + 9.96732i −0.488688 + 0.488688i
\(417\) −10.2151 + 10.2151i −0.500237 + 0.500237i
\(418\) −2.48297 + 5.99441i −0.121446 + 0.293196i
\(419\) 11.1972 + 4.63804i 0.547020 + 0.226583i 0.639039 0.769174i \(-0.279332\pi\)
−0.0920195 + 0.995757i \(0.529332\pi\)
\(420\) −1.04759 2.52911i −0.0511173 0.123408i
\(421\) 17.8730i 0.871078i 0.900170 + 0.435539i \(0.143442\pi\)
−0.900170 + 0.435539i \(0.856558\pi\)
\(422\) −8.97656 + 3.71821i −0.436972 + 0.181000i
\(423\) 4.92238 + 4.92238i 0.239334 + 0.239334i
\(424\) 5.65685 0.274721
\(425\) 0 0
\(426\) −2.51796 −0.121995
\(427\) −2.53730 2.53730i −0.122788 0.122788i
\(428\) 13.2513 5.48888i 0.640528 0.265315i
\(429\) 8.11492i 0.391792i
\(430\) −13.4507 32.4729i −0.648651 1.56598i
\(431\) 10.2884 + 4.26161i 0.495576 + 0.205274i 0.616451 0.787393i \(-0.288570\pi\)
−0.120875 + 0.992668i \(0.538570\pi\)
\(432\) 1.88549 4.55197i 0.0907155 0.219007i
\(433\) 20.5897 20.5897i 0.989475 0.989475i −0.0104697 0.999945i \(-0.503333\pi\)
0.999945 + 0.0104697i \(0.00333268\pi\)
\(434\) −4.45366 + 4.45366i −0.213782 + 0.213782i
\(435\) 3.42934 8.27916i 0.164424 0.396955i
\(436\) −0.482544 0.199876i −0.0231097 0.00957234i
\(437\) −3.37517 8.14838i −0.161456 0.389790i
\(438\) 1.92488i 0.0919742i
\(439\) −20.8758 + 8.64704i −0.996347 + 0.412700i −0.820456 0.571709i \(-0.806281\pi\)
−0.175891 + 0.984410i \(0.556281\pi\)
\(440\) −13.6988 13.6988i −0.653064 0.653064i
\(441\) 6.14921 0.292820
\(442\) 0 0
\(443\) 32.1976 1.52975 0.764877 0.644176i \(-0.222800\pi\)
0.764877 + 0.644176i \(0.222800\pi\)
\(444\) 3.07299 + 3.07299i 0.145837 + 0.145837i
\(445\) 38.9203 16.1213i 1.84500 0.764224i
\(446\) 9.22579i 0.436854i
\(447\) −1.37597 3.32188i −0.0650810 0.157119i
\(448\) −2.84517 1.17851i −0.134422 0.0556792i
\(449\) −0.428720 + 1.03502i −0.0202325 + 0.0488457i −0.933673 0.358127i \(-0.883416\pi\)
0.913440 + 0.406973i \(0.133416\pi\)
\(450\) 13.4774 13.4774i 0.635330 0.635330i
\(451\) −8.10665 + 8.10665i −0.381727 + 0.381727i
\(452\) −3.29225 + 7.94819i −0.154854 + 0.373851i
\(453\) −7.01066 2.90391i −0.329389 0.136438i
\(454\) 17.4065 + 42.0231i 0.816930 + 1.97224i
\(455\) 13.4077i 0.628561i
\(456\) −3.35389 + 1.38923i −0.157060 + 0.0650564i
\(457\) −28.3405 28.3405i −1.32571 1.32571i −0.909072 0.416639i \(-0.863208\pi\)
−0.416639 0.909072i \(-0.636792\pi\)
\(458\) −5.89875 −0.275631
\(459\) 0 0
\(460\) −15.1318 −0.705526
\(461\) 3.53267 + 3.53267i 0.164533 + 0.164533i 0.784571 0.620039i \(-0.212883\pi\)
−0.620039 + 0.784571i \(0.712883\pi\)
\(462\) 3.19633 1.32396i 0.148707 0.0615963i
\(463\) 39.0452i 1.81458i 0.420502 + 0.907292i \(0.361854\pi\)
−0.420502 + 0.907292i \(0.638146\pi\)
\(464\) 4.15509 + 10.0313i 0.192895 + 0.465690i
\(465\) −15.5268 6.43140i −0.720037 0.298249i
\(466\) −0.866779 + 2.09259i −0.0401528 + 0.0969374i
\(467\) −7.44173 + 7.44173i −0.344362 + 0.344362i −0.858004 0.513642i \(-0.828296\pi\)
0.513642 + 0.858004i \(0.328296\pi\)
\(468\) 1.84476 1.84476i 0.0852743 0.0852743i
\(469\) −4.25057 + 10.2618i −0.196273 + 0.473845i
\(470\) −43.2104 17.8983i −1.99315 0.825589i
\(471\) −7.25449 17.5139i −0.334269 0.806997i
\(472\) 15.5262i 0.714651i
\(473\) 10.9722 4.54484i 0.504503 0.208972i
\(474\) 13.8837 + 13.8837i 0.637699 + 0.637699i
\(475\) −19.9553 −0.915611
\(476\) 0 0
\(477\) −2.69555 −0.123421
\(478\) −25.2494 25.2494i −1.15488 1.15488i
\(479\) −23.9876 + 9.93598i −1.09602 + 0.453986i −0.856102 0.516807i \(-0.827121\pi\)
−0.239918 + 0.970793i \(0.577121\pi\)
\(480\) 16.0354i 0.731912i
\(481\) −8.14546 19.6649i −0.371401 0.896641i
\(482\) −1.62080 0.671356i −0.0738253 0.0305794i
\(483\) −1.79970 + 4.34486i −0.0818893 + 0.197698i
\(484\) 3.01717 3.01717i 0.137144 0.137144i
\(485\) 41.6056 41.6056i 1.88921 1.88921i
\(486\) −0.632278 + 1.52645i −0.0286807 + 0.0692414i
\(487\) −23.5964 9.77394i −1.06925 0.442900i −0.222527 0.974927i \(-0.571430\pi\)
−0.846727 + 0.532027i \(0.821430\pi\)
\(488\) 3.12422 + 7.54254i 0.141427 + 0.341435i
\(489\) 13.4330i 0.607463i
\(490\) −38.1696 + 15.8104i −1.72433 + 0.714239i
\(491\) 1.77317 + 1.77317i 0.0800221 + 0.0800221i 0.745985 0.665963i \(-0.231979\pi\)
−0.665963 + 0.745985i \(0.731979\pi\)
\(492\) 3.68577 0.166167
\(493\) 0 0
\(494\) −10.2165 −0.459663
\(495\) 6.52763 + 6.52763i 0.293395 + 0.293395i
\(496\) 18.8127 7.79248i 0.844715 0.349893i
\(497\) 1.40569i 0.0630540i
\(498\) −4.03715 9.74654i −0.180909 0.436753i
\(499\) 14.0680 + 5.82714i 0.629768 + 0.260859i 0.674655 0.738134i \(-0.264293\pi\)
−0.0448864 + 0.998992i \(0.514293\pi\)
\(500\) −7.42313 + 17.9210i −0.331973 + 0.801453i
\(501\) 1.51129 1.51129i 0.0675195 0.0675195i
\(502\) 8.52525 8.52525i 0.380501 0.380501i
\(503\) −14.9625 + 36.1228i −0.667147 + 1.61064i 0.119214 + 0.992869i \(0.461962\pi\)
−0.786361 + 0.617767i \(0.788038\pi\)
\(504\) 1.78835 + 0.740760i 0.0796596 + 0.0329961i
\(505\) 0.413542 + 0.998380i 0.0184024 + 0.0444273i
\(506\) 19.1238i 0.850158i
\(507\) 0.205283 0.0850310i 0.00911694 0.00377636i
\(508\) −1.45042 1.45042i −0.0643519 0.0643519i
\(509\) 31.9138 1.41455 0.707277 0.706937i \(-0.249924\pi\)
0.707277 + 0.706937i \(0.249924\pi\)
\(510\) 0 0
\(511\) 1.07460 0.0475374
\(512\) 0.884296 + 0.884296i 0.0390807 + 0.0390807i
\(513\) 1.59816 0.661981i 0.0705607 0.0292272i
\(514\) 37.2690i 1.64386i
\(515\) 4.72183 + 11.3995i 0.208069 + 0.502322i
\(516\) −3.52749 1.46114i −0.155289 0.0643229i
\(517\) 6.04765 14.6003i 0.265975 0.642121i
\(518\) −6.41671 + 6.41671i −0.281934 + 0.281934i
\(519\) −3.73349 + 3.73349i −0.163882 + 0.163882i
\(520\) 11.6737 28.1828i 0.511926 1.23590i
\(521\) 4.46286 + 1.84858i 0.195521 + 0.0809876i 0.478296 0.878199i \(-0.341255\pi\)
−0.282774 + 0.959186i \(0.591255\pi\)
\(522\) −1.39337 3.36388i −0.0609860 0.147233i
\(523\) 36.5734i 1.59924i −0.600503 0.799622i \(-0.705033\pi\)
0.600503 0.799622i \(-0.294967\pi\)
\(524\) 5.34506 2.21400i 0.233500 0.0967189i
\(525\) 7.52398 + 7.52398i 0.328373 + 0.328373i
\(526\) −7.02061 −0.306113
\(527\) 0 0
\(528\) −11.1851 −0.486769
\(529\) 2.11820 + 2.11820i 0.0920956 + 0.0920956i
\(530\) 16.7319 6.93059i 0.726789 0.301046i
\(531\) 7.39840i 0.321063i
\(532\) 0.445641 + 1.07587i 0.0193210 + 0.0466449i
\(533\) −16.6780 6.90824i −0.722403 0.299229i
\(534\) 6.55021 15.8136i 0.283455 0.684322i
\(535\) −56.5087 + 56.5087i −2.44309 + 2.44309i
\(536\) 17.8693 17.8693i 0.771838 0.771838i
\(537\) −2.97582 + 7.18427i −0.128416 + 0.310024i
\(538\) −18.0638 7.48226i −0.778784 0.322583i
\(539\) −5.34214 12.8971i −0.230102 0.555516i
\(540\) 2.96785i 0.127716i
\(541\) −10.1896 + 4.22067i −0.438085 + 0.181461i −0.590815 0.806807i \(-0.701194\pi\)
0.152730 + 0.988268i \(0.451194\pi\)
\(542\) −13.7911 13.7911i −0.592379 0.592379i
\(543\) −0.915833 −0.0393021
\(544\) 0 0
\(545\) 2.91010 0.124655
\(546\) 3.85206 + 3.85206i 0.164853 + 0.164853i
\(547\) −24.8307 + 10.2852i −1.06169 + 0.439765i −0.844050 0.536265i \(-0.819835\pi\)
−0.217636 + 0.976030i \(0.569835\pi\)
\(548\) 0.0753327i 0.00321805i
\(549\) −1.48873 3.59411i −0.0635373 0.153393i
\(550\) −39.9753 16.5583i −1.70455 0.706049i
\(551\) −1.45882 + 3.52191i −0.0621480 + 0.150038i
\(552\) 7.56592 7.56592i 0.322027 0.322027i
\(553\) −7.75081 + 7.75081i −0.329598 + 0.329598i
\(554\) −6.59310 + 15.9172i −0.280114 + 0.676255i
\(555\) −22.3706 9.26619i −0.949578 0.393328i
\(556\) −4.03484 9.74096i −0.171115 0.413109i
\(557\) 34.9146i 1.47938i 0.672948 + 0.739690i \(0.265028\pi\)
−0.672948 + 0.739690i \(0.734972\pi\)
\(558\) −6.30864 + 2.61313i −0.267066 + 0.110622i
\(559\) 13.2232 + 13.2232i 0.559281 + 0.559281i
\(560\) −18.4803 −0.780935
\(561\) 0 0
\(562\) 9.03266 0.381020
\(563\) −5.59557 5.59557i −0.235825 0.235825i 0.579294 0.815119i \(-0.303328\pi\)
−0.815119 + 0.579294i \(0.803328\pi\)
\(564\) −4.69390 + 1.94428i −0.197649 + 0.0818688i
\(565\) 47.9335i 2.01658i
\(566\) 11.1518 + 26.9229i 0.468746 + 1.13165i
\(567\) −0.852170 0.352980i −0.0357878 0.0148238i
\(568\) −1.22390 + 2.95476i −0.0513537 + 0.123979i
\(569\) 12.2298 12.2298i 0.512702 0.512702i −0.402651 0.915353i \(-0.631911\pi\)
0.915353 + 0.402651i \(0.131911\pi\)
\(570\) −8.21814 + 8.21814i −0.344220 + 0.344220i
\(571\) −7.41605 + 17.9039i −0.310352 + 0.749256i 0.689340 + 0.724438i \(0.257901\pi\)
−0.999692 + 0.0248178i \(0.992099\pi\)
\(572\) −5.47177 2.26648i −0.228786 0.0947663i
\(573\) −7.33442 17.7069i −0.306400 0.739715i
\(574\) 7.69626i 0.321236i
\(575\) 54.3396 22.5082i 2.26612 0.938658i
\(576\) −2.36084 2.36084i −0.0983683 0.0983683i
\(577\) 2.89714 0.120610 0.0603048 0.998180i \(-0.480793\pi\)
0.0603048 + 0.998180i \(0.480793\pi\)
\(578\) 0 0
\(579\) 4.71137 0.195798
\(580\) 4.62470 + 4.62470i 0.192030 + 0.192030i
\(581\) 5.44118 2.25381i 0.225738 0.0935038i
\(582\) 23.9068i 0.990968i
\(583\) 2.34177 + 5.65353i 0.0969862 + 0.234145i
\(584\) −2.25879 0.935623i −0.0934696 0.0387164i
\(585\) −5.56265 + 13.4294i −0.229987 + 0.555238i
\(586\) −9.64833 + 9.64833i −0.398569 + 0.398569i
\(587\) 8.70909 8.70909i 0.359463 0.359463i −0.504152 0.863615i \(-0.668195\pi\)
0.863615 + 0.504152i \(0.168195\pi\)
\(588\) −1.71746 + 4.14632i −0.0708269 + 0.170991i
\(589\) 6.60501 + 2.73588i 0.272155 + 0.112730i
\(590\) 19.0222 + 45.9236i 0.783131 + 1.89064i
\(591\) 14.8949i 0.612693i
\(592\) 27.1048 11.2272i 1.11400 0.461435i
\(593\) −30.5302 30.5302i −1.25373 1.25373i −0.954037 0.299690i \(-0.903117\pi\)
−0.299690 0.954037i \(-0.596883\pi\)
\(594\) 3.75081 0.153898
\(595\) 0 0
\(596\) 2.62420 0.107491
\(597\) −13.2821 13.2821i −0.543599 0.543599i
\(598\) 27.8203 11.5235i 1.13766 0.471233i
\(599\) 6.70607i 0.274003i 0.990571 + 0.137001i \(0.0437464\pi\)
−0.990571 + 0.137001i \(0.956254\pi\)
\(600\) −9.26442 22.3663i −0.378218 0.913100i
\(601\) 29.4156 + 12.1844i 1.19989 + 0.497010i 0.890963 0.454076i \(-0.150030\pi\)
0.308926 + 0.951086i \(0.400030\pi\)
\(602\) 3.05100 7.36577i 0.124349 0.300206i
\(603\) −8.51494 + 8.51494i −0.346755 + 0.346755i
\(604\) 3.91612 3.91612i 0.159345 0.159345i
\(605\) −9.09788 + 21.9642i −0.369882 + 0.892973i
\(606\) 0.405649 + 0.168025i 0.0164784 + 0.00682556i
\(607\) 10.6833 + 25.7918i 0.433622 + 1.04685i 0.978110 + 0.208087i \(0.0667237\pi\)
−0.544489 + 0.838768i \(0.683276\pi\)
\(608\) 6.82137i 0.276643i
\(609\) 1.87795 0.777871i 0.0760983 0.0315209i
\(610\) 18.4818 + 18.4818i 0.748304 + 0.748304i
\(611\) 24.8839 1.00669
\(612\) 0 0
\(613\) −5.84314 −0.236002 −0.118001 0.993013i \(-0.537649\pi\)
−0.118001 + 0.993013i \(0.537649\pi\)
\(614\) 11.6199 + 11.6199i 0.468941 + 0.468941i
\(615\) −18.9727 + 7.85875i −0.765053 + 0.316895i
\(616\) 4.39435i 0.177053i
\(617\) −14.1792 34.2317i −0.570835 1.37812i −0.900845 0.434140i \(-0.857052\pi\)
0.330010 0.943977i \(-0.392948\pi\)
\(618\) 4.63170 + 1.91851i 0.186314 + 0.0771739i
\(619\) 6.18744 14.9378i 0.248694 0.600401i −0.749399 0.662118i \(-0.769658\pi\)
0.998094 + 0.0617170i \(0.0196576\pi\)
\(620\) 8.67319 8.67319i 0.348324 0.348324i
\(621\) −3.60525 + 3.60525i −0.144674 + 0.144674i
\(622\) 10.4873 25.3186i 0.420503 1.01518i
\(623\) 8.82823 + 3.65677i 0.353696 + 0.146505i
\(624\) −6.73987 16.2715i −0.269811 0.651381i
\(625\) 50.3976i 2.01590i
\(626\) 31.4627 13.0323i 1.25750 0.520874i
\(627\) −2.77682 2.77682i −0.110895 0.110895i
\(628\) 13.8355 0.552097
\(629\) 0 0
\(630\) 6.19717 0.246901
\(631\) −22.3920 22.3920i −0.891410 0.891410i 0.103246 0.994656i \(-0.467077\pi\)
−0.994656 + 0.103246i \(0.967077\pi\)
\(632\) 23.0406 9.54372i 0.916505 0.379629i
\(633\) 5.88066i 0.233735i
\(634\) 2.69858 + 6.51495i 0.107174 + 0.258742i
\(635\) 10.5587 + 4.37355i 0.419008 + 0.173559i
\(636\) 0.752862 1.81757i 0.0298529 0.0720714i
\(637\) 15.5429 15.5429i 0.615833 0.615833i
\(638\) −5.84476 + 5.84476i −0.231396 + 0.231396i
\(639\) 0.583202 1.40798i 0.0230711 0.0556986i
\(640\) 50.3538 + 20.8572i 1.99041 + 0.824455i
\(641\) −6.09588 14.7167i −0.240773 0.581277i 0.756587 0.653893i \(-0.226865\pi\)
−0.997360 + 0.0726161i \(0.976865\pi\)
\(642\) 32.4702i 1.28150i
\(643\) 15.4161 6.38557i 0.607953 0.251822i −0.0574003 0.998351i \(-0.518281\pi\)
0.665353 + 0.746529i \(0.268281\pi\)
\(644\) −2.42702 2.42702i −0.0956381 0.0956381i
\(645\) 21.2734 0.837639
\(646\) 0 0
\(647\) −8.35044 −0.328290 −0.164145 0.986436i \(-0.552486\pi\)
−0.164145 + 0.986436i \(0.552486\pi\)
\(648\) 1.48392 + 1.48392i 0.0582941 + 0.0582941i
\(649\) −15.5171 + 6.42738i −0.609098 + 0.252297i
\(650\) 68.1316i 2.67234i
\(651\) −1.45882 3.52191i −0.0571758 0.138035i
\(652\) 9.05770 + 3.75182i 0.354727 + 0.146933i
\(653\) −10.9821 + 26.5132i −0.429764 + 1.03754i 0.549598 + 0.835429i \(0.314781\pi\)
−0.979362 + 0.202113i \(0.935219\pi\)
\(654\) 0.836079 0.836079i 0.0326933 0.0326933i
\(655\) −22.7934 + 22.7934i −0.890611 + 0.890611i
\(656\) 9.52189 22.9879i 0.371767 0.897526i
\(657\) 1.07634 + 0.445835i 0.0419921 + 0.0173937i
\(658\) −4.05985 9.80134i −0.158269 0.382096i
\(659\) 40.3690i 1.57255i 0.617876 + 0.786276i \(0.287993\pi\)
−0.617876 + 0.786276i \(0.712007\pi\)
\(660\) −6.22463 + 2.57833i −0.242293 + 0.100361i
\(661\) 27.9099 + 27.9099i 1.08557 + 1.08557i 0.995979 + 0.0895910i \(0.0285560\pi\)
0.0895910 + 0.995979i \(0.471444\pi\)
\(662\) −47.2710 −1.83724
\(663\) 0 0
\(664\) −13.3997 −0.520007
\(665\) −4.58792 4.58792i −0.177912 0.177912i
\(666\) −9.08933 + 3.76492i −0.352204 + 0.145888i
\(667\) 11.2359i 0.435055i
\(668\) 0.596940 + 1.44114i 0.0230963 + 0.0557594i
\(669\) −5.15882 2.13685i −0.199452 0.0826155i
\(670\) 30.9613 74.7471i 1.19614 2.88773i
\(671\) −6.24478 + 6.24478i −0.241077 + 0.241077i
\(672\) −2.57194 + 2.57194i −0.0992149 + 0.0992149i
\(673\) −8.26810 + 19.9610i −0.318712 + 0.769438i 0.680611 + 0.732645i \(0.261714\pi\)
−0.999323 + 0.0367934i \(0.988286\pi\)
\(674\) 47.8342 + 19.8136i 1.84251 + 0.763191i
\(675\) 4.41460 + 10.6578i 0.169918 + 0.410218i
\(676\) 0.162168i 0.00623724i
\(677\) −2.31970 + 0.960853i −0.0891535 + 0.0369286i −0.426814 0.904339i \(-0.640364\pi\)
0.337661 + 0.941268i \(0.390364\pi\)
\(678\) −13.7714 13.7714i −0.528888 0.528888i
\(679\) 13.3464 0.512187
\(680\) 0 0
\(681\) −27.5299 −1.05495
\(682\) 10.9613 + 10.9613i 0.419730 + 0.419730i
\(683\) 17.3157 7.17238i 0.662566 0.274444i −0.0259521 0.999663i \(-0.508262\pi\)
0.688518 + 0.725220i \(0.258262\pi\)
\(684\) 1.26251i 0.0482732i
\(685\) 0.160624 + 0.387780i 0.00613711 + 0.0148163i
\(686\) −18.5138 7.66865i −0.706859 0.292790i
\(687\) 1.36625 3.29843i 0.0521258 0.125843i
\(688\) −18.2260 + 18.2260i −0.694860 + 0.694860i
\(689\) −6.81336 + 6.81336i −0.259568 + 0.259568i
\(690\) 13.1091 31.6481i 0.499054 1.20482i
\(691\) 35.6342 + 14.7602i 1.35559 + 0.561504i 0.937843 0.347060i \(-0.112820\pi\)
0.417747 + 0.908563i \(0.362820\pi\)
\(692\) −1.47468 3.56019i −0.0560588 0.135338i
\(693\) 2.09396i 0.0795428i
\(694\) 18.3723 7.61004i 0.697401 0.288873i
\(695\) 41.5391 + 41.5391i 1.57567 + 1.57567i
\(696\) −4.62470 −0.175299
\(697\) 0 0
\(698\) −55.1037 −2.08570
\(699\) −0.969360 0.969360i −0.0366646 0.0366646i
\(700\) −7.17474 + 2.97187i −0.271180 + 0.112326i
\(701\) 28.7827i 1.08711i −0.839375 0.543553i \(-0.817079\pi\)
0.839375 0.543553i \(-0.182921\pi\)
\(702\) 2.26015 + 5.45647i 0.0853037 + 0.205941i
\(703\) 9.51632 + 3.94179i 0.358915 + 0.148667i
\(704\) −2.90053 + 7.00250i −0.109318 + 0.263917i
\(705\) 20.0166 20.0166i 0.753867 0.753867i
\(706\) 7.67070 7.67070i 0.288690 0.288690i
\(707\) −0.0938031 + 0.226461i −0.00352783 + 0.00851693i
\(708\) 4.98863 + 2.06636i 0.187484 + 0.0776585i
\(709\) −1.96924 4.75418i −0.0739565 0.178547i 0.882578 0.470166i \(-0.155806\pi\)
−0.956534 + 0.291619i \(0.905806\pi\)
\(710\) 10.2391i 0.384267i
\(711\) −10.9791 + 4.54769i −0.411748 + 0.170552i
\(712\) −15.3730 15.3730i −0.576128 0.576128i
\(713\) −21.0718 −0.789146
\(714\) 0 0
\(715\) 32.9988 1.23409
\(716\) −4.01310 4.01310i −0.149977 0.149977i
\(717\) 19.9670 8.27060i 0.745681 0.308871i
\(718\) 35.6068i 1.32883i
\(719\) 12.0554 + 29.1042i 0.449589 + 1.08540i 0.972476 + 0.233003i \(0.0748551\pi\)
−0.522887 + 0.852402i \(0.675145\pi\)
\(720\) −18.5103 7.66721i −0.689838 0.285740i
\(721\) −1.07104 + 2.58573i −0.0398878 + 0.0962976i
\(722\) −18.7017 + 18.7017i −0.696005 + 0.696005i
\(723\) 0.750810 0.750810i 0.0279229 0.0279229i
\(724\) 0.255790 0.617532i 0.00950636 0.0229504i
\(725\) −23.4868 9.72856i −0.872278 0.361309i
\(726\) 3.69654 + 8.92423i 0.137191 + 0.331209i
\(727\) 31.2775i 1.16002i −0.814610 0.580010i \(-0.803049\pi\)
0.814610 0.580010i \(-0.196951\pi\)
\(728\) 6.39266 2.64793i 0.236928 0.0981386i
\(729\) −0.707107 0.707107i −0.0261891 0.0261891i
\(730\) −7.82739 −0.289705
\(731\) 0 0
\(732\) 2.83925 0.104942
\(733\) 13.3044 + 13.3044i 0.491411 + 0.491411i 0.908751 0.417340i \(-0.137037\pi\)
−0.417340 + 0.908751i \(0.637037\pi\)
\(734\) −54.2874 + 22.4866i −2.00379 + 0.829995i
\(735\) 25.0054i 0.922337i
\(736\) 7.69405 + 18.5751i 0.283606 + 0.684686i
\(737\) 25.2562 + 10.4615i 0.930324 + 0.385353i
\(738\) −3.19307 + 7.70875i −0.117538 + 0.283763i
\(739\) −4.91271 + 4.91271i −0.180717 + 0.180717i −0.791668 0.610951i \(-0.790787\pi\)
0.610951 + 0.791668i \(0.290787\pi\)
\(740\) 12.4961 12.4961i 0.459366 0.459366i
\(741\) 2.36632 5.71281i 0.0869290 0.209865i
\(742\) 3.79527 + 1.57205i 0.139329 + 0.0577119i
\(743\) −12.9945 31.3716i −0.476723 1.15091i −0.961137 0.276072i \(-0.910967\pi\)
0.484414 0.874839i \(-0.339033\pi\)
\(744\) 8.67319i 0.317975i
\(745\) −13.5082 + 5.59528i −0.494902 + 0.204995i
\(746\) −41.8779 41.8779i −1.53326 1.53326i
\(747\) 6.38508 0.233618
\(748\) 0 0
\(749\) −18.1271 −0.662349
\(750\) −31.0508 31.0508i −1.13382 1.13382i
\(751\) −6.38871 + 2.64629i −0.233127 + 0.0965645i −0.496189 0.868215i \(-0.665268\pi\)
0.263062 + 0.964779i \(0.415268\pi\)
\(752\) 34.2984i 1.25073i
\(753\) 2.79250 + 6.74169i 0.101764 + 0.245681i
\(754\) −12.0246 4.98073i −0.437909 0.181388i
\(755\) −11.8086 + 28.5084i −0.429758 + 1.03753i
\(756\) 0.476019 0.476019i 0.0173126 0.0173126i
\(757\) 1.31639 1.31639i 0.0478452 0.0478452i −0.682779 0.730625i \(-0.739229\pi\)
0.730625 + 0.682779i \(0.239229\pi\)
\(758\) 13.8599 33.4609i 0.503416 1.21535i
\(759\) 10.6935 + 4.42941i 0.388151 + 0.160777i
\(760\) 5.64920 + 13.6384i 0.204918 + 0.494715i
\(761\) 49.2335i 1.78471i −0.451330 0.892357i \(-0.649050\pi\)
0.451330 0.892357i \(-0.350950\pi\)
\(762\) 4.29007 1.77700i 0.155413 0.0643741i
\(763\) 0.466756 + 0.466756i 0.0168977 + 0.0168977i
\(764\) 13.9880 0.506066
\(765\) 0 0
\(766\) 56.6893 2.04827
\(767\) −18.7004 18.7004i −0.675232 0.675232i
\(768\) 14.2900 5.91909i 0.515644 0.213587i
\(769\) 50.9303i 1.83659i 0.395895 + 0.918296i \(0.370435\pi\)
−0.395895 + 0.918296i \(0.629565\pi\)
\(770\) −5.38381 12.9977i −0.194019 0.468403i
\(771\) −20.8398 8.63214i −0.750528 0.310879i
\(772\) −1.31587 + 3.17680i −0.0473594 + 0.114336i
\(773\) −2.06202 + 2.06202i −0.0741658 + 0.0741658i −0.743217 0.669051i \(-0.766701\pi\)
0.669051 + 0.743217i \(0.266701\pi\)
\(774\) 6.11190 6.11190i 0.219688 0.219688i
\(775\) −18.2450 + 44.0473i −0.655379 + 1.58222i
\(776\) −28.0540 11.6203i −1.00708 0.417146i
\(777\) −2.10183 5.07428i −0.0754029 0.182039i
\(778\) 56.4988i 2.02558i
\(779\) 8.07089 3.34307i 0.289170 0.119778i
\(780\) −7.50162 7.50162i −0.268601 0.268601i
\(781\) −3.45968 −0.123797
\(782\) 0 0
\(783\) 2.20372 0.0787546
\(784\) 21.4234 + 21.4234i 0.765121 + 0.765121i
\(785\) −71.2191 + 29.4999i −2.54192 + 1.05290i
\(786\) 13.0972i 0.467161i
\(787\) 19.4760 + 47.0192i 0.694243 + 1.67605i 0.736051 + 0.676926i \(0.236688\pi\)
−0.0418077 + 0.999126i \(0.513312\pi\)
\(788\) 10.0434 + 4.16010i 0.357781 + 0.148198i
\(789\) 1.62609 3.92574i 0.0578905 0.139760i
\(790\) 56.4571 56.4571i 2.00865 2.00865i
\(791\) 7.68814 7.68814i 0.273359 0.273359i
\(792\) 1.82315 4.40148i 0.0647829 0.156400i
\(793\) −12.8475 5.32161i −0.456228 0.188976i
\(794\) −0.145650 0.351630i −0.00516892 0.0124789i
\(795\) 10.9613i 0.388757i
\(796\) 12.6656 5.24625i 0.448919 0.185948i
\(797\) 9.62096 + 9.62096i 0.340792 + 0.340792i 0.856665 0.515873i \(-0.172532\pi\)
−0.515873 + 0.856665i \(0.672532\pi\)
\(798\) −2.63624 −0.0933220
\(799\) 0 0
\(800\) 45.4901 1.60832
\(801\) 7.32541 + 7.32541i 0.258831 + 0.258831i
\(802\) −0.926185 + 0.383638i −0.0327047 + 0.0135467i
\(803\) 2.64479i 0.0933326i
\(804\) −3.36329 8.11969i −0.118614 0.286360i
\(805\) 17.6681 + 7.31837i 0.622719 + 0.257939i
\(806\) −9.34089 + 22.5509i −0.329019 + 0.794322i
\(807\) 8.36776 8.36776i 0.294559 0.294559i
\(808\) 0.394347 0.394347i 0.0138731 0.0138731i
\(809\) 6.65627 16.0697i 0.234022 0.564979i −0.762621 0.646845i \(-0.776088\pi\)
0.996643 + 0.0818660i \(0.0260879\pi\)
\(810\) 6.20723 + 2.57112i 0.218100 + 0.0903399i
\(811\) −12.6012 30.4221i −0.442489 1.06826i −0.975073 0.221886i \(-0.928779\pi\)
0.532583 0.846378i \(-0.321221\pi\)
\(812\) 1.48353i 0.0520617i
\(813\) 10.9059 4.51737i 0.382486 0.158431i
\(814\) 15.7927 + 15.7927i 0.553536 + 0.553536i
\(815\) −54.6246 −1.91342
\(816\) 0 0
\(817\) −9.04959 −0.316605
\(818\) 1.76326 + 1.76326i 0.0616509 + 0.0616509i
\(819\) −3.04617 + 1.26177i −0.106442 + 0.0440897i
\(820\) 14.9879i 0.523401i
\(821\) −16.7374 40.4076i −0.584138 1.41023i −0.889031 0.457847i \(-0.848621\pi\)
0.304893 0.952387i \(-0.401379\pi\)
\(822\) 0.157558 + 0.0652625i 0.00549546 + 0.00227629i
\(823\) −0.640622 + 1.54660i −0.0223307 + 0.0539110i −0.934652 0.355565i \(-0.884288\pi\)
0.912321 + 0.409476i \(0.134288\pi\)
\(824\) 4.50265 4.50265i 0.156857 0.156857i
\(825\) 18.5180 18.5180i 0.644713 0.644713i
\(826\) −4.31477 + 10.4168i −0.150130 + 0.362446i
\(827\) 2.09735 + 0.868752i 0.0729321 + 0.0302095i 0.418851 0.908055i \(-0.362433\pi\)
−0.345919 + 0.938264i \(0.612433\pi\)
\(828\) −1.42402 3.43790i −0.0494883 0.119475i
\(829\) 19.2597i 0.668918i −0.942410 0.334459i \(-0.891446\pi\)
0.942410 0.334459i \(-0.108554\pi\)
\(830\) −39.6337 + 16.4168i −1.37571 + 0.569836i
\(831\) −7.37338 7.37338i −0.255780 0.255780i
\(832\) −11.9346 −0.413760
\(833\) 0 0
\(834\) 23.8686 0.826502
\(835\) −6.14556 6.14556i −0.212676 0.212676i
\(836\) 2.64793 1.09681i 0.0915804 0.0379338i
\(837\) 4.13287i 0.142853i
\(838\) −7.66307 18.5003i −0.264716 0.639082i
\(839\) 13.6789 + 5.66598i 0.472248 + 0.195611i 0.606098 0.795390i \(-0.292734\pi\)
−0.133850 + 0.991002i \(0.542734\pi\)
\(840\) 3.01225 7.27222i 0.103933 0.250916i
\(841\) 17.0721 17.0721i 0.588693 0.588693i
\(842\) 20.8810 20.8810i 0.719608 0.719608i
\(843\) −2.09212 + 5.05082i −0.0720564 + 0.173960i
\(844\) 3.96524 + 1.64246i 0.136489 + 0.0565357i
\(845\) −0.345773 0.834771i −0.0118950 0.0287170i
\(846\) 11.5016i 0.395434i
\(847\) −4.98211 + 2.06366i −0.171187 + 0.0709081i
\(848\) −9.39111 9.39111i −0.322492 0.322492i
\(849\) −17.6375 −0.605318
\(850\) 0 0
\(851\) −30.3597 −1.04072
\(852\) 0.786489 + 0.786489i 0.0269447 + 0.0269447i
\(853\) 5.87376 2.43299i 0.201114 0.0833040i −0.279853 0.960043i \(-0.590286\pi\)
0.480967 + 0.876739i \(0.340286\pi\)
\(854\) 5.92864i 0.202874i
\(855\) −2.69190 6.49883i −0.0920612 0.222255i
\(856\) 38.1030 + 15.7828i 1.30233 + 0.539444i
\(857\) 15.6254 37.7231i 0.533754 1.28859i −0.395267 0.918566i \(-0.629348\pi\)
0.929020 0.370029i \(-0.120652\pi\)
\(858\) 9.48065 9.48065i 0.323664 0.323664i
\(859\) 15.6599 15.6599i 0.534308 0.534308i −0.387543 0.921851i \(-0.626676\pi\)
0.921851 + 0.387543i \(0.126676\pi\)
\(860\) −5.94161 + 14.3443i −0.202607 + 0.489137i
\(861\) −4.30354 1.78259i −0.146664 0.0607504i
\(862\) −7.04112 16.9988i −0.239822 0.578980i
\(863\) 17.3423i 0.590339i −0.955445 0.295170i \(-0.904624\pi\)
0.955445 0.295170i \(-0.0953762\pi\)
\(864\) −3.64318 + 1.50906i −0.123944 + 0.0513391i
\(865\) 15.1820 + 15.1820i 0.516203 + 0.516203i
\(866\) −48.1097 −1.63483
\(867\) 0 0
\(868\) 2.78222 0.0944346
\(869\) 19.0762 + 19.0762i 0.647117 + 0.647117i
\(870\) −13.6790 + 5.66604i −0.463762 + 0.192097i
\(871\) 43.0452i 1.45853i
\(872\) −0.574725 1.38751i −0.0194627 0.0469870i
\(873\) 13.3680 + 5.53723i 0.452440 + 0.187407i
\(874\) −5.57653 + 13.4629i −0.188629 + 0.455391i
\(875\) 17.3347 17.3347i 0.586019 0.586019i
\(876\) −0.601239 + 0.601239i −0.0203140 + 0.0203140i
\(877\) 11.5687 27.9294i 0.390649 0.943110i −0.599150 0.800637i \(-0.704495\pi\)
0.989799 0.142473i \(-0.0455053\pi\)
\(878\) 34.4915 + 14.2868i 1.16403 + 0.482157i
\(879\) −3.16037 7.62982i −0.106597 0.257347i
\(880\) 45.4835i 1.53325i
\(881\) −9.76049 + 4.04293i −0.328839 + 0.136210i −0.540994 0.841026i \(-0.681952\pi\)
0.212155 + 0.977236i \(0.431952\pi\)
\(882\) −7.18411 7.18411i −0.241902 0.241902i
\(883\) −13.9150 −0.468276 −0.234138 0.972203i \(-0.575227\pi\)
−0.234138 + 0.972203i \(0.575227\pi\)
\(884\) 0 0
\(885\) −30.0851 −1.01130
\(886\) −37.6164 37.6164i −1.26375 1.26375i
\(887\) 33.2268 13.7630i 1.11565 0.462116i 0.252767 0.967527i \(-0.418659\pi\)
0.862878 + 0.505412i \(0.168659\pi\)
\(888\) 12.4961i 0.419342i
\(889\) 0.992044 + 2.39501i 0.0332721 + 0.0803259i
\(890\) −64.3051 26.6360i −2.15551 0.892842i
\(891\) −0.868752 + 2.09735i −0.0291043 + 0.0702640i
\(892\) 2.88170 2.88170i 0.0964863 0.0964863i
\(893\) −8.51494 + 8.51494i −0.284941 + 0.284941i
\(894\) −2.27340 + 5.48848i −0.0760340 + 0.183562i
\(895\) 29.2144 + 12.1010i 0.976528 + 0.404491i
\(896\) 4.73101 + 11.4217i 0.158052 + 0.381571i
\(897\) 18.2254i 0.608530i
\(898\) 1.71009 0.708341i 0.0570663 0.0236376i
\(899\) 6.44012 + 6.44012i 0.214790 + 0.214790i
\(900\) −8.41937 −0.280646
\(901\) 0 0
\(902\) 18.9420 0.630698
\(903\) 3.41208 + 3.41208i 0.113547 + 0.113547i
\(904\) −22.8543 + 9.46655i −0.760122 + 0.314853i
\(905\) 3.72418i 0.123796i
\(906\) 4.79791 + 11.5832i 0.159400 + 0.384825i
\(907\) −36.2016 14.9952i −1.20205 0.497907i −0.310391 0.950609i \(-0.600460\pi\)
−0.891662 + 0.452702i \(0.850460\pi\)
\(908\) 7.68904 18.5630i 0.255170 0.616034i
\(909\) −0.187911 + 0.187911i −0.00623260 + 0.00623260i
\(910\) 15.6641 15.6641i 0.519261 0.519261i
\(911\) 3.79931 9.17234i 0.125877 0.303893i −0.848361 0.529419i \(-0.822410\pi\)
0.974237 + 0.225526i \(0.0724100\pi\)
\(912\) 7.87418 + 3.26159i 0.260740 + 0.108002i
\(913\) −5.54706 13.3918i −0.183581 0.443203i
\(914\) 66.2202i 2.19037i
\(915\) −14.6152 + 6.05382i −0.483164 + 0.200133i
\(916\) 1.84249 + 1.84249i 0.0608775 + 0.0608775i
\(917\) −7.31174 −0.241455
\(918\) 0 0
\(919\) 42.8795 1.41446 0.707232 0.706982i \(-0.249944\pi\)
0.707232 + 0.706982i \(0.249944\pi\)
\(920\) −30.7663 30.7663i −1.01434 1.01434i
\(921\) −9.18892 + 3.80617i −0.302785 + 0.125418i
\(922\) 8.25442i 0.271845i
\(923\) −2.08472 5.03296i −0.0686193 0.165662i
\(924\) −1.41192 0.584837i −0.0464488 0.0192397i
\(925\) −26.2869 + 63.4621i −0.864307 + 2.08662i
\(926\) 45.6164 45.6164i 1.49905 1.49905i
\(927\) −2.14556 + 2.14556i −0.0704696 + 0.0704696i
\(928\) 3.32554 8.02856i 0.109166 0.263551i
\(929\) 16.7798 + 6.95043i 0.550529 + 0.228036i 0.640568 0.767902i \(-0.278699\pi\)
−0.0900390 + 0.995938i \(0.528699\pi\)
\(930\) 10.6261 + 25.6537i 0.348444 + 0.841218i
\(931\) 10.6372i 0.348619i
\(932\) 0.924365 0.382884i 0.0302786 0.0125418i
\(933\) 11.7284 + 11.7284i 0.383972 + 0.383972i
\(934\) 17.3883 0.568963
\(935\) 0 0
\(936\) 7.50162 0.245198
\(937\) 1.13309 + 1.13309i 0.0370165 + 0.0370165i 0.725373 0.688356i \(-0.241667\pi\)
−0.688356 + 0.725373i \(0.741667\pi\)
\(938\) 16.9548 7.02289i 0.553592 0.229305i
\(939\) 20.6116i 0.672634i
\(940\) 7.90628 + 19.0874i 0.257874 + 0.622564i
\(941\) 29.8916 + 12.3815i 0.974437 + 0.403625i 0.812362 0.583153i \(-0.198181\pi\)
0.162075 + 0.986778i \(0.448181\pi\)
\(942\) −11.9860 + 28.9368i −0.390526 + 0.942813i
\(943\) −18.2068 + 18.2068i −0.592896 + 0.592896i
\(944\) 25.7755 25.7755i 0.838920 0.838920i
\(945\) −1.43537 + 3.46530i −0.0466927 + 0.112726i
\(946\) −18.1286 7.50909i −0.589410 0.244142i
\(947\) 9.63669 + 23.2650i 0.313150 + 0.756012i 0.999585 + 0.0288200i \(0.00917496\pi\)
−0.686434 + 0.727192i \(0.740825\pi\)
\(948\) 8.67319i 0.281692i
\(949\) 3.84749 1.59368i 0.124895 0.0517332i
\(950\) 23.3137 + 23.3137i 0.756397 + 0.756397i
\(951\) −4.26802 −0.138400
\(952\) 0 0
\(953\) 54.0658 1.75136 0.875681 0.482889i \(-0.160413\pi\)
0.875681 + 0.482889i \(0.160413\pi\)
\(954\) 3.14921 + 3.14921i 0.101959 + 0.101959i
\(955\) −72.0038 + 29.8250i −2.32999 + 0.965113i
\(956\) 15.7734i 0.510148i
\(957\) −1.91449 4.62199i −0.0618867 0.149408i
\(958\) 39.6328 + 16.4164i 1.28048 + 0.530391i
\(959\) −0.0364340 + 0.0879594i −0.00117651 + 0.00284036i
\(960\) −9.60021 + 9.60021i −0.309845 + 0.309845i
\(961\) −9.84248 + 9.84248i −0.317499 + 0.317499i
\(962\) −13.4581 + 32.4908i −0.433907 + 1.04754i
\(963\) −18.1565 7.52066i −0.585085 0.242350i
\(964\) 0.296560 + 0.715959i 0.00955155 + 0.0230595i
\(965\) 19.1585i 0.616733i
\(966\) 7.17868 2.97351i 0.230970 0.0956711i
\(967\) 1.53792 + 1.53792i 0.0494563 + 0.0494563i 0.731402 0.681946i \(-0.238866\pi\)
−0.681946 + 0.731402i \(0.738866\pi\)
\(968\) 12.2691 0.394345
\(969\) 0 0
\(970\) −97.2154 −3.12140
\(971\) 33.5508 + 33.5508i 1.07670 + 1.07670i 0.996803 + 0.0798947i \(0.0254584\pi\)
0.0798947 + 0.996803i \(0.474542\pi\)
\(972\) 0.674285 0.279298i 0.0216277 0.00895848i
\(973\) 13.3251i 0.427182i
\(974\) 16.1487 + 38.9865i 0.517439 + 1.24921i
\(975\) 38.0974 + 15.7805i 1.22009 + 0.505379i
\(976\) 7.33498 17.7082i 0.234787 0.566826i
\(977\) 14.7238 14.7238i 0.471057 0.471057i −0.431200 0.902256i \(-0.641910\pi\)
0.902256 + 0.431200i \(0.141910\pi\)
\(978\) −15.6938 + 15.6938i −0.501832 + 0.501832i
\(979\) 9.00002 21.7280i 0.287642 0.694429i
\(980\) 16.8607 + 6.98395i 0.538597 + 0.223094i
\(981\) 0.273863 + 0.661164i 0.00874377 + 0.0211093i
\(982\) 4.14319i 0.132214i
\(983\) −2.24538 + 0.930068i −0.0716166 + 0.0296646i −0.418204 0.908353i \(-0.637340\pi\)
0.346588 + 0.938018i \(0.387340\pi\)
\(984\) 7.49397 + 7.49397i 0.238899 + 0.238899i
\(985\) −60.5690 −1.92989
\(986\) 0 0
\(987\) 6.42098 0.204382
\(988\) 3.19115 + 3.19115i 0.101524 + 0.101524i
\(989\) 24.6427 10.2073i 0.783592 0.324574i
\(990\) 15.2524i 0.484754i
\(991\) −13.9977 33.7934i −0.444651 1.07348i −0.974298 0.225264i \(-0.927676\pi\)
0.529647 0.848218i \(-0.322324\pi\)
\(992\) −15.0568 6.23673i −0.478054 0.198016i
\(993\) 10.9488 26.4327i 0.347449 0.838816i
\(994\) −1.64227 + 1.64227i −0.0520896 + 0.0520896i
\(995\) −54.0107 + 54.0107i −1.71226 + 1.71226i
\(996\) −1.78334 + 4.30536i −0.0565073 + 0.136421i
\(997\) −19.1344 7.92571i −0.605991 0.251010i 0.0585222 0.998286i \(-0.481361\pi\)
−0.664513 + 0.747276i \(0.731361\pi\)
\(998\) −9.62773 23.2434i −0.304760 0.735757i
\(999\) 5.95453i 0.188393i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 867.2.h.k.733.2 16
17.2 even 8 867.2.h.i.688.4 16
17.3 odd 16 867.2.a.l.1.2 4
17.4 even 4 867.2.h.i.712.3 16
17.5 odd 16 867.2.d.f.577.6 8
17.6 odd 16 51.2.e.a.4.2 8
17.7 odd 16 867.2.e.g.829.3 8
17.8 even 8 inner 867.2.h.k.757.1 16
17.9 even 8 inner 867.2.h.k.757.2 16
17.10 odd 16 51.2.e.a.13.3 yes 8
17.11 odd 16 867.2.e.g.616.2 8
17.12 odd 16 867.2.d.f.577.5 8
17.13 even 4 867.2.h.i.712.4 16
17.14 odd 16 867.2.a.k.1.2 4
17.15 even 8 867.2.h.i.688.3 16
17.16 even 2 inner 867.2.h.k.733.1 16
51.14 even 16 2601.2.a.bf.1.3 4
51.20 even 16 2601.2.a.be.1.3 4
51.23 even 16 153.2.f.b.55.3 8
51.44 even 16 153.2.f.b.64.2 8
68.23 even 16 816.2.bd.e.769.1 8
68.27 even 16 816.2.bd.e.625.1 8
204.23 odd 16 2448.2.be.x.1585.4 8
204.95 odd 16 2448.2.be.x.1441.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.e.a.4.2 8 17.6 odd 16
51.2.e.a.13.3 yes 8 17.10 odd 16
153.2.f.b.55.3 8 51.23 even 16
153.2.f.b.64.2 8 51.44 even 16
816.2.bd.e.625.1 8 68.27 even 16
816.2.bd.e.769.1 8 68.23 even 16
867.2.a.k.1.2 4 17.14 odd 16
867.2.a.l.1.2 4 17.3 odd 16
867.2.d.f.577.5 8 17.12 odd 16
867.2.d.f.577.6 8 17.5 odd 16
867.2.e.g.616.2 8 17.11 odd 16
867.2.e.g.829.3 8 17.7 odd 16
867.2.h.i.688.3 16 17.15 even 8
867.2.h.i.688.4 16 17.2 even 8
867.2.h.i.712.3 16 17.4 even 4
867.2.h.i.712.4 16 17.13 even 4
867.2.h.k.733.1 16 17.16 even 2 inner
867.2.h.k.733.2 16 1.1 even 1 trivial
867.2.h.k.757.1 16 17.8 even 8 inner
867.2.h.k.757.2 16 17.9 even 8 inner
2448.2.be.x.1441.4 8 204.95 odd 16
2448.2.be.x.1585.4 8 204.23 odd 16
2601.2.a.be.1.3 4 51.20 even 16
2601.2.a.bf.1.3 4 51.14 even 16