Properties

Label 867.6.a.f
Level 867867
Weight 66
Character orbit 867.a
Self dual yes
Analytic conductor 139.053139.053
Analytic rank 11
Dimension 44
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [867,6,Mod(1,867)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(867, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("867.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 867=3172 867 = 3 \cdot 17^{2}
Weight: k k == 6 6
Character orbit: [χ][\chi] == 867.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 139.052771778139.052771778
Analytic rank: 11
Dimension: 44
Coefficient field: Q[x]/(x4)\mathbb{Q}[x]/(x^{4} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x3117x2+299x+1026 x^{4} - x^{3} - 117x^{2} + 299x + 1026 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 51)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β1+1)q29q3+(β3+4β2+27)q4+(2β3+β2+37)q5+(9β19)q6+(4β3+6β26β116)q7++(486β3405β2+23247)q99+O(q100) q + (\beta_1 + 1) q^{2} - 9 q^{3} + (\beta_{3} + 4 \beta_{2} + 27) q^{4} + ( - 2 \beta_{3} + \beta_{2} + \cdots - 37) q^{5} + ( - 9 \beta_1 - 9) q^{6} + (4 \beta_{3} + 6 \beta_{2} - 6 \beta_1 - 16) q^{7}+ \cdots + (486 \beta_{3} - 405 \beta_{2} + \cdots - 23247) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+5q236q3+113q4146q545q660q7153q8+324q9+536q101114q111017q12166q131738q14+1314q15+2745q16+405q18+90234q99+O(q100) 4 q + 5 q^{2} - 36 q^{3} + 113 q^{4} - 146 q^{5} - 45 q^{6} - 60 q^{7} - 153 q^{8} + 324 q^{9} + 536 q^{10} - 1114 q^{11} - 1017 q^{12} - 166 q^{13} - 1738 q^{14} + 1314 q^{15} + 2745 q^{16} + 405 q^{18}+ \cdots - 90234 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4x3117x2+299x+1026 x^{4} - x^{3} - 117x^{2} + 299x + 1026 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν3+10ν275ν424)/34 ( \nu^{3} + 10\nu^{2} - 75\nu - 424 ) / 34 Copy content Toggle raw display
β3\beta_{3}== (2ν33ν2+184ν138)/17 ( -2\nu^{3} - 3\nu^{2} + 184\nu - 138 ) / 17 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β3+4β22β1+58 \beta_{3} + 4\beta_{2} - 2\beta _1 + 58 Copy content Toggle raw display
ν3\nu^{3}== 10β36β2+95β1156 -10\beta_{3} - 6\beta_{2} + 95\beta _1 - 156 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−11.1538
−1.97781
5.21760
8.91396
−10.1538 −9.00000 71.0987 −87.4534 91.3838 148.200 −396.998 81.0000 887.980
1.2 −0.977811 −9.00000 −31.0439 8.49105 8.80030 −164.461 61.6450 81.0000 −8.30264
1.3 6.21760 −9.00000 6.65857 −86.8235 −55.9584 −10.7167 −157.563 81.0000 −539.834
1.4 9.91396 −9.00000 66.2866 19.7859 −89.2257 −33.0231 339.916 81.0000 196.156
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 +1 +1
1717 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 867.6.a.f 4
17.b even 2 1 51.6.a.c 4
51.c odd 2 1 153.6.a.e 4
68.d odd 2 1 816.6.a.o 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
51.6.a.c 4 17.b even 2 1
153.6.a.e 4 51.c odd 2 1
816.6.a.o 4 68.d odd 2 1
867.6.a.f 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S6new(Γ0(867))S_{6}^{\mathrm{new}}(\Gamma_0(867)):

T245T23108T22+526T2+612 T_{2}^{4} - 5T_{2}^{3} - 108T_{2}^{2} + 526T_{2} + 612 Copy content Toggle raw display
T54+146T53+2833T52185428T5+1275648 T_{5}^{4} + 146T_{5}^{3} + 2833T_{5}^{2} - 185428T_{5} + 1275648 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T45T3++612 T^{4} - 5 T^{3} + \cdots + 612 Copy content Toggle raw display
33 (T+9)4 (T + 9)^{4} Copy content Toggle raw display
55 T4+146T3++1275648 T^{4} + 146 T^{3} + \cdots + 1275648 Copy content Toggle raw display
77 T4+60T3+8625600 T^{4} + 60 T^{3} + \cdots - 8625600 Copy content Toggle raw display
1111 T4+3437913600 T^{4} + \cdots - 3437913600 Copy content Toggle raw display
1313 T4++29011393972 T^{4} + \cdots + 29011393972 Copy content Toggle raw display
1717 T4 T^{4} Copy content Toggle raw display
1919 T4+3576219089616 T^{4} + \cdots - 3576219089616 Copy content Toggle raw display
2323 T4++5662798513668 T^{4} + \cdots + 5662798513668 Copy content Toggle raw display
2929 T4+133725174557184 T^{4} + \cdots - 133725174557184 Copy content Toggle raw display
3131 T4+15 ⁣ ⁣76 T^{4} + \cdots - 15\!\cdots\!76 Copy content Toggle raw display
3737 T4++10 ⁣ ⁣36 T^{4} + \cdots + 10\!\cdots\!36 Copy content Toggle raw display
4141 T4++47677475772324 T^{4} + \cdots + 47677475772324 Copy content Toggle raw display
4343 T4+40 ⁣ ⁣92 T^{4} + \cdots - 40\!\cdots\!92 Copy content Toggle raw display
4747 T4+36 ⁣ ⁣44 T^{4} + \cdots - 36\!\cdots\!44 Copy content Toggle raw display
5353 T4+28 ⁣ ⁣84 T^{4} + \cdots - 28\!\cdots\!84 Copy content Toggle raw display
5959 T4+60 ⁣ ⁣64 T^{4} + \cdots - 60\!\cdots\!64 Copy content Toggle raw display
6161 T4++56 ⁣ ⁣68 T^{4} + \cdots + 56\!\cdots\!68 Copy content Toggle raw display
6767 T4+43 ⁣ ⁣52 T^{4} + \cdots - 43\!\cdots\!52 Copy content Toggle raw display
7171 T4++39 ⁣ ⁣24 T^{4} + \cdots + 39\!\cdots\!24 Copy content Toggle raw display
7373 T4++48 ⁣ ⁣52 T^{4} + \cdots + 48\!\cdots\!52 Copy content Toggle raw display
7979 T4+52 ⁣ ⁣96 T^{4} + \cdots - 52\!\cdots\!96 Copy content Toggle raw display
8383 T4++48 ⁣ ⁣72 T^{4} + \cdots + 48\!\cdots\!72 Copy content Toggle raw display
8989 T4+56 ⁣ ⁣16 T^{4} + \cdots - 56\!\cdots\!16 Copy content Toggle raw display
9797 T4++11 ⁣ ⁣68 T^{4} + \cdots + 11\!\cdots\!68 Copy content Toggle raw display
show more
show less