Properties

Label 867.4.a.e
Level $867$
Weight $4$
Character orbit 867.a
Self dual yes
Analytic conductor $51.155$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [867,4,Mod(1,867)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(867, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("867.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 867.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(51.1546559750\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 51)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{2} + 3 q^{3} - 7 q^{4} + 10 q^{5} + 3 q^{6} + 8 q^{7} - 15 q^{8} + 9 q^{9} + 10 q^{10} - 12 q^{11} - 21 q^{12} - 26 q^{13} + 8 q^{14} + 30 q^{15} + 41 q^{16} + 9 q^{18} - 148 q^{19} - 70 q^{20}+ \cdots - 108 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 3.00000 −7.00000 10.0000 3.00000 8.00000 −15.0000 9.00000 10.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 867.4.a.e 1
17.b even 2 1 51.4.a.c 1
51.c odd 2 1 153.4.a.a 1
68.d odd 2 1 816.4.a.f 1
85.c even 2 1 1275.4.a.d 1
119.d odd 2 1 2499.4.a.i 1
204.h even 2 1 2448.4.a.n 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
51.4.a.c 1 17.b even 2 1
153.4.a.a 1 51.c odd 2 1
816.4.a.f 1 68.d odd 2 1
867.4.a.e 1 1.a even 1 1 trivial
1275.4.a.d 1 85.c even 2 1
2448.4.a.n 1 204.h even 2 1
2499.4.a.i 1 119.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(867))\):

\( T_{2} - 1 \) Copy content Toggle raw display
\( T_{5} - 10 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 1 \) Copy content Toggle raw display
$3$ \( T - 3 \) Copy content Toggle raw display
$5$ \( T - 10 \) Copy content Toggle raw display
$7$ \( T - 8 \) Copy content Toggle raw display
$11$ \( T + 12 \) Copy content Toggle raw display
$13$ \( T + 26 \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T + 148 \) Copy content Toggle raw display
$23$ \( T + 152 \) Copy content Toggle raw display
$29$ \( T - 66 \) Copy content Toggle raw display
$31$ \( T - 32 \) Copy content Toggle raw display
$37$ \( T - 266 \) Copy content Toggle raw display
$41$ \( T - 6 \) Copy content Toggle raw display
$43$ \( T + 92 \) Copy content Toggle raw display
$47$ \( T + 288 \) Copy content Toggle raw display
$53$ \( T + 546 \) Copy content Toggle raw display
$59$ \( T - 420 \) Copy content Toggle raw display
$61$ \( T + 350 \) Copy content Toggle raw display
$67$ \( T - 940 \) Copy content Toggle raw display
$71$ \( T + 424 \) Copy content Toggle raw display
$73$ \( T + 378 \) Copy content Toggle raw display
$79$ \( T + 288 \) Copy content Toggle raw display
$83$ \( T - 748 \) Copy content Toggle raw display
$89$ \( T + 1558 \) Copy content Toggle raw display
$97$ \( T + 530 \) Copy content Toggle raw display
show more
show less