Properties

Label 867.4.a.w.1.10
Level $867$
Weight $4$
Character 867.1
Self dual yes
Analytic conductor $51.155$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [867,4,Mod(1,867)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(867, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("867.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 867.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(51.1546559750\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 128 x^{18} + 6848 x^{16} - 198916 x^{14} - 1344 x^{13} + 3410877 x^{12} + 96960 x^{11} + \cdots - 2228224 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5}\cdot 17^{6} \)
Twist minimal: no (minimal twist has level 51)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Root \(-0.0209109\) of defining polynomial
Character \(\chi\) \(=\) 867.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.0209109 q^{2} +3.00000 q^{3} -7.99956 q^{4} +20.5423 q^{5} +0.0627328 q^{6} +6.44826 q^{7} -0.334566 q^{8} +9.00000 q^{9} +0.429559 q^{10} +18.2513 q^{11} -23.9987 q^{12} +63.8416 q^{13} +0.134839 q^{14} +61.6270 q^{15} +63.9895 q^{16} +0.188198 q^{18} -61.3281 q^{19} -164.330 q^{20} +19.3448 q^{21} +0.381651 q^{22} +106.234 q^{23} -1.00370 q^{24} +296.987 q^{25} +1.33499 q^{26} +27.0000 q^{27} -51.5833 q^{28} -112.532 q^{29} +1.28868 q^{30} -220.179 q^{31} +4.01460 q^{32} +54.7538 q^{33} +132.462 q^{35} -71.9961 q^{36} -187.746 q^{37} -1.28243 q^{38} +191.525 q^{39} -6.87276 q^{40} +198.268 q^{41} +0.404517 q^{42} +139.548 q^{43} -146.002 q^{44} +184.881 q^{45} +2.22145 q^{46} +575.652 q^{47} +191.969 q^{48} -301.420 q^{49} +6.21027 q^{50} -510.705 q^{52} -276.624 q^{53} +0.564595 q^{54} +374.923 q^{55} -2.15737 q^{56} -183.984 q^{57} -2.35315 q^{58} +48.2675 q^{59} -492.989 q^{60} +421.765 q^{61} -4.60415 q^{62} +58.0344 q^{63} -511.832 q^{64} +1311.46 q^{65} +1.14495 q^{66} -269.737 q^{67} +318.702 q^{69} +2.76991 q^{70} +699.900 q^{71} -3.01109 q^{72} -816.421 q^{73} -3.92594 q^{74} +890.961 q^{75} +490.598 q^{76} +117.689 q^{77} +4.00496 q^{78} -1116.41 q^{79} +1314.49 q^{80} +81.0000 q^{81} +4.14597 q^{82} -465.803 q^{83} -154.750 q^{84} +2.91808 q^{86} -337.597 q^{87} -6.10624 q^{88} -92.3664 q^{89} +3.86603 q^{90} +411.667 q^{91} -849.827 q^{92} -660.538 q^{93} +12.0374 q^{94} -1259.82 q^{95} +12.0438 q^{96} +1668.15 q^{97} -6.30297 q^{98} +164.261 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 60 q^{3} + 96 q^{4} + 32 q^{5} + 56 q^{7} + 180 q^{9} + 80 q^{10} + 152 q^{11} + 288 q^{12} + 56 q^{13} + 112 q^{14} + 96 q^{15} + 512 q^{16} + 328 q^{19} + 192 q^{20} + 168 q^{21} - 104 q^{22} + 576 q^{23}+ \cdots + 1368 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0209109 0.00739313 0.00369656 0.999993i \(-0.498823\pi\)
0.00369656 + 0.999993i \(0.498823\pi\)
\(3\) 3.00000 0.577350
\(4\) −7.99956 −0.999945
\(5\) 20.5423 1.83736 0.918681 0.395001i \(-0.129256\pi\)
0.918681 + 0.395001i \(0.129256\pi\)
\(6\) 0.0627328 0.00426842
\(7\) 6.44826 0.348173 0.174087 0.984730i \(-0.444303\pi\)
0.174087 + 0.984730i \(0.444303\pi\)
\(8\) −0.334566 −0.0147859
\(9\) 9.00000 0.333333
\(10\) 0.429559 0.0135838
\(11\) 18.2513 0.500269 0.250135 0.968211i \(-0.419525\pi\)
0.250135 + 0.968211i \(0.419525\pi\)
\(12\) −23.9987 −0.577319
\(13\) 63.8416 1.36204 0.681018 0.732266i \(-0.261537\pi\)
0.681018 + 0.732266i \(0.261537\pi\)
\(14\) 0.134839 0.00257409
\(15\) 61.6270 1.06080
\(16\) 63.9895 0.999836
\(17\) 0 0
\(18\) 0.188198 0.00246438
\(19\) −61.3281 −0.740507 −0.370254 0.928931i \(-0.620729\pi\)
−0.370254 + 0.928931i \(0.620729\pi\)
\(20\) −164.330 −1.83726
\(21\) 19.3448 0.201018
\(22\) 0.381651 0.00369855
\(23\) 106.234 0.963102 0.481551 0.876418i \(-0.340074\pi\)
0.481551 + 0.876418i \(0.340074\pi\)
\(24\) −1.00370 −0.00853661
\(25\) 296.987 2.37590
\(26\) 1.33499 0.0100697
\(27\) 27.0000 0.192450
\(28\) −51.5833 −0.348154
\(29\) −112.532 −0.720577 −0.360288 0.932841i \(-0.617322\pi\)
−0.360288 + 0.932841i \(0.617322\pi\)
\(30\) 1.28868 0.00784264
\(31\) −220.179 −1.27566 −0.637829 0.770178i \(-0.720167\pi\)
−0.637829 + 0.770178i \(0.720167\pi\)
\(32\) 4.01460 0.0221778
\(33\) 54.7538 0.288831
\(34\) 0 0
\(35\) 132.462 0.639720
\(36\) −71.9961 −0.333315
\(37\) −187.746 −0.834195 −0.417098 0.908862i \(-0.636953\pi\)
−0.417098 + 0.908862i \(0.636953\pi\)
\(38\) −1.28243 −0.00547467
\(39\) 191.525 0.786372
\(40\) −6.87276 −0.0271670
\(41\) 198.268 0.755226 0.377613 0.925964i \(-0.376745\pi\)
0.377613 + 0.925964i \(0.376745\pi\)
\(42\) 0.404517 0.00148615
\(43\) 139.548 0.494905 0.247452 0.968900i \(-0.420407\pi\)
0.247452 + 0.968900i \(0.420407\pi\)
\(44\) −146.002 −0.500242
\(45\) 184.881 0.612454
\(46\) 2.22145 0.00712034
\(47\) 575.652 1.78654 0.893271 0.449519i \(-0.148405\pi\)
0.893271 + 0.449519i \(0.148405\pi\)
\(48\) 191.969 0.577256
\(49\) −301.420 −0.878775
\(50\) 6.21027 0.0175653
\(51\) 0 0
\(52\) −510.705 −1.36196
\(53\) −276.624 −0.716928 −0.358464 0.933544i \(-0.616699\pi\)
−0.358464 + 0.933544i \(0.616699\pi\)
\(54\) 0.564595 0.00142281
\(55\) 374.923 0.919175
\(56\) −2.15737 −0.00514804
\(57\) −183.984 −0.427532
\(58\) −2.35315 −0.00532732
\(59\) 48.2675 0.106507 0.0532533 0.998581i \(-0.483041\pi\)
0.0532533 + 0.998581i \(0.483041\pi\)
\(60\) −492.989 −1.06074
\(61\) 421.765 0.885271 0.442636 0.896702i \(-0.354044\pi\)
0.442636 + 0.896702i \(0.354044\pi\)
\(62\) −4.60415 −0.00943110
\(63\) 58.0344 0.116058
\(64\) −511.832 −0.999672
\(65\) 1311.46 2.50255
\(66\) 1.14495 0.00213536
\(67\) −269.737 −0.491846 −0.245923 0.969289i \(-0.579091\pi\)
−0.245923 + 0.969289i \(0.579091\pi\)
\(68\) 0 0
\(69\) 318.702 0.556047
\(70\) 2.76991 0.00472953
\(71\) 699.900 1.16990 0.584949 0.811070i \(-0.301114\pi\)
0.584949 + 0.811070i \(0.301114\pi\)
\(72\) −3.01109 −0.00492862
\(73\) −816.421 −1.30897 −0.654485 0.756075i \(-0.727115\pi\)
−0.654485 + 0.756075i \(0.727115\pi\)
\(74\) −3.92594 −0.00616731
\(75\) 890.961 1.37172
\(76\) 490.598 0.740467
\(77\) 117.689 0.174180
\(78\) 4.00496 0.00581375
\(79\) −1116.41 −1.58994 −0.794971 0.606648i \(-0.792514\pi\)
−0.794971 + 0.606648i \(0.792514\pi\)
\(80\) 1314.49 1.83706
\(81\) 81.0000 0.111111
\(82\) 4.14597 0.00558348
\(83\) −465.803 −0.616007 −0.308003 0.951385i \(-0.599661\pi\)
−0.308003 + 0.951385i \(0.599661\pi\)
\(84\) −154.750 −0.201007
\(85\) 0 0
\(86\) 2.91808 0.00365889
\(87\) −337.597 −0.416025
\(88\) −6.10624 −0.00739691
\(89\) −92.3664 −0.110009 −0.0550046 0.998486i \(-0.517517\pi\)
−0.0550046 + 0.998486i \(0.517517\pi\)
\(90\) 3.86603 0.00452795
\(91\) 411.667 0.474225
\(92\) −849.827 −0.963050
\(93\) −660.538 −0.736501
\(94\) 12.0374 0.0132081
\(95\) −1259.82 −1.36058
\(96\) 12.0438 0.0128043
\(97\) 1668.15 1.74613 0.873066 0.487601i \(-0.162128\pi\)
0.873066 + 0.487601i \(0.162128\pi\)
\(98\) −6.30297 −0.00649690
\(99\) 164.261 0.166756
\(100\) −2375.77 −2.37577
\(101\) 669.102 0.659190 0.329595 0.944122i \(-0.393088\pi\)
0.329595 + 0.944122i \(0.393088\pi\)
\(102\) 0 0
\(103\) −692.734 −0.662690 −0.331345 0.943510i \(-0.607502\pi\)
−0.331345 + 0.943510i \(0.607502\pi\)
\(104\) −21.3592 −0.0201389
\(105\) 397.387 0.369343
\(106\) −5.78446 −0.00530034
\(107\) 156.994 0.141843 0.0709215 0.997482i \(-0.477406\pi\)
0.0709215 + 0.997482i \(0.477406\pi\)
\(108\) −215.988 −0.192440
\(109\) 1166.37 1.02493 0.512466 0.858708i \(-0.328732\pi\)
0.512466 + 0.858708i \(0.328732\pi\)
\(110\) 7.83999 0.00679558
\(111\) −563.238 −0.481623
\(112\) 412.621 0.348116
\(113\) 512.772 0.426881 0.213441 0.976956i \(-0.431533\pi\)
0.213441 + 0.976956i \(0.431533\pi\)
\(114\) −3.84728 −0.00316080
\(115\) 2182.30 1.76957
\(116\) 900.209 0.720537
\(117\) 574.575 0.454012
\(118\) 1.00932 0.000787417 0
\(119\) 0 0
\(120\) −20.6183 −0.0156848
\(121\) −997.892 −0.749731
\(122\) 8.81950 0.00654492
\(123\) 594.804 0.436030
\(124\) 1761.34 1.27559
\(125\) 3533.02 2.52802
\(126\) 1.21355 0.000858030 0
\(127\) 2060.12 1.43942 0.719708 0.694277i \(-0.244276\pi\)
0.719708 + 0.694277i \(0.244276\pi\)
\(128\) −42.8197 −0.0295685
\(129\) 418.645 0.285733
\(130\) 27.4237 0.0185017
\(131\) 273.048 0.182110 0.0910548 0.995846i \(-0.470976\pi\)
0.0910548 + 0.995846i \(0.470976\pi\)
\(132\) −438.006 −0.288815
\(133\) −395.460 −0.257825
\(134\) −5.64046 −0.00363628
\(135\) 554.643 0.353600
\(136\) 0 0
\(137\) 2175.28 1.35654 0.678272 0.734811i \(-0.262729\pi\)
0.678272 + 0.734811i \(0.262729\pi\)
\(138\) 6.66436 0.00411093
\(139\) −732.040 −0.446696 −0.223348 0.974739i \(-0.571699\pi\)
−0.223348 + 0.974739i \(0.571699\pi\)
\(140\) −1059.64 −0.639685
\(141\) 1726.96 1.03146
\(142\) 14.6355 0.00864921
\(143\) 1165.19 0.681385
\(144\) 575.906 0.333279
\(145\) −2311.68 −1.32396
\(146\) −17.0721 −0.00967739
\(147\) −904.260 −0.507361
\(148\) 1501.88 0.834150
\(149\) 3003.88 1.65159 0.825796 0.563969i \(-0.190726\pi\)
0.825796 + 0.563969i \(0.190726\pi\)
\(150\) 18.6308 0.0101413
\(151\) 3176.88 1.71212 0.856061 0.516874i \(-0.172905\pi\)
0.856061 + 0.516874i \(0.172905\pi\)
\(152\) 20.5183 0.0109490
\(153\) 0 0
\(154\) 2.46098 0.00128774
\(155\) −4523.00 −2.34384
\(156\) −1532.11 −0.786329
\(157\) −623.642 −0.317019 −0.158510 0.987357i \(-0.550669\pi\)
−0.158510 + 0.987357i \(0.550669\pi\)
\(158\) −23.3451 −0.0117546
\(159\) −829.871 −0.413919
\(160\) 82.4693 0.0407486
\(161\) 685.026 0.335327
\(162\) 1.69378 0.000821459 0
\(163\) −2247.34 −1.07991 −0.539954 0.841694i \(-0.681559\pi\)
−0.539954 + 0.841694i \(0.681559\pi\)
\(164\) −1586.06 −0.755185
\(165\) 1124.77 0.530686
\(166\) −9.74037 −0.00455422
\(167\) −1887.30 −0.874511 −0.437256 0.899337i \(-0.644050\pi\)
−0.437256 + 0.899337i \(0.644050\pi\)
\(168\) −6.47210 −0.00297222
\(169\) 1878.75 0.855144
\(170\) 0 0
\(171\) −551.953 −0.246836
\(172\) −1116.32 −0.494878
\(173\) −2484.88 −1.09203 −0.546017 0.837774i \(-0.683856\pi\)
−0.546017 + 0.837774i \(0.683856\pi\)
\(174\) −7.05946 −0.00307573
\(175\) 1915.05 0.827224
\(176\) 1167.89 0.500187
\(177\) 144.802 0.0614916
\(178\) −1.93147 −0.000813312 0
\(179\) 1110.51 0.463708 0.231854 0.972751i \(-0.425521\pi\)
0.231854 + 0.972751i \(0.425521\pi\)
\(180\) −1478.97 −0.612420
\(181\) 596.594 0.244997 0.122499 0.992469i \(-0.460909\pi\)
0.122499 + 0.992469i \(0.460909\pi\)
\(182\) 8.60835 0.00350601
\(183\) 1265.30 0.511111
\(184\) −35.5423 −0.0142403
\(185\) −3856.74 −1.53272
\(186\) −13.8125 −0.00544505
\(187\) 0 0
\(188\) −4604.96 −1.78644
\(189\) 174.103 0.0670060
\(190\) −26.3441 −0.0100589
\(191\) −2220.92 −0.841363 −0.420681 0.907209i \(-0.638209\pi\)
−0.420681 + 0.907209i \(0.638209\pi\)
\(192\) −1535.50 −0.577161
\(193\) −1156.23 −0.431229 −0.215615 0.976479i \(-0.569175\pi\)
−0.215615 + 0.976479i \(0.569175\pi\)
\(194\) 34.8825 0.0129094
\(195\) 3934.37 1.44485
\(196\) 2411.23 0.878727
\(197\) 3490.60 1.26241 0.631205 0.775616i \(-0.282561\pi\)
0.631205 + 0.775616i \(0.282561\pi\)
\(198\) 3.43486 0.00123285
\(199\) −2736.58 −0.974831 −0.487415 0.873170i \(-0.662060\pi\)
−0.487415 + 0.873170i \(0.662060\pi\)
\(200\) −99.3617 −0.0351297
\(201\) −809.212 −0.283967
\(202\) 13.9915 0.00487347
\(203\) −725.638 −0.250886
\(204\) 0 0
\(205\) 4072.89 1.38762
\(206\) −14.4857 −0.00489935
\(207\) 956.107 0.321034
\(208\) 4085.19 1.36181
\(209\) −1119.32 −0.370453
\(210\) 8.30973 0.00273060
\(211\) 4456.34 1.45397 0.726984 0.686654i \(-0.240921\pi\)
0.726984 + 0.686654i \(0.240921\pi\)
\(212\) 2212.87 0.716889
\(213\) 2099.70 0.675441
\(214\) 3.28289 0.00104866
\(215\) 2866.64 0.909319
\(216\) −9.03327 −0.00284554
\(217\) −1419.77 −0.444150
\(218\) 24.3898 0.00757745
\(219\) −2449.26 −0.755735
\(220\) −2999.22 −0.919125
\(221\) 0 0
\(222\) −11.7778 −0.00356070
\(223\) 638.518 0.191741 0.0958707 0.995394i \(-0.469436\pi\)
0.0958707 + 0.995394i \(0.469436\pi\)
\(224\) 25.8872 0.00772171
\(225\) 2672.88 0.791966
\(226\) 10.7225 0.00315599
\(227\) −1101.58 −0.322090 −0.161045 0.986947i \(-0.551487\pi\)
−0.161045 + 0.986947i \(0.551487\pi\)
\(228\) 1471.80 0.427509
\(229\) −3603.12 −1.03974 −0.519871 0.854244i \(-0.674020\pi\)
−0.519871 + 0.854244i \(0.674020\pi\)
\(230\) 45.6338 0.0130826
\(231\) 353.067 0.100563
\(232\) 37.6494 0.0106543
\(233\) 1977.85 0.556110 0.278055 0.960565i \(-0.410310\pi\)
0.278055 + 0.960565i \(0.410310\pi\)
\(234\) 12.0149 0.00335657
\(235\) 11825.2 3.28252
\(236\) −386.119 −0.106501
\(237\) −3349.22 −0.917953
\(238\) 0 0
\(239\) −5104.03 −1.38139 −0.690694 0.723147i \(-0.742695\pi\)
−0.690694 + 0.723147i \(0.742695\pi\)
\(240\) 3943.48 1.06063
\(241\) −163.071 −0.0435864 −0.0217932 0.999762i \(-0.506938\pi\)
−0.0217932 + 0.999762i \(0.506938\pi\)
\(242\) −20.8668 −0.00554285
\(243\) 243.000 0.0641500
\(244\) −3373.94 −0.885223
\(245\) −6191.87 −1.61463
\(246\) 12.4379 0.00322362
\(247\) −3915.29 −1.00860
\(248\) 73.6644 0.0188617
\(249\) −1397.41 −0.355652
\(250\) 73.8786 0.0186900
\(251\) −4032.94 −1.01417 −0.507085 0.861896i \(-0.669277\pi\)
−0.507085 + 0.861896i \(0.669277\pi\)
\(252\) −464.250 −0.116051
\(253\) 1938.91 0.481810
\(254\) 43.0790 0.0106418
\(255\) 0 0
\(256\) 4093.76 0.999453
\(257\) −2385.61 −0.579029 −0.289515 0.957174i \(-0.593494\pi\)
−0.289515 + 0.957174i \(0.593494\pi\)
\(258\) 8.75425 0.00211246
\(259\) −1210.63 −0.290445
\(260\) −10491.1 −2.50242
\(261\) −1012.79 −0.240192
\(262\) 5.70969 0.00134636
\(263\) −7312.21 −1.71441 −0.857206 0.514974i \(-0.827802\pi\)
−0.857206 + 0.514974i \(0.827802\pi\)
\(264\) −18.3187 −0.00427061
\(265\) −5682.49 −1.31726
\(266\) −8.26943 −0.00190613
\(267\) −277.099 −0.0635138
\(268\) 2157.78 0.491819
\(269\) −1272.89 −0.288511 −0.144255 0.989540i \(-0.546079\pi\)
−0.144255 + 0.989540i \(0.546079\pi\)
\(270\) 11.5981 0.00261421
\(271\) 269.767 0.0604693 0.0302346 0.999543i \(-0.490375\pi\)
0.0302346 + 0.999543i \(0.490375\pi\)
\(272\) 0 0
\(273\) 1235.00 0.273794
\(274\) 45.4871 0.0100291
\(275\) 5420.39 1.18859
\(276\) −2549.48 −0.556017
\(277\) 3470.76 0.752843 0.376422 0.926448i \(-0.377154\pi\)
0.376422 + 0.926448i \(0.377154\pi\)
\(278\) −15.3076 −0.00330248
\(279\) −1981.61 −0.425219
\(280\) −44.3173 −0.00945881
\(281\) −721.579 −0.153188 −0.0765940 0.997062i \(-0.524405\pi\)
−0.0765940 + 0.997062i \(0.524405\pi\)
\(282\) 36.1122 0.00762572
\(283\) −1017.08 −0.213636 −0.106818 0.994279i \(-0.534066\pi\)
−0.106818 + 0.994279i \(0.534066\pi\)
\(284\) −5598.89 −1.16983
\(285\) −3779.47 −0.785531
\(286\) 24.3652 0.00503757
\(287\) 1278.48 0.262950
\(288\) 36.1314 0.00739259
\(289\) 0 0
\(290\) −48.3393 −0.00978820
\(291\) 5004.45 1.00813
\(292\) 6531.01 1.30890
\(293\) 2776.30 0.553560 0.276780 0.960933i \(-0.410733\pi\)
0.276780 + 0.960933i \(0.410733\pi\)
\(294\) −18.9089 −0.00375099
\(295\) 991.527 0.195691
\(296\) 62.8133 0.0123343
\(297\) 492.784 0.0962769
\(298\) 62.8138 0.0122104
\(299\) 6782.16 1.31178
\(300\) −7127.30 −1.37165
\(301\) 899.844 0.172313
\(302\) 66.4314 0.0126579
\(303\) 2007.31 0.380583
\(304\) −3924.36 −0.740386
\(305\) 8664.04 1.62656
\(306\) 0 0
\(307\) −727.432 −0.135234 −0.0676168 0.997711i \(-0.521540\pi\)
−0.0676168 + 0.997711i \(0.521540\pi\)
\(308\) −941.460 −0.174171
\(309\) −2078.20 −0.382604
\(310\) −94.5800 −0.0173283
\(311\) −1184.60 −0.215989 −0.107994 0.994152i \(-0.534443\pi\)
−0.107994 + 0.994152i \(0.534443\pi\)
\(312\) −64.0776 −0.0116272
\(313\) 254.466 0.0459529 0.0229765 0.999736i \(-0.492686\pi\)
0.0229765 + 0.999736i \(0.492686\pi\)
\(314\) −13.0409 −0.00234376
\(315\) 1192.16 0.213240
\(316\) 8930.75 1.58985
\(317\) 8638.25 1.53051 0.765256 0.643726i \(-0.222612\pi\)
0.765256 + 0.643726i \(0.222612\pi\)
\(318\) −17.3534 −0.00306015
\(319\) −2053.86 −0.360482
\(320\) −10514.2 −1.83676
\(321\) 470.983 0.0818931
\(322\) 14.3245 0.00247911
\(323\) 0 0
\(324\) −647.965 −0.111105
\(325\) 18960.1 3.23606
\(326\) −46.9939 −0.00798390
\(327\) 3499.10 0.591744
\(328\) −66.3337 −0.0111667
\(329\) 3711.95 0.622026
\(330\) 23.5200 0.00392343
\(331\) 931.174 0.154628 0.0773141 0.997007i \(-0.475366\pi\)
0.0773141 + 0.997007i \(0.475366\pi\)
\(332\) 3726.22 0.615973
\(333\) −1689.71 −0.278065
\(334\) −39.4651 −0.00646537
\(335\) −5541.03 −0.903699
\(336\) 1237.86 0.200985
\(337\) −8125.43 −1.31341 −0.656707 0.754146i \(-0.728051\pi\)
−0.656707 + 0.754146i \(0.728051\pi\)
\(338\) 39.2864 0.00632219
\(339\) 1538.32 0.246460
\(340\) 0 0
\(341\) −4018.55 −0.638172
\(342\) −11.5419 −0.00182489
\(343\) −4155.39 −0.654140
\(344\) −46.6880 −0.00731759
\(345\) 6546.89 1.02166
\(346\) −51.9611 −0.00807354
\(347\) −10952.1 −1.69435 −0.847177 0.531310i \(-0.821700\pi\)
−0.847177 + 0.531310i \(0.821700\pi\)
\(348\) 2700.63 0.416002
\(349\) −4845.63 −0.743212 −0.371606 0.928391i \(-0.621193\pi\)
−0.371606 + 0.928391i \(0.621193\pi\)
\(350\) 40.0455 0.00611577
\(351\) 1723.72 0.262124
\(352\) 73.2716 0.0110949
\(353\) −1814.62 −0.273605 −0.136802 0.990598i \(-0.543683\pi\)
−0.136802 + 0.990598i \(0.543683\pi\)
\(354\) 3.02795 0.000454616 0
\(355\) 14377.6 2.14953
\(356\) 738.891 0.110003
\(357\) 0 0
\(358\) 23.2219 0.00342825
\(359\) −10174.2 −1.49575 −0.747874 0.663840i \(-0.768925\pi\)
−0.747874 + 0.663840i \(0.768925\pi\)
\(360\) −61.8548 −0.00905565
\(361\) −3097.86 −0.451649
\(362\) 12.4753 0.00181130
\(363\) −2993.67 −0.432857
\(364\) −3293.16 −0.474199
\(365\) −16771.2 −2.40505
\(366\) 26.4585 0.00377871
\(367\) −4544.86 −0.646430 −0.323215 0.946326i \(-0.604764\pi\)
−0.323215 + 0.946326i \(0.604764\pi\)
\(368\) 6797.87 0.962944
\(369\) 1784.41 0.251742
\(370\) −80.6479 −0.0113316
\(371\) −1783.74 −0.249615
\(372\) 5284.02 0.736461
\(373\) −549.941 −0.0763402 −0.0381701 0.999271i \(-0.512153\pi\)
−0.0381701 + 0.999271i \(0.512153\pi\)
\(374\) 0 0
\(375\) 10599.0 1.45955
\(376\) −192.593 −0.0264155
\(377\) −7184.24 −0.981452
\(378\) 3.64066 0.000495384 0
\(379\) 2072.61 0.280905 0.140452 0.990087i \(-0.455144\pi\)
0.140452 + 0.990087i \(0.455144\pi\)
\(380\) 10078.0 1.36051
\(381\) 6180.35 0.831047
\(382\) −46.4415 −0.00622030
\(383\) −12705.2 −1.69506 −0.847530 0.530748i \(-0.821911\pi\)
−0.847530 + 0.530748i \(0.821911\pi\)
\(384\) −128.459 −0.0170714
\(385\) 2417.60 0.320032
\(386\) −24.1778 −0.00318813
\(387\) 1255.93 0.164968
\(388\) −13344.5 −1.74604
\(389\) 6157.69 0.802589 0.401295 0.915949i \(-0.368560\pi\)
0.401295 + 0.915949i \(0.368560\pi\)
\(390\) 82.2712 0.0106820
\(391\) 0 0
\(392\) 100.845 0.0129934
\(393\) 819.145 0.105141
\(394\) 72.9916 0.00933316
\(395\) −22933.6 −2.92130
\(396\) −1314.02 −0.166747
\(397\) −7088.92 −0.896178 −0.448089 0.893989i \(-0.647895\pi\)
−0.448089 + 0.893989i \(0.647895\pi\)
\(398\) −57.2245 −0.00720705
\(399\) −1186.38 −0.148855
\(400\) 19004.1 2.37551
\(401\) 877.750 0.109309 0.0546543 0.998505i \(-0.482594\pi\)
0.0546543 + 0.998505i \(0.482594\pi\)
\(402\) −16.9214 −0.00209941
\(403\) −14056.6 −1.73749
\(404\) −5352.52 −0.659154
\(405\) 1663.93 0.204151
\(406\) −15.1738 −0.00185483
\(407\) −3426.60 −0.417322
\(408\) 0 0
\(409\) 7333.73 0.886625 0.443313 0.896367i \(-0.353803\pi\)
0.443313 + 0.896367i \(0.353803\pi\)
\(410\) 85.1678 0.0102589
\(411\) 6525.84 0.783201
\(412\) 5541.57 0.662654
\(413\) 311.241 0.0370828
\(414\) 19.9931 0.00237345
\(415\) −9568.68 −1.13183
\(416\) 256.299 0.0302069
\(417\) −2196.12 −0.257900
\(418\) −23.4059 −0.00273881
\(419\) −1047.46 −0.122129 −0.0610643 0.998134i \(-0.519449\pi\)
−0.0610643 + 0.998134i \(0.519449\pi\)
\(420\) −3178.92 −0.369323
\(421\) −15517.0 −1.79632 −0.898162 0.439665i \(-0.855097\pi\)
−0.898162 + 0.439665i \(0.855097\pi\)
\(422\) 93.1863 0.0107494
\(423\) 5180.87 0.595514
\(424\) 92.5488 0.0106004
\(425\) 0 0
\(426\) 43.9066 0.00499362
\(427\) 2719.65 0.308228
\(428\) −1255.89 −0.141835
\(429\) 3495.57 0.393398
\(430\) 59.9442 0.00672271
\(431\) −7274.46 −0.812989 −0.406495 0.913653i \(-0.633249\pi\)
−0.406495 + 0.913653i \(0.633249\pi\)
\(432\) 1727.72 0.192419
\(433\) 5853.31 0.649635 0.324818 0.945777i \(-0.394697\pi\)
0.324818 + 0.945777i \(0.394697\pi\)
\(434\) −29.6888 −0.00328366
\(435\) −6935.03 −0.764389
\(436\) −9330.41 −1.02488
\(437\) −6515.14 −0.713184
\(438\) −51.2164 −0.00558724
\(439\) −4390.59 −0.477338 −0.238669 0.971101i \(-0.576711\pi\)
−0.238669 + 0.971101i \(0.576711\pi\)
\(440\) −125.436 −0.0135908
\(441\) −2712.78 −0.292925
\(442\) 0 0
\(443\) −698.038 −0.0748641 −0.0374320 0.999299i \(-0.511918\pi\)
−0.0374320 + 0.999299i \(0.511918\pi\)
\(444\) 4505.65 0.481597
\(445\) −1897.42 −0.202127
\(446\) 13.3520 0.00141757
\(447\) 9011.63 0.953547
\(448\) −3300.43 −0.348059
\(449\) 5550.98 0.583445 0.291723 0.956503i \(-0.405772\pi\)
0.291723 + 0.956503i \(0.405772\pi\)
\(450\) 55.8925 0.00585510
\(451\) 3618.64 0.377816
\(452\) −4101.95 −0.426858
\(453\) 9530.63 0.988495
\(454\) −23.0351 −0.00238126
\(455\) 8456.61 0.871323
\(456\) 61.5549 0.00632143
\(457\) −6755.97 −0.691534 −0.345767 0.938320i \(-0.612381\pi\)
−0.345767 + 0.938320i \(0.612381\pi\)
\(458\) −75.3446 −0.00768695
\(459\) 0 0
\(460\) −17457.4 −1.76947
\(461\) 1187.20 0.119942 0.0599710 0.998200i \(-0.480899\pi\)
0.0599710 + 0.998200i \(0.480899\pi\)
\(462\) 7.38295 0.000743476 0
\(463\) 3496.16 0.350930 0.175465 0.984486i \(-0.443857\pi\)
0.175465 + 0.984486i \(0.443857\pi\)
\(464\) −7200.89 −0.720459
\(465\) −13569.0 −1.35322
\(466\) 41.3588 0.00411139
\(467\) −18552.6 −1.83835 −0.919175 0.393848i \(-0.871144\pi\)
−0.919175 + 0.393848i \(0.871144\pi\)
\(468\) −4596.34 −0.453987
\(469\) −1739.34 −0.171248
\(470\) 247.276 0.0242681
\(471\) −1870.93 −0.183031
\(472\) −16.1486 −0.00157479
\(473\) 2546.93 0.247586
\(474\) −70.0352 −0.00678654
\(475\) −18213.7 −1.75937
\(476\) 0 0
\(477\) −2489.61 −0.238976
\(478\) −106.730 −0.0102128
\(479\) 18512.5 1.76588 0.882941 0.469483i \(-0.155560\pi\)
0.882941 + 0.469483i \(0.155560\pi\)
\(480\) 247.408 0.0235262
\(481\) −11986.0 −1.13620
\(482\) −3.40997 −0.000322240 0
\(483\) 2055.08 0.193601
\(484\) 7982.70 0.749690
\(485\) 34267.7 3.20828
\(486\) 5.08135 0.000474269 0
\(487\) −13830.9 −1.28693 −0.643466 0.765475i \(-0.722504\pi\)
−0.643466 + 0.765475i \(0.722504\pi\)
\(488\) −141.108 −0.0130895
\(489\) −6742.01 −0.623486
\(490\) −129.478 −0.0119371
\(491\) 2710.45 0.249126 0.124563 0.992212i \(-0.460247\pi\)
0.124563 + 0.992212i \(0.460247\pi\)
\(492\) −4758.17 −0.436006
\(493\) 0 0
\(494\) −81.8723 −0.00745670
\(495\) 3374.31 0.306392
\(496\) −14089.2 −1.27545
\(497\) 4513.14 0.407328
\(498\) −29.2211 −0.00262938
\(499\) −8787.23 −0.788317 −0.394159 0.919042i \(-0.628964\pi\)
−0.394159 + 0.919042i \(0.628964\pi\)
\(500\) −28262.6 −2.52788
\(501\) −5661.89 −0.504899
\(502\) −84.3325 −0.00749789
\(503\) 4482.62 0.397356 0.198678 0.980065i \(-0.436335\pi\)
0.198678 + 0.980065i \(0.436335\pi\)
\(504\) −19.4163 −0.00171601
\(505\) 13744.9 1.21117
\(506\) 40.5443 0.00356209
\(507\) 5636.25 0.493718
\(508\) −16480.0 −1.43934
\(509\) −17537.7 −1.52720 −0.763599 0.645691i \(-0.776569\pi\)
−0.763599 + 0.645691i \(0.776569\pi\)
\(510\) 0 0
\(511\) −5264.50 −0.455749
\(512\) 428.162 0.0369576
\(513\) −1655.86 −0.142511
\(514\) −49.8854 −0.00428084
\(515\) −14230.4 −1.21760
\(516\) −3348.97 −0.285718
\(517\) 10506.4 0.893752
\(518\) −25.3155 −0.00214729
\(519\) −7454.63 −0.630486
\(520\) −438.768 −0.0370024
\(521\) 21557.7 1.81278 0.906390 0.422441i \(-0.138827\pi\)
0.906390 + 0.422441i \(0.138827\pi\)
\(522\) −21.1784 −0.00177577
\(523\) −8765.00 −0.732823 −0.366412 0.930453i \(-0.619414\pi\)
−0.366412 + 0.930453i \(0.619414\pi\)
\(524\) −2184.27 −0.182100
\(525\) 5745.15 0.477598
\(526\) −152.905 −0.0126749
\(527\) 0 0
\(528\) 3503.67 0.288783
\(529\) −881.307 −0.0724342
\(530\) −118.826 −0.00973864
\(531\) 434.407 0.0355022
\(532\) 3163.51 0.257811
\(533\) 12657.7 1.02865
\(534\) −5.79440 −0.000469566 0
\(535\) 3225.03 0.260617
\(536\) 90.2449 0.00727236
\(537\) 3331.54 0.267722
\(538\) −26.6173 −0.00213300
\(539\) −5501.29 −0.439624
\(540\) −4436.90 −0.353581
\(541\) 5971.04 0.474519 0.237260 0.971446i \(-0.423751\pi\)
0.237260 + 0.971446i \(0.423751\pi\)
\(542\) 5.64107 0.000447057 0
\(543\) 1789.78 0.141449
\(544\) 0 0
\(545\) 23959.9 1.88317
\(546\) 25.8250 0.00202419
\(547\) 17281.6 1.35084 0.675419 0.737434i \(-0.263963\pi\)
0.675419 + 0.737434i \(0.263963\pi\)
\(548\) −17401.3 −1.35647
\(549\) 3795.89 0.295090
\(550\) 113.345 0.00878738
\(551\) 6901.40 0.533592
\(552\) −106.627 −0.00822163
\(553\) −7198.87 −0.553575
\(554\) 72.5767 0.00556587
\(555\) −11570.2 −0.884915
\(556\) 5856.00 0.446672
\(557\) −6265.83 −0.476646 −0.238323 0.971186i \(-0.576598\pi\)
−0.238323 + 0.971186i \(0.576598\pi\)
\(558\) −41.4374 −0.00314370
\(559\) 8908.98 0.674078
\(560\) 8476.20 0.639616
\(561\) 0 0
\(562\) −15.0889 −0.00113254
\(563\) −3685.25 −0.275870 −0.137935 0.990441i \(-0.544046\pi\)
−0.137935 + 0.990441i \(0.544046\pi\)
\(564\) −13814.9 −1.03140
\(565\) 10533.5 0.784335
\(566\) −21.2680 −0.00157944
\(567\) 522.309 0.0386859
\(568\) −234.162 −0.0172979
\(569\) −3570.81 −0.263086 −0.131543 0.991310i \(-0.541993\pi\)
−0.131543 + 0.991310i \(0.541993\pi\)
\(570\) −79.0322 −0.00580753
\(571\) 8578.53 0.628722 0.314361 0.949304i \(-0.398210\pi\)
0.314361 + 0.949304i \(0.398210\pi\)
\(572\) −9321.01 −0.681348
\(573\) −6662.76 −0.485761
\(574\) 26.7343 0.00194402
\(575\) 31550.2 2.28823
\(576\) −4606.49 −0.333224
\(577\) 15119.3 1.09086 0.545429 0.838157i \(-0.316367\pi\)
0.545429 + 0.838157i \(0.316367\pi\)
\(578\) 0 0
\(579\) −3468.69 −0.248970
\(580\) 18492.4 1.32389
\(581\) −3003.62 −0.214477
\(582\) 104.648 0.00745323
\(583\) −5048.73 −0.358657
\(584\) 273.146 0.0193542
\(585\) 11803.1 0.834185
\(586\) 58.0550 0.00409254
\(587\) −15700.9 −1.10399 −0.551997 0.833846i \(-0.686134\pi\)
−0.551997 + 0.833846i \(0.686134\pi\)
\(588\) 7233.68 0.507333
\(589\) 13503.2 0.944634
\(590\) 20.7337 0.00144677
\(591\) 10471.8 0.728853
\(592\) −12013.8 −0.834059
\(593\) −12196.6 −0.844614 −0.422307 0.906453i \(-0.638780\pi\)
−0.422307 + 0.906453i \(0.638780\pi\)
\(594\) 10.3046 0.000711787 0
\(595\) 0 0
\(596\) −24029.7 −1.65150
\(597\) −8209.75 −0.562819
\(598\) 141.821 0.00969816
\(599\) 19363.2 1.32080 0.660400 0.750914i \(-0.270387\pi\)
0.660400 + 0.750914i \(0.270387\pi\)
\(600\) −298.085 −0.0202821
\(601\) −12765.4 −0.866406 −0.433203 0.901296i \(-0.642617\pi\)
−0.433203 + 0.901296i \(0.642617\pi\)
\(602\) 18.8166 0.00127393
\(603\) −2427.64 −0.163949
\(604\) −25413.6 −1.71203
\(605\) −20499.0 −1.37753
\(606\) 41.9746 0.00281370
\(607\) −15295.8 −1.02279 −0.511397 0.859344i \(-0.670872\pi\)
−0.511397 + 0.859344i \(0.670872\pi\)
\(608\) −246.208 −0.0164228
\(609\) −2176.91 −0.144849
\(610\) 181.173 0.0120254
\(611\) 36750.5 2.43333
\(612\) 0 0
\(613\) 11554.2 0.761291 0.380646 0.924721i \(-0.375702\pi\)
0.380646 + 0.924721i \(0.375702\pi\)
\(614\) −15.2113 −0.000999800 0
\(615\) 12218.7 0.801144
\(616\) −39.3747 −0.00257541
\(617\) 7681.67 0.501220 0.250610 0.968088i \(-0.419369\pi\)
0.250610 + 0.968088i \(0.419369\pi\)
\(618\) −43.4571 −0.00282864
\(619\) 18736.0 1.21658 0.608292 0.793713i \(-0.291855\pi\)
0.608292 + 0.793713i \(0.291855\pi\)
\(620\) 36182.0 2.34372
\(621\) 2868.32 0.185349
\(622\) −24.7711 −0.00159683
\(623\) −595.603 −0.0383023
\(624\) 12255.6 0.786243
\(625\) 35453.0 2.26899
\(626\) 5.32112 0.000339736 0
\(627\) −3357.95 −0.213881
\(628\) 4988.86 0.317002
\(629\) 0 0
\(630\) 24.9292 0.00157651
\(631\) −15516.0 −0.978892 −0.489446 0.872034i \(-0.662801\pi\)
−0.489446 + 0.872034i \(0.662801\pi\)
\(632\) 373.511 0.0235086
\(633\) 13369.0 0.839449
\(634\) 180.634 0.0113153
\(635\) 42319.6 2.64473
\(636\) 6638.61 0.413896
\(637\) −19243.1 −1.19692
\(638\) −42.9480 −0.00266509
\(639\) 6299.10 0.389966
\(640\) −879.617 −0.0543280
\(641\) 12592.6 0.775940 0.387970 0.921672i \(-0.373176\pi\)
0.387970 + 0.921672i \(0.373176\pi\)
\(642\) 9.84868 0.000605446 0
\(643\) 8183.85 0.501928 0.250964 0.967996i \(-0.419252\pi\)
0.250964 + 0.967996i \(0.419252\pi\)
\(644\) −5479.91 −0.335308
\(645\) 8599.93 0.524996
\(646\) 0 0
\(647\) −2042.87 −0.124132 −0.0620661 0.998072i \(-0.519769\pi\)
−0.0620661 + 0.998072i \(0.519769\pi\)
\(648\) −27.0998 −0.00164287
\(649\) 880.943 0.0532820
\(650\) 396.474 0.0239246
\(651\) −4259.32 −0.256430
\(652\) 17977.7 1.07985
\(653\) −17805.3 −1.06704 −0.533518 0.845789i \(-0.679130\pi\)
−0.533518 + 0.845789i \(0.679130\pi\)
\(654\) 73.1693 0.00437484
\(655\) 5609.05 0.334601
\(656\) 12687.1 0.755102
\(657\) −7347.79 −0.436324
\(658\) 77.6204 0.00459872
\(659\) 24705.9 1.46040 0.730202 0.683231i \(-0.239426\pi\)
0.730202 + 0.683231i \(0.239426\pi\)
\(660\) −8997.67 −0.530657
\(661\) 14655.1 0.862354 0.431177 0.902267i \(-0.358098\pi\)
0.431177 + 0.902267i \(0.358098\pi\)
\(662\) 19.4717 0.00114319
\(663\) 0 0
\(664\) 155.842 0.00910818
\(665\) −8123.67 −0.473718
\(666\) −35.3335 −0.00205577
\(667\) −11954.8 −0.693989
\(668\) 15097.5 0.874464
\(669\) 1915.55 0.110702
\(670\) −115.868 −0.00668116
\(671\) 7697.75 0.442874
\(672\) 77.6617 0.00445813
\(673\) 22375.5 1.28159 0.640797 0.767711i \(-0.278604\pi\)
0.640797 + 0.767711i \(0.278604\pi\)
\(674\) −169.910 −0.00971023
\(675\) 8018.65 0.457242
\(676\) −15029.2 −0.855097
\(677\) −18940.5 −1.07525 −0.537623 0.843185i \(-0.680678\pi\)
−0.537623 + 0.843185i \(0.680678\pi\)
\(678\) 32.1676 0.00182211
\(679\) 10756.7 0.607957
\(680\) 0 0
\(681\) −3304.74 −0.185959
\(682\) −84.0316 −0.00471809
\(683\) −9489.30 −0.531622 −0.265811 0.964025i \(-0.585640\pi\)
−0.265811 + 0.964025i \(0.585640\pi\)
\(684\) 4415.39 0.246822
\(685\) 44685.3 2.49246
\(686\) −86.8930 −0.00483614
\(687\) −10809.4 −0.600296
\(688\) 8929.62 0.494824
\(689\) −17660.1 −0.976482
\(690\) 136.901 0.00755326
\(691\) 4564.16 0.251272 0.125636 0.992076i \(-0.459903\pi\)
0.125636 + 0.992076i \(0.459903\pi\)
\(692\) 19877.9 1.09197
\(693\) 1059.20 0.0580602
\(694\) −229.019 −0.0125266
\(695\) −15037.8 −0.820742
\(696\) 112.948 0.00615129
\(697\) 0 0
\(698\) −101.327 −0.00549466
\(699\) 5933.56 0.321070
\(700\) −15319.6 −0.827179
\(701\) −25637.7 −1.38135 −0.690673 0.723167i \(-0.742686\pi\)
−0.690673 + 0.723167i \(0.742686\pi\)
\(702\) 36.0446 0.00193792
\(703\) 11514.1 0.617728
\(704\) −9341.58 −0.500105
\(705\) 35475.7 1.89516
\(706\) −37.9454 −0.00202279
\(707\) 4314.55 0.229512
\(708\) −1158.36 −0.0614883
\(709\) 15590.0 0.825804 0.412902 0.910775i \(-0.364515\pi\)
0.412902 + 0.910775i \(0.364515\pi\)
\(710\) 300.648 0.0158917
\(711\) −10047.6 −0.529980
\(712\) 30.9026 0.00162658
\(713\) −23390.6 −1.22859
\(714\) 0 0
\(715\) 23935.7 1.25195
\(716\) −8883.63 −0.463683
\(717\) −15312.1 −0.797545
\(718\) −212.752 −0.0110583
\(719\) −27501.9 −1.42649 −0.713247 0.700913i \(-0.752776\pi\)
−0.713247 + 0.700913i \(0.752776\pi\)
\(720\) 11830.4 0.612353
\(721\) −4466.93 −0.230731
\(722\) −64.7791 −0.00333910
\(723\) −489.213 −0.0251646
\(724\) −4772.49 −0.244984
\(725\) −33420.6 −1.71202
\(726\) −62.6005 −0.00320017
\(727\) 27457.0 1.40072 0.700360 0.713790i \(-0.253023\pi\)
0.700360 + 0.713790i \(0.253023\pi\)
\(728\) −137.730 −0.00701182
\(729\) 729.000 0.0370370
\(730\) −350.701 −0.0177809
\(731\) 0 0
\(732\) −10121.8 −0.511084
\(733\) −22002.0 −1.10868 −0.554340 0.832290i \(-0.687029\pi\)
−0.554340 + 0.832290i \(0.687029\pi\)
\(734\) −95.0373 −0.00477914
\(735\) −18575.6 −0.932206
\(736\) 426.488 0.0213595
\(737\) −4923.05 −0.246055
\(738\) 37.3137 0.00186116
\(739\) 7294.60 0.363107 0.181554 0.983381i \(-0.441887\pi\)
0.181554 + 0.983381i \(0.441887\pi\)
\(740\) 30852.2 1.53263
\(741\) −11745.9 −0.582315
\(742\) −37.2997 −0.00184544
\(743\) −2257.31 −0.111457 −0.0557286 0.998446i \(-0.517748\pi\)
−0.0557286 + 0.998446i \(0.517748\pi\)
\(744\) 220.993 0.0108898
\(745\) 61706.6 3.03457
\(746\) −11.4998 −0.000564393 0
\(747\) −4192.23 −0.205336
\(748\) 0 0
\(749\) 1012.34 0.0493860
\(750\) 221.636 0.0107907
\(751\) −3350.03 −0.162776 −0.0813878 0.996683i \(-0.525935\pi\)
−0.0813878 + 0.996683i \(0.525935\pi\)
\(752\) 36835.7 1.78625
\(753\) −12098.8 −0.585532
\(754\) −150.229 −0.00725600
\(755\) 65260.4 3.14579
\(756\) −1392.75 −0.0670023
\(757\) −27564.3 −1.32344 −0.661718 0.749753i \(-0.730172\pi\)
−0.661718 + 0.749753i \(0.730172\pi\)
\(758\) 43.3402 0.00207676
\(759\) 5816.72 0.278173
\(760\) 421.493 0.0201173
\(761\) 27697.8 1.31937 0.659687 0.751541i \(-0.270689\pi\)
0.659687 + 0.751541i \(0.270689\pi\)
\(762\) 129.237 0.00614404
\(763\) 7521.03 0.356854
\(764\) 17766.4 0.841317
\(765\) 0 0
\(766\) −265.678 −0.0125318
\(767\) 3081.47 0.145066
\(768\) 12281.3 0.577035
\(769\) 34530.8 1.61926 0.809632 0.586938i \(-0.199667\pi\)
0.809632 + 0.586938i \(0.199667\pi\)
\(770\) 50.5543 0.00236604
\(771\) −7156.84 −0.334303
\(772\) 9249.33 0.431206
\(773\) −3723.24 −0.173241 −0.0866206 0.996241i \(-0.527607\pi\)
−0.0866206 + 0.996241i \(0.527607\pi\)
\(774\) 26.2627 0.00121963
\(775\) −65390.4 −3.03083
\(776\) −558.105 −0.0258181
\(777\) −3631.90 −0.167688
\(778\) 128.763 0.00593365
\(779\) −12159.4 −0.559250
\(780\) −31473.2 −1.44477
\(781\) 12774.0 0.585264
\(782\) 0 0
\(783\) −3038.37 −0.138675
\(784\) −19287.7 −0.878631
\(785\) −12811.1 −0.582479
\(786\) 17.1291 0.000777321 0
\(787\) 5397.77 0.244485 0.122243 0.992500i \(-0.460991\pi\)
0.122243 + 0.992500i \(0.460991\pi\)
\(788\) −27923.3 −1.26234
\(789\) −21936.6 −0.989816
\(790\) −479.562 −0.0215975
\(791\) 3306.49 0.148629
\(792\) −54.9562 −0.00246564
\(793\) 26926.2 1.20577
\(794\) −148.236 −0.00662556
\(795\) −17047.5 −0.760518
\(796\) 21891.5 0.974778
\(797\) −6133.78 −0.272609 −0.136305 0.990667i \(-0.543523\pi\)
−0.136305 + 0.990667i \(0.543523\pi\)
\(798\) −24.8083 −0.00110051
\(799\) 0 0
\(800\) 1192.29 0.0526921
\(801\) −831.298 −0.0366697
\(802\) 18.3546 0.000808133 0
\(803\) −14900.7 −0.654838
\(804\) 6473.34 0.283952
\(805\) 14072.0 0.616116
\(806\) −293.937 −0.0128455
\(807\) −3818.67 −0.166572
\(808\) −223.859 −0.00974668
\(809\) 2078.87 0.0903453 0.0451726 0.998979i \(-0.485616\pi\)
0.0451726 + 0.998979i \(0.485616\pi\)
\(810\) 34.7943 0.00150932
\(811\) 29163.4 1.26272 0.631361 0.775489i \(-0.282497\pi\)
0.631361 + 0.775489i \(0.282497\pi\)
\(812\) 5804.79 0.250872
\(813\) 809.301 0.0349119
\(814\) −71.6533 −0.00308532
\(815\) −46165.6 −1.98418
\(816\) 0 0
\(817\) −8558.23 −0.366481
\(818\) 153.355 0.00655493
\(819\) 3705.01 0.158075
\(820\) −32581.3 −1.38755
\(821\) 11121.7 0.472775 0.236388 0.971659i \(-0.424036\pi\)
0.236388 + 0.971659i \(0.424036\pi\)
\(822\) 136.461 0.00579031
\(823\) 38055.6 1.61183 0.805914 0.592033i \(-0.201674\pi\)
0.805914 + 0.592033i \(0.201674\pi\)
\(824\) 231.765 0.00979844
\(825\) 16261.2 0.686232
\(826\) 6.50835 0.000274158 0
\(827\) −1391.63 −0.0585146 −0.0292573 0.999572i \(-0.509314\pi\)
−0.0292573 + 0.999572i \(0.509314\pi\)
\(828\) −7648.44 −0.321017
\(829\) −28005.4 −1.17330 −0.586651 0.809840i \(-0.699554\pi\)
−0.586651 + 0.809840i \(0.699554\pi\)
\(830\) −200.090 −0.00836774
\(831\) 10412.3 0.434654
\(832\) −32676.2 −1.36159
\(833\) 0 0
\(834\) −45.9229 −0.00190669
\(835\) −38769.5 −1.60679
\(836\) 8954.04 0.370433
\(837\) −5944.84 −0.245500
\(838\) −21.9034 −0.000902912 0
\(839\) −26495.8 −1.09027 −0.545135 0.838348i \(-0.683521\pi\)
−0.545135 + 0.838348i \(0.683521\pi\)
\(840\) −132.952 −0.00546105
\(841\) −11725.5 −0.480769
\(842\) −324.475 −0.0132804
\(843\) −2164.74 −0.0884431
\(844\) −35648.8 −1.45389
\(845\) 38593.9 1.57121
\(846\) 108.337 0.00440271
\(847\) −6434.67 −0.261036
\(848\) −17701.0 −0.716811
\(849\) −3051.24 −0.123343
\(850\) 0 0
\(851\) −19945.0 −0.803415
\(852\) −16796.7 −0.675404
\(853\) 47429.5 1.90381 0.951907 0.306386i \(-0.0991198\pi\)
0.951907 + 0.306386i \(0.0991198\pi\)
\(854\) 56.8705 0.00227877
\(855\) −11338.4 −0.453527
\(856\) −52.5249 −0.00209727
\(857\) 2113.73 0.0842516 0.0421258 0.999112i \(-0.486587\pi\)
0.0421258 + 0.999112i \(0.486587\pi\)
\(858\) 73.0956 0.00290844
\(859\) 35271.0 1.40097 0.700483 0.713669i \(-0.252968\pi\)
0.700483 + 0.713669i \(0.252968\pi\)
\(860\) −22931.9 −0.909269
\(861\) 3835.45 0.151814
\(862\) −152.116 −0.00601053
\(863\) −46110.0 −1.81877 −0.909387 0.415951i \(-0.863449\pi\)
−0.909387 + 0.415951i \(0.863449\pi\)
\(864\) 108.394 0.00426811
\(865\) −51045.2 −2.00646
\(866\) 122.398 0.00480284
\(867\) 0 0
\(868\) 11357.6 0.444126
\(869\) −20375.8 −0.795399
\(870\) −145.018 −0.00565122
\(871\) −17220.5 −0.669912
\(872\) −390.226 −0.0151545
\(873\) 15013.3 0.582044
\(874\) −136.238 −0.00527266
\(875\) 22781.8 0.880189
\(876\) 19593.0 0.755693
\(877\) 20985.3 0.808008 0.404004 0.914757i \(-0.367618\pi\)
0.404004 + 0.914757i \(0.367618\pi\)
\(878\) −91.8112 −0.00352902
\(879\) 8328.90 0.319598
\(880\) 23991.2 0.919025
\(881\) 33923.6 1.29729 0.648646 0.761090i \(-0.275336\pi\)
0.648646 + 0.761090i \(0.275336\pi\)
\(882\) −56.7267 −0.00216563
\(883\) −31168.8 −1.18790 −0.593948 0.804503i \(-0.702432\pi\)
−0.593948 + 0.804503i \(0.702432\pi\)
\(884\) 0 0
\(885\) 2974.58 0.112982
\(886\) −14.5966 −0.000553480 0
\(887\) −35032.5 −1.32613 −0.663064 0.748563i \(-0.730744\pi\)
−0.663064 + 0.748563i \(0.730744\pi\)
\(888\) 188.440 0.00712120
\(889\) 13284.2 0.501167
\(890\) −39.6768 −0.00149435
\(891\) 1478.35 0.0555855
\(892\) −5107.87 −0.191731
\(893\) −35303.7 −1.32295
\(894\) 188.441 0.00704969
\(895\) 22812.5 0.851999
\(896\) −276.113 −0.0102950
\(897\) 20346.5 0.757357
\(898\) 116.076 0.00431349
\(899\) 24777.3 0.919209
\(900\) −21381.9 −0.791922
\(901\) 0 0
\(902\) 75.6691 0.00279324
\(903\) 2699.53 0.0994848
\(904\) −171.556 −0.00631180
\(905\) 12255.4 0.450149
\(906\) 199.294 0.00730807
\(907\) −23052.2 −0.843921 −0.421960 0.906614i \(-0.638658\pi\)
−0.421960 + 0.906614i \(0.638658\pi\)
\(908\) 8812.17 0.322073
\(909\) 6021.92 0.219730
\(910\) 176.835 0.00644180
\(911\) 18173.2 0.660927 0.330463 0.943819i \(-0.392795\pi\)
0.330463 + 0.943819i \(0.392795\pi\)
\(912\) −11773.1 −0.427462
\(913\) −8501.50 −0.308169
\(914\) −141.274 −0.00511260
\(915\) 25992.1 0.939096
\(916\) 28823.4 1.03969
\(917\) 1760.69 0.0634057
\(918\) 0 0
\(919\) −13457.8 −0.483061 −0.241530 0.970393i \(-0.577649\pi\)
−0.241530 + 0.970393i \(0.577649\pi\)
\(920\) −730.121 −0.0261645
\(921\) −2182.30 −0.0780772
\(922\) 24.8254 0.000886746 0
\(923\) 44682.7 1.59344
\(924\) −2824.38 −0.100558
\(925\) −55758.1 −1.98196
\(926\) 73.1080 0.00259447
\(927\) −6234.61 −0.220897
\(928\) −451.773 −0.0159808
\(929\) −33883.2 −1.19663 −0.598316 0.801260i \(-0.704163\pi\)
−0.598316 + 0.801260i \(0.704163\pi\)
\(930\) −283.740 −0.0100045
\(931\) 18485.5 0.650740
\(932\) −15822.0 −0.556079
\(933\) −3553.80 −0.124701
\(934\) −387.951 −0.0135912
\(935\) 0 0
\(936\) −192.233 −0.00671296
\(937\) 21838.9 0.761414 0.380707 0.924696i \(-0.375681\pi\)
0.380707 + 0.924696i \(0.375681\pi\)
\(938\) −36.3712 −0.00126606
\(939\) 763.398 0.0265309
\(940\) −94596.6 −3.28234
\(941\) −34598.1 −1.19858 −0.599291 0.800531i \(-0.704551\pi\)
−0.599291 + 0.800531i \(0.704551\pi\)
\(942\) −39.1228 −0.00135317
\(943\) 21062.8 0.727360
\(944\) 3088.61 0.106489
\(945\) 3576.48 0.123114
\(946\) 53.2587 0.00183043
\(947\) −7753.79 −0.266066 −0.133033 0.991112i \(-0.542472\pi\)
−0.133033 + 0.991112i \(0.542472\pi\)
\(948\) 26792.3 0.917903
\(949\) −52121.6 −1.78287
\(950\) −380.865 −0.0130072
\(951\) 25914.8 0.883642
\(952\) 0 0
\(953\) −32189.4 −1.09414 −0.547071 0.837086i \(-0.684257\pi\)
−0.547071 + 0.837086i \(0.684257\pi\)
\(954\) −52.0601 −0.00176678
\(955\) −45622.9 −1.54589
\(956\) 40830.0 1.38131
\(957\) −6161.57 −0.208125
\(958\) 387.113 0.0130554
\(959\) 14026.8 0.472313
\(960\) −31542.7 −1.06045
\(961\) 18688.0 0.627302
\(962\) −250.638 −0.00840011
\(963\) 1412.95 0.0472810
\(964\) 1304.50 0.0435840
\(965\) −23751.6 −0.792324
\(966\) 42.9736 0.00143132
\(967\) −8790.83 −0.292341 −0.146171 0.989259i \(-0.546695\pi\)
−0.146171 + 0.989259i \(0.546695\pi\)
\(968\) 333.860 0.0110854
\(969\) 0 0
\(970\) 716.568 0.0237192
\(971\) 30609.1 1.01163 0.505815 0.862642i \(-0.331192\pi\)
0.505815 + 0.862642i \(0.331192\pi\)
\(972\) −1943.89 −0.0641465
\(973\) −4720.38 −0.155528
\(974\) −289.216 −0.00951445
\(975\) 56880.4 1.86834
\(976\) 26988.6 0.885126
\(977\) 19095.9 0.625314 0.312657 0.949866i \(-0.398781\pi\)
0.312657 + 0.949866i \(0.398781\pi\)
\(978\) −140.982 −0.00460951
\(979\) −1685.80 −0.0550342
\(980\) 49532.2 1.61454
\(981\) 10497.3 0.341644
\(982\) 56.6780 0.00184182
\(983\) −2465.89 −0.0800100 −0.0400050 0.999199i \(-0.512737\pi\)
−0.0400050 + 0.999199i \(0.512737\pi\)
\(984\) −199.001 −0.00644707
\(985\) 71705.0 2.31950
\(986\) 0 0
\(987\) 11135.9 0.359127
\(988\) 31320.6 1.00854
\(989\) 14824.8 0.476644
\(990\) 70.5599 0.00226519
\(991\) 21369.6 0.684994 0.342497 0.939519i \(-0.388727\pi\)
0.342497 + 0.939519i \(0.388727\pi\)
\(992\) −883.933 −0.0282912
\(993\) 2793.52 0.0892747
\(994\) 94.3738 0.00301142
\(995\) −56215.8 −1.79112
\(996\) 11178.7 0.355632
\(997\) −25866.7 −0.821670 −0.410835 0.911710i \(-0.634763\pi\)
−0.410835 + 0.911710i \(0.634763\pi\)
\(998\) −183.749 −0.00582813
\(999\) −5069.14 −0.160541
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 867.4.a.w.1.10 20
17.5 odd 16 51.4.h.a.25.5 40
17.7 odd 16 51.4.h.a.49.5 yes 40
17.16 even 2 867.4.a.v.1.10 20
51.5 even 16 153.4.l.c.127.6 40
51.41 even 16 153.4.l.c.100.6 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.4.h.a.25.5 40 17.5 odd 16
51.4.h.a.49.5 yes 40 17.7 odd 16
153.4.l.c.100.6 40 51.41 even 16
153.4.l.c.127.6 40 51.5 even 16
867.4.a.v.1.10 20 17.16 even 2
867.4.a.w.1.10 20 1.1 even 1 trivial