Properties

Label 867.6.a.f
Level $867$
Weight $6$
Character orbit 867.a
Self dual yes
Analytic conductor $139.053$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [867,6,Mod(1,867)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(867, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("867.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 867.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(139.052771778\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 117x^{2} + 299x + 1026 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 51)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 + 1) q^{2} - 9 q^{3} + (\beta_{3} + 4 \beta_{2} + 27) q^{4} + ( - 2 \beta_{3} + \beta_{2} + \cdots - 37) q^{5} + ( - 9 \beta_1 - 9) q^{6} + (4 \beta_{3} + 6 \beta_{2} - 6 \beta_1 - 16) q^{7}+ \cdots + (486 \beta_{3} - 405 \beta_{2} + \cdots - 23247) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 5 q^{2} - 36 q^{3} + 113 q^{4} - 146 q^{5} - 45 q^{6} - 60 q^{7} - 153 q^{8} + 324 q^{9} + 536 q^{10} - 1114 q^{11} - 1017 q^{12} - 166 q^{13} - 1738 q^{14} + 1314 q^{15} + 2745 q^{16} + 405 q^{18}+ \cdots - 90234 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 117x^{2} + 299x + 1026 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 10\nu^{2} - 75\nu - 424 ) / 34 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -2\nu^{3} - 3\nu^{2} + 184\nu - 138 ) / 17 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 4\beta_{2} - 2\beta _1 + 58 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -10\beta_{3} - 6\beta_{2} + 95\beta _1 - 156 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−11.1538
−1.97781
5.21760
8.91396
−10.1538 −9.00000 71.0987 −87.4534 91.3838 148.200 −396.998 81.0000 887.980
1.2 −0.977811 −9.00000 −31.0439 8.49105 8.80030 −164.461 61.6450 81.0000 −8.30264
1.3 6.21760 −9.00000 6.65857 −86.8235 −55.9584 −10.7167 −157.563 81.0000 −539.834
1.4 9.91396 −9.00000 66.2866 19.7859 −89.2257 −33.0231 339.916 81.0000 196.156
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 867.6.a.f 4
17.b even 2 1 51.6.a.c 4
51.c odd 2 1 153.6.a.e 4
68.d odd 2 1 816.6.a.o 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
51.6.a.c 4 17.b even 2 1
153.6.a.e 4 51.c odd 2 1
816.6.a.o 4 68.d odd 2 1
867.6.a.f 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(867))\):

\( T_{2}^{4} - 5T_{2}^{3} - 108T_{2}^{2} + 526T_{2} + 612 \) Copy content Toggle raw display
\( T_{5}^{4} + 146T_{5}^{3} + 2833T_{5}^{2} - 185428T_{5} + 1275648 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 5 T^{3} + \cdots + 612 \) Copy content Toggle raw display
$3$ \( (T + 9)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 146 T^{3} + \cdots + 1275648 \) Copy content Toggle raw display
$7$ \( T^{4} + 60 T^{3} + \cdots - 8625600 \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots - 3437913600 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 29011393972 \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots - 3576219089616 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 5662798513668 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots - 133725174557184 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots - 15\!\cdots\!76 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 10\!\cdots\!36 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 47677475772324 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots - 40\!\cdots\!92 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots - 36\!\cdots\!44 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots - 28\!\cdots\!84 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots - 60\!\cdots\!64 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 56\!\cdots\!68 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots - 43\!\cdots\!52 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 39\!\cdots\!24 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 48\!\cdots\!52 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots - 52\!\cdots\!96 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 48\!\cdots\!72 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots - 56\!\cdots\!16 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 11\!\cdots\!68 \) Copy content Toggle raw display
show more
show less