Properties

Label 87.2.f.a.17.1
Level $87$
Weight $2$
Character 87.17
Analytic conductor $0.695$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [87,2,Mod(17,87)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(87, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("87.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 87 = 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 87.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.694698497585\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 17.1
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 87.17
Dual form 87.2.f.a.41.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.36603 - 1.36603i) q^{2} +(0.866025 - 1.50000i) q^{3} +1.73205i q^{4} +3.73205 q^{5} +(-3.23205 + 0.866025i) q^{6} -2.73205 q^{7} +(-0.366025 + 0.366025i) q^{8} +(-1.50000 - 2.59808i) q^{9} +(-5.09808 - 5.09808i) q^{10} +(-0.366025 - 0.366025i) q^{11} +(2.59808 + 1.50000i) q^{12} +5.73205i q^{13} +(3.73205 + 3.73205i) q^{14} +(3.23205 - 5.59808i) q^{15} +4.46410 q^{16} +(-0.732051 - 0.732051i) q^{17} +(-1.50000 + 5.59808i) q^{18} +(1.73205 - 1.73205i) q^{19} +6.46410i q^{20} +(-2.36603 + 4.09808i) q^{21} +1.00000i q^{22} +1.46410i q^{23} +(0.232051 + 0.866025i) q^{24} +8.92820 q^{25} +(7.83013 - 7.83013i) q^{26} -5.19615 q^{27} -4.73205i q^{28} +(2.00000 + 5.00000i) q^{29} +(-12.0622 + 3.23205i) q^{30} +(0.633975 - 0.633975i) q^{31} +(-5.36603 - 5.36603i) q^{32} +(-0.866025 + 0.232051i) q^{33} +2.00000i q^{34} -10.1962 q^{35} +(4.50000 - 2.59808i) q^{36} +(-3.46410 - 3.46410i) q^{37} -4.73205 q^{38} +(8.59808 + 4.96410i) q^{39} +(-1.36603 + 1.36603i) q^{40} +(5.19615 - 5.19615i) q^{41} +(8.83013 - 2.36603i) q^{42} +(-3.56218 + 3.56218i) q^{43} +(0.633975 - 0.633975i) q^{44} +(-5.59808 - 9.69615i) q^{45} +(2.00000 - 2.00000i) q^{46} +(0.830127 - 0.830127i) q^{47} +(3.86603 - 6.69615i) q^{48} +0.464102 q^{49} +(-12.1962 - 12.1962i) q^{50} +(-1.73205 + 0.464102i) q^{51} -9.92820 q^{52} +3.92820i q^{53} +(7.09808 + 7.09808i) q^{54} +(-1.36603 - 1.36603i) q^{55} +(1.00000 - 1.00000i) q^{56} +(-1.09808 - 4.09808i) q^{57} +(4.09808 - 9.56218i) q^{58} -0.535898i q^{59} +(9.69615 + 5.59808i) q^{60} +(-2.00000 + 2.00000i) q^{61} -1.73205 q^{62} +(4.09808 + 7.09808i) q^{63} +5.73205i q^{64} +21.3923i q^{65} +(1.50000 + 0.866025i) q^{66} +8.92820i q^{67} +(1.26795 - 1.26795i) q^{68} +(2.19615 + 1.26795i) q^{69} +(13.9282 + 13.9282i) q^{70} -16.7321 q^{71} +(1.50000 + 0.401924i) q^{72} +(-4.00000 - 4.00000i) q^{73} +9.46410i q^{74} +(7.73205 - 13.3923i) q^{75} +(3.00000 + 3.00000i) q^{76} +(1.00000 + 1.00000i) q^{77} +(-4.96410 - 18.5263i) q^{78} +(1.83013 - 1.83013i) q^{79} +16.6603 q^{80} +(-4.50000 + 7.79423i) q^{81} -14.1962 q^{82} -13.8564i q^{83} +(-7.09808 - 4.09808i) q^{84} +(-2.73205 - 2.73205i) q^{85} +9.73205 q^{86} +(9.23205 + 1.33013i) q^{87} +0.267949 q^{88} +(5.00000 + 5.00000i) q^{89} +(-5.59808 + 20.8923i) q^{90} -15.6603i q^{91} -2.53590 q^{92} +(-0.401924 - 1.50000i) q^{93} -2.26795 q^{94} +(6.46410 - 6.46410i) q^{95} +(-12.6962 + 3.40192i) q^{96} +(-7.73205 - 7.73205i) q^{97} +(-0.633975 - 0.633975i) q^{98} +(-0.401924 + 1.50000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} + 8 q^{5} - 6 q^{6} - 4 q^{7} + 2 q^{8} - 6 q^{9} - 10 q^{10} + 2 q^{11} + 8 q^{14} + 6 q^{15} + 4 q^{16} + 4 q^{17} - 6 q^{18} - 6 q^{21} - 6 q^{24} + 8 q^{25} + 14 q^{26} + 8 q^{29} - 24 q^{30}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/87\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36603 1.36603i −0.965926 0.965926i 0.0335125 0.999438i \(-0.489331\pi\)
−0.999438 + 0.0335125i \(0.989331\pi\)
\(3\) 0.866025 1.50000i 0.500000 0.866025i
\(4\) 1.73205i 0.866025i
\(5\) 3.73205 1.66902 0.834512 0.550990i \(-0.185750\pi\)
0.834512 + 0.550990i \(0.185750\pi\)
\(6\) −3.23205 + 0.866025i −1.31948 + 0.353553i
\(7\) −2.73205 −1.03262 −0.516309 0.856402i \(-0.672694\pi\)
−0.516309 + 0.856402i \(0.672694\pi\)
\(8\) −0.366025 + 0.366025i −0.129410 + 0.129410i
\(9\) −1.50000 2.59808i −0.500000 0.866025i
\(10\) −5.09808 5.09808i −1.61215 1.61215i
\(11\) −0.366025 0.366025i −0.110361 0.110361i 0.649770 0.760131i \(-0.274865\pi\)
−0.760131 + 0.649770i \(0.774865\pi\)
\(12\) 2.59808 + 1.50000i 0.750000 + 0.433013i
\(13\) 5.73205i 1.58978i 0.606750 + 0.794892i \(0.292473\pi\)
−0.606750 + 0.794892i \(0.707527\pi\)
\(14\) 3.73205 + 3.73205i 0.997433 + 0.997433i
\(15\) 3.23205 5.59808i 0.834512 1.44542i
\(16\) 4.46410 1.11603
\(17\) −0.732051 0.732051i −0.177548 0.177548i 0.612738 0.790286i \(-0.290068\pi\)
−0.790286 + 0.612738i \(0.790068\pi\)
\(18\) −1.50000 + 5.59808i −0.353553 + 1.31948i
\(19\) 1.73205 1.73205i 0.397360 0.397360i −0.479941 0.877301i \(-0.659342\pi\)
0.877301 + 0.479941i \(0.159342\pi\)
\(20\) 6.46410i 1.44542i
\(21\) −2.36603 + 4.09808i −0.516309 + 0.894274i
\(22\) 1.00000i 0.213201i
\(23\) 1.46410i 0.305286i 0.988281 + 0.152643i \(0.0487785\pi\)
−0.988281 + 0.152643i \(0.951221\pi\)
\(24\) 0.232051 + 0.866025i 0.0473672 + 0.176777i
\(25\) 8.92820 1.78564
\(26\) 7.83013 7.83013i 1.53561 1.53561i
\(27\) −5.19615 −1.00000
\(28\) 4.73205i 0.894274i
\(29\) 2.00000 + 5.00000i 0.371391 + 0.928477i
\(30\) −12.0622 + 3.23205i −2.20224 + 0.590089i
\(31\) 0.633975 0.633975i 0.113865 0.113865i −0.647878 0.761744i \(-0.724344\pi\)
0.761744 + 0.647878i \(0.224344\pi\)
\(32\) −5.36603 5.36603i −0.948588 0.948588i
\(33\) −0.866025 + 0.232051i −0.150756 + 0.0403949i
\(34\) 2.00000i 0.342997i
\(35\) −10.1962 −1.72346
\(36\) 4.50000 2.59808i 0.750000 0.433013i
\(37\) −3.46410 3.46410i −0.569495 0.569495i 0.362492 0.931987i \(-0.381926\pi\)
−0.931987 + 0.362492i \(0.881926\pi\)
\(38\) −4.73205 −0.767640
\(39\) 8.59808 + 4.96410i 1.37679 + 0.794892i
\(40\) −1.36603 + 1.36603i −0.215988 + 0.215988i
\(41\) 5.19615 5.19615i 0.811503 0.811503i −0.173356 0.984859i \(-0.555461\pi\)
0.984859 + 0.173356i \(0.0554613\pi\)
\(42\) 8.83013 2.36603i 1.36252 0.365086i
\(43\) −3.56218 + 3.56218i −0.543227 + 0.543227i −0.924473 0.381246i \(-0.875495\pi\)
0.381246 + 0.924473i \(0.375495\pi\)
\(44\) 0.633975 0.633975i 0.0955753 0.0955753i
\(45\) −5.59808 9.69615i −0.834512 1.44542i
\(46\) 2.00000 2.00000i 0.294884 0.294884i
\(47\) 0.830127 0.830127i 0.121086 0.121086i −0.643967 0.765053i \(-0.722713\pi\)
0.765053 + 0.643967i \(0.222713\pi\)
\(48\) 3.86603 6.69615i 0.558013 0.966506i
\(49\) 0.464102 0.0663002
\(50\) −12.1962 12.1962i −1.72480 1.72480i
\(51\) −1.73205 + 0.464102i −0.242536 + 0.0649872i
\(52\) −9.92820 −1.37679
\(53\) 3.92820i 0.539580i 0.962919 + 0.269790i \(0.0869543\pi\)
−0.962919 + 0.269790i \(0.913046\pi\)
\(54\) 7.09808 + 7.09808i 0.965926 + 0.965926i
\(55\) −1.36603 1.36603i −0.184195 0.184195i
\(56\) 1.00000 1.00000i 0.133631 0.133631i
\(57\) −1.09808 4.09808i −0.145444 0.542803i
\(58\) 4.09808 9.56218i 0.538104 1.25558i
\(59\) 0.535898i 0.0697680i −0.999391 0.0348840i \(-0.988894\pi\)
0.999391 0.0348840i \(-0.0111062\pi\)
\(60\) 9.69615 + 5.59808i 1.25177 + 0.722709i
\(61\) −2.00000 + 2.00000i −0.256074 + 0.256074i −0.823455 0.567381i \(-0.807957\pi\)
0.567381 + 0.823455i \(0.307957\pi\)
\(62\) −1.73205 −0.219971
\(63\) 4.09808 + 7.09808i 0.516309 + 0.894274i
\(64\) 5.73205i 0.716506i
\(65\) 21.3923i 2.65339i
\(66\) 1.50000 + 0.866025i 0.184637 + 0.106600i
\(67\) 8.92820i 1.09075i 0.838191 + 0.545377i \(0.183613\pi\)
−0.838191 + 0.545377i \(0.816387\pi\)
\(68\) 1.26795 1.26795i 0.153761 0.153761i
\(69\) 2.19615 + 1.26795i 0.264386 + 0.152643i
\(70\) 13.9282 + 13.9282i 1.66474 + 1.66474i
\(71\) −16.7321 −1.98573 −0.992865 0.119248i \(-0.961952\pi\)
−0.992865 + 0.119248i \(0.961952\pi\)
\(72\) 1.50000 + 0.401924i 0.176777 + 0.0473672i
\(73\) −4.00000 4.00000i −0.468165 0.468165i 0.433155 0.901319i \(-0.357400\pi\)
−0.901319 + 0.433155i \(0.857400\pi\)
\(74\) 9.46410i 1.10018i
\(75\) 7.73205 13.3923i 0.892820 1.54641i
\(76\) 3.00000 + 3.00000i 0.344124 + 0.344124i
\(77\) 1.00000 + 1.00000i 0.113961 + 0.113961i
\(78\) −4.96410 18.5263i −0.562074 2.09769i
\(79\) 1.83013 1.83013i 0.205905 0.205905i −0.596619 0.802525i \(-0.703490\pi\)
0.802525 + 0.596619i \(0.203490\pi\)
\(80\) 16.6603 1.86267
\(81\) −4.50000 + 7.79423i −0.500000 + 0.866025i
\(82\) −14.1962 −1.56770
\(83\) 13.8564i 1.52094i −0.649374 0.760469i \(-0.724969\pi\)
0.649374 0.760469i \(-0.275031\pi\)
\(84\) −7.09808 4.09808i −0.774464 0.447137i
\(85\) −2.73205 2.73205i −0.296333 0.296333i
\(86\) 9.73205 1.04943
\(87\) 9.23205 + 1.33013i 0.989780 + 0.142605i
\(88\) 0.267949 0.0285635
\(89\) 5.00000 + 5.00000i 0.529999 + 0.529999i 0.920572 0.390573i \(-0.127723\pi\)
−0.390573 + 0.920572i \(0.627723\pi\)
\(90\) −5.59808 + 20.8923i −0.590089 + 2.20224i
\(91\) 15.6603i 1.64164i
\(92\) −2.53590 −0.264386
\(93\) −0.401924 1.50000i −0.0416776 0.155543i
\(94\) −2.26795 −0.233921
\(95\) 6.46410 6.46410i 0.663203 0.663203i
\(96\) −12.6962 + 3.40192i −1.29580 + 0.347207i
\(97\) −7.73205 7.73205i −0.785071 0.785071i 0.195611 0.980682i \(-0.437331\pi\)
−0.980682 + 0.195611i \(0.937331\pi\)
\(98\) −0.633975 0.633975i −0.0640411 0.0640411i
\(99\) −0.401924 + 1.50000i −0.0403949 + 0.150756i
\(100\) 15.4641i 1.54641i
\(101\) −4.19615 4.19615i −0.417533 0.417533i 0.466820 0.884352i \(-0.345400\pi\)
−0.884352 + 0.466820i \(0.845400\pi\)
\(102\) 3.00000 + 1.73205i 0.297044 + 0.171499i
\(103\) 10.7321 1.05746 0.528730 0.848790i \(-0.322668\pi\)
0.528730 + 0.848790i \(0.322668\pi\)
\(104\) −2.09808 2.09808i −0.205733 0.205733i
\(105\) −8.83013 + 15.2942i −0.861732 + 1.49256i
\(106\) 5.36603 5.36603i 0.521194 0.521194i
\(107\) 5.26795i 0.509272i −0.967037 0.254636i \(-0.918044\pi\)
0.967037 0.254636i \(-0.0819556\pi\)
\(108\) 9.00000i 0.866025i
\(109\) 7.00000i 0.670478i 0.942133 + 0.335239i \(0.108817\pi\)
−0.942133 + 0.335239i \(0.891183\pi\)
\(110\) 3.73205i 0.355837i
\(111\) −8.19615 + 2.19615i −0.777944 + 0.208450i
\(112\) −12.1962 −1.15243
\(113\) −5.92820 + 5.92820i −0.557678 + 0.557678i −0.928646 0.370967i \(-0.879026\pi\)
0.370967 + 0.928646i \(0.379026\pi\)
\(114\) −4.09808 + 7.09808i −0.383820 + 0.664796i
\(115\) 5.46410i 0.509530i
\(116\) −8.66025 + 3.46410i −0.804084 + 0.321634i
\(117\) 14.8923 8.59808i 1.37679 0.794892i
\(118\) −0.732051 + 0.732051i −0.0673907 + 0.0673907i
\(119\) 2.00000 + 2.00000i 0.183340 + 0.183340i
\(120\) 0.866025 + 3.23205i 0.0790569 + 0.295045i
\(121\) 10.7321i 0.975641i
\(122\) 5.46410 0.494697
\(123\) −3.29423 12.2942i −0.297031 1.10853i
\(124\) 1.09808 + 1.09808i 0.0986102 + 0.0986102i
\(125\) 14.6603 1.31125
\(126\) 4.09808 15.2942i 0.365086 1.36252i
\(127\) 9.00000 9.00000i 0.798621 0.798621i −0.184257 0.982878i \(-0.558988\pi\)
0.982878 + 0.184257i \(0.0589879\pi\)
\(128\) −2.90192 + 2.90192i −0.256496 + 0.256496i
\(129\) 2.25833 + 8.42820i 0.198835 + 0.742062i
\(130\) 29.2224 29.2224i 2.56298 2.56298i
\(131\) −11.3923 + 11.3923i −0.995350 + 0.995350i −0.999989 0.00463894i \(-0.998523\pi\)
0.00463894 + 0.999989i \(0.498523\pi\)
\(132\) −0.401924 1.50000i −0.0349830 0.130558i
\(133\) −4.73205 + 4.73205i −0.410321 + 0.410321i
\(134\) 12.1962 12.1962i 1.05359 1.05359i
\(135\) −19.3923 −1.66902
\(136\) 0.535898 0.0459529
\(137\) −4.73205 4.73205i −0.404286 0.404286i 0.475454 0.879741i \(-0.342284\pi\)
−0.879741 + 0.475454i \(0.842284\pi\)
\(138\) −1.26795 4.73205i −0.107935 0.402819i
\(139\) −11.4641 −0.972372 −0.486186 0.873855i \(-0.661612\pi\)
−0.486186 + 0.873855i \(0.661612\pi\)
\(140\) 17.6603i 1.49256i
\(141\) −0.526279 1.96410i −0.0443207 0.165407i
\(142\) 22.8564 + 22.8564i 1.91807 + 1.91807i
\(143\) 2.09808 2.09808i 0.175450 0.175450i
\(144\) −6.69615 11.5981i −0.558013 0.966506i
\(145\) 7.46410 + 18.6603i 0.619860 + 1.54965i
\(146\) 10.9282i 0.904425i
\(147\) 0.401924 0.696152i 0.0331501 0.0574177i
\(148\) 6.00000 6.00000i 0.493197 0.493197i
\(149\) 11.5359 0.945058 0.472529 0.881315i \(-0.343341\pi\)
0.472529 + 0.881315i \(0.343341\pi\)
\(150\) −28.8564 + 7.73205i −2.35612 + 0.631319i
\(151\) 5.66025i 0.460625i −0.973117 0.230312i \(-0.926025\pi\)
0.973117 0.230312i \(-0.0739748\pi\)
\(152\) 1.26795i 0.102844i
\(153\) −0.803848 + 3.00000i −0.0649872 + 0.242536i
\(154\) 2.73205i 0.220155i
\(155\) 2.36603 2.36603i 0.190044 0.190044i
\(156\) −8.59808 + 14.8923i −0.688397 + 1.19234i
\(157\) 5.53590 + 5.53590i 0.441813 + 0.441813i 0.892621 0.450808i \(-0.148864\pi\)
−0.450808 + 0.892621i \(0.648864\pi\)
\(158\) −5.00000 −0.397779
\(159\) 5.89230 + 3.40192i 0.467290 + 0.269790i
\(160\) −20.0263 20.0263i −1.58322 1.58322i
\(161\) 4.00000i 0.315244i
\(162\) 16.7942 4.50000i 1.31948 0.353553i
\(163\) 9.09808 + 9.09808i 0.712616 + 0.712616i 0.967082 0.254466i \(-0.0818995\pi\)
−0.254466 + 0.967082i \(0.581900\pi\)
\(164\) 9.00000 + 9.00000i 0.702782 + 0.702782i
\(165\) −3.23205 + 0.866025i −0.251615 + 0.0674200i
\(166\) −18.9282 + 18.9282i −1.46911 + 1.46911i
\(167\) −3.26795 −0.252882 −0.126441 0.991974i \(-0.540355\pi\)
−0.126441 + 0.991974i \(0.540355\pi\)
\(168\) −0.633975 2.36603i −0.0489122 0.182543i
\(169\) −19.8564 −1.52742
\(170\) 7.46410i 0.572470i
\(171\) −7.09808 1.90192i −0.542803 0.145444i
\(172\) −6.16987 6.16987i −0.470448 0.470448i
\(173\) 13.4641 1.02366 0.511828 0.859088i \(-0.328968\pi\)
0.511828 + 0.859088i \(0.328968\pi\)
\(174\) −10.7942 14.4282i −0.818308 1.09380i
\(175\) −24.3923 −1.84388
\(176\) −1.63397 1.63397i −0.123165 0.123165i
\(177\) −0.803848 0.464102i −0.0604209 0.0348840i
\(178\) 13.6603i 1.02388i
\(179\) 16.5885 1.23988 0.619940 0.784649i \(-0.287157\pi\)
0.619940 + 0.784649i \(0.287157\pi\)
\(180\) 16.7942 9.69615i 1.25177 0.722709i
\(181\) 16.3205 1.21309 0.606547 0.795048i \(-0.292554\pi\)
0.606547 + 0.795048i \(0.292554\pi\)
\(182\) −21.3923 + 21.3923i −1.58570 + 1.58570i
\(183\) 1.26795 + 4.73205i 0.0937295 + 0.349803i
\(184\) −0.535898 0.535898i −0.0395070 0.0395070i
\(185\) −12.9282 12.9282i −0.950500 0.950500i
\(186\) −1.50000 + 2.59808i −0.109985 + 0.190500i
\(187\) 0.535898i 0.0391888i
\(188\) 1.43782 + 1.43782i 0.104864 + 0.104864i
\(189\) 14.1962 1.03262
\(190\) −17.6603 −1.28121
\(191\) 15.9282 + 15.9282i 1.15252 + 1.15252i 0.986045 + 0.166479i \(0.0532399\pi\)
0.166479 + 0.986045i \(0.446760\pi\)
\(192\) 8.59808 + 4.96410i 0.620513 + 0.358253i
\(193\) −9.92820 + 9.92820i −0.714648 + 0.714648i −0.967504 0.252856i \(-0.918630\pi\)
0.252856 + 0.967504i \(0.418630\pi\)
\(194\) 21.1244i 1.51664i
\(195\) 32.0885 + 18.5263i 2.29790 + 1.32669i
\(196\) 0.803848i 0.0574177i
\(197\) 24.9282i 1.77606i −0.459785 0.888030i \(-0.652073\pi\)
0.459785 0.888030i \(-0.347927\pi\)
\(198\) 2.59808 1.50000i 0.184637 0.106600i
\(199\) 2.73205 0.193670 0.0968350 0.995300i \(-0.469128\pi\)
0.0968350 + 0.995300i \(0.469128\pi\)
\(200\) −3.26795 + 3.26795i −0.231079 + 0.231079i
\(201\) 13.3923 + 7.73205i 0.944620 + 0.545377i
\(202\) 11.4641i 0.806611i
\(203\) −5.46410 13.6603i −0.383505 0.958762i
\(204\) −0.803848 3.00000i −0.0562806 0.210042i
\(205\) 19.3923 19.3923i 1.35442 1.35442i
\(206\) −14.6603 14.6603i −1.02143 1.02143i
\(207\) 3.80385 2.19615i 0.264386 0.152643i
\(208\) 25.5885i 1.77424i
\(209\) −1.26795 −0.0877059
\(210\) 32.9545 8.83013i 2.27408 0.609337i
\(211\) 14.0263 + 14.0263i 0.965609 + 0.965609i 0.999428 0.0338191i \(-0.0107670\pi\)
−0.0338191 + 0.999428i \(0.510767\pi\)
\(212\) −6.80385 −0.467290
\(213\) −14.4904 + 25.0981i −0.992865 + 1.71969i
\(214\) −7.19615 + 7.19615i −0.491919 + 0.491919i
\(215\) −13.2942 + 13.2942i −0.906659 + 0.906659i
\(216\) 1.90192 1.90192i 0.129410 0.129410i
\(217\) −1.73205 + 1.73205i −0.117579 + 0.117579i
\(218\) 9.56218 9.56218i 0.647632 0.647632i
\(219\) −9.46410 + 2.53590i −0.639525 + 0.171360i
\(220\) 2.36603 2.36603i 0.159517 0.159517i
\(221\) 4.19615 4.19615i 0.282264 0.282264i
\(222\) 14.1962 + 8.19615i 0.952783 + 0.550090i
\(223\) 0.732051 0.0490217 0.0245109 0.999700i \(-0.492197\pi\)
0.0245109 + 0.999700i \(0.492197\pi\)
\(224\) 14.6603 + 14.6603i 0.979529 + 0.979529i
\(225\) −13.3923 23.1962i −0.892820 1.54641i
\(226\) 16.1962 1.07735
\(227\) 9.12436i 0.605605i 0.953053 + 0.302802i \(0.0979222\pi\)
−0.953053 + 0.302802i \(0.902078\pi\)
\(228\) 7.09808 1.90192i 0.470082 0.125958i
\(229\) −20.3205 20.3205i −1.34282 1.34282i −0.893243 0.449574i \(-0.851576\pi\)
−0.449574 0.893243i \(-0.648424\pi\)
\(230\) 7.46410 7.46410i 0.492168 0.492168i
\(231\) 2.36603 0.633975i 0.155673 0.0417125i
\(232\) −2.56218 1.09808i −0.168215 0.0720922i
\(233\) 20.1244i 1.31839i −0.751972 0.659195i \(-0.770897\pi\)
0.751972 0.659195i \(-0.229103\pi\)
\(234\) −32.0885 8.59808i −2.09769 0.562074i
\(235\) 3.09808 3.09808i 0.202096 0.202096i
\(236\) 0.928203 0.0604209
\(237\) −1.16025 4.33013i −0.0753666 0.281272i
\(238\) 5.46410i 0.354185i
\(239\) 6.00000i 0.388108i −0.980991 0.194054i \(-0.937836\pi\)
0.980991 0.194054i \(-0.0621637\pi\)
\(240\) 14.4282 24.9904i 0.931337 1.61312i
\(241\) 13.5359i 0.871924i −0.899965 0.435962i \(-0.856408\pi\)
0.899965 0.435962i \(-0.143592\pi\)
\(242\) −14.6603 + 14.6603i −0.942397 + 0.942397i
\(243\) 7.79423 + 13.5000i 0.500000 + 0.866025i
\(244\) −3.46410 3.46410i −0.221766 0.221766i
\(245\) 1.73205 0.110657
\(246\) −12.2942 + 21.2942i −0.783851 + 1.35767i
\(247\) 9.92820 + 9.92820i 0.631716 + 0.631716i
\(248\) 0.464102i 0.0294705i
\(249\) −20.7846 12.0000i −1.31717 0.760469i
\(250\) −20.0263 20.0263i −1.26657 1.26657i
\(251\) −10.6340 10.6340i −0.671211 0.671211i 0.286785 0.957995i \(-0.407414\pi\)
−0.957995 + 0.286785i \(0.907414\pi\)
\(252\) −12.2942 + 7.09808i −0.774464 + 0.447137i
\(253\) 0.535898 0.535898i 0.0336916 0.0336916i
\(254\) −24.5885 −1.54282
\(255\) −6.46410 + 1.73205i −0.404798 + 0.108465i
\(256\) 19.3923 1.21202
\(257\) 9.92820i 0.619304i 0.950850 + 0.309652i \(0.100213\pi\)
−0.950850 + 0.309652i \(0.899787\pi\)
\(258\) 8.42820 14.5981i 0.524717 0.908837i
\(259\) 9.46410 + 9.46410i 0.588071 + 0.588071i
\(260\) −37.0526 −2.29790
\(261\) 9.99038 12.6962i 0.618389 0.785872i
\(262\) 31.1244 1.92287
\(263\) −15.2942 15.2942i −0.943083 0.943083i 0.0553827 0.998465i \(-0.482362\pi\)
−0.998465 + 0.0553827i \(0.982362\pi\)
\(264\) 0.232051 0.401924i 0.0142817 0.0247367i
\(265\) 14.6603i 0.900572i
\(266\) 12.9282 0.792679
\(267\) 11.8301 3.16987i 0.723992 0.193993i
\(268\) −15.4641 −0.944620
\(269\) −2.00000 + 2.00000i −0.121942 + 0.121942i −0.765444 0.643502i \(-0.777481\pi\)
0.643502 + 0.765444i \(0.277481\pi\)
\(270\) 26.4904 + 26.4904i 1.61215 + 1.61215i
\(271\) −7.16987 7.16987i −0.435539 0.435539i 0.454969 0.890507i \(-0.349650\pi\)
−0.890507 + 0.454969i \(0.849650\pi\)
\(272\) −3.26795 3.26795i −0.198149 0.198149i
\(273\) −23.4904 13.5622i −1.42170 0.820820i
\(274\) 12.9282i 0.781021i
\(275\) −3.26795 3.26795i −0.197065 0.197065i
\(276\) −2.19615 + 3.80385i −0.132193 + 0.228965i
\(277\) 5.60770 0.336934 0.168467 0.985707i \(-0.446118\pi\)
0.168467 + 0.985707i \(0.446118\pi\)
\(278\) 15.6603 + 15.6603i 0.939240 + 0.939240i
\(279\) −2.59808 0.696152i −0.155543 0.0416776i
\(280\) 3.73205 3.73205i 0.223033 0.223033i
\(281\) 1.73205i 0.103325i −0.998665 0.0516627i \(-0.983548\pi\)
0.998665 0.0516627i \(-0.0164521\pi\)
\(282\) −1.96410 + 3.40192i −0.116961 + 0.202582i
\(283\) 6.00000i 0.356663i 0.983970 + 0.178331i \(0.0570699\pi\)
−0.983970 + 0.178331i \(0.942930\pi\)
\(284\) 28.9808i 1.71969i
\(285\) −4.09808 15.2942i −0.242749 0.905952i
\(286\) −5.73205 −0.338943
\(287\) −14.1962 + 14.1962i −0.837972 + 0.837972i
\(288\) −5.89230 + 21.9904i −0.347207 + 1.29580i
\(289\) 15.9282i 0.936953i
\(290\) 15.2942 35.6865i 0.898108 2.09559i
\(291\) −18.2942 + 4.90192i −1.07243 + 0.287356i
\(292\) 6.92820 6.92820i 0.405442 0.405442i
\(293\) 16.1244 + 16.1244i 0.941995 + 0.941995i 0.998408 0.0564126i \(-0.0179662\pi\)
−0.0564126 + 0.998408i \(0.517966\pi\)
\(294\) −1.50000 + 0.401924i −0.0874818 + 0.0234407i
\(295\) 2.00000i 0.116445i
\(296\) 2.53590 0.147396
\(297\) 1.90192 + 1.90192i 0.110361 + 0.110361i
\(298\) −15.7583 15.7583i −0.912856 0.912856i
\(299\) −8.39230 −0.485340
\(300\) 23.1962 + 13.3923i 1.33923 + 0.773205i
\(301\) 9.73205 9.73205i 0.560946 0.560946i
\(302\) −7.73205 + 7.73205i −0.444930 + 0.444930i
\(303\) −9.92820 + 2.66025i −0.570360 + 0.152828i
\(304\) 7.73205 7.73205i 0.443464 0.443464i
\(305\) −7.46410 + 7.46410i −0.427393 + 0.427393i
\(306\) 5.19615 3.00000i 0.297044 0.171499i
\(307\) 2.49038 2.49038i 0.142134 0.142134i −0.632460 0.774593i \(-0.717955\pi\)
0.774593 + 0.632460i \(0.217955\pi\)
\(308\) −1.73205 + 1.73205i −0.0986928 + 0.0986928i
\(309\) 9.29423 16.0981i 0.528730 0.915788i
\(310\) −6.46410 −0.367136
\(311\) 16.4641 + 16.4641i 0.933594 + 0.933594i 0.997928 0.0643348i \(-0.0204926\pi\)
−0.0643348 + 0.997928i \(0.520493\pi\)
\(312\) −4.96410 + 1.33013i −0.281037 + 0.0753036i
\(313\) 7.58846 0.428925 0.214462 0.976732i \(-0.431200\pi\)
0.214462 + 0.976732i \(0.431200\pi\)
\(314\) 15.1244i 0.853517i
\(315\) 15.2942 + 26.4904i 0.861732 + 1.49256i
\(316\) 3.16987 + 3.16987i 0.178319 + 0.178319i
\(317\) 18.3923 18.3923i 1.03301 1.03301i 0.0335787 0.999436i \(-0.489310\pi\)
0.999436 0.0335787i \(-0.0106904\pi\)
\(318\) −3.40192 12.6962i −0.190770 0.711965i
\(319\) 1.09808 2.56218i 0.0614805 0.143454i
\(320\) 21.3923i 1.19587i
\(321\) −7.90192 4.56218i −0.441042 0.254636i
\(322\) −5.46410 + 5.46410i −0.304502 + 0.304502i
\(323\) −2.53590 −0.141101
\(324\) −13.5000 7.79423i −0.750000 0.433013i
\(325\) 51.1769i 2.83878i
\(326\) 24.8564i 1.37667i
\(327\) 10.5000 + 6.06218i 0.580651 + 0.335239i
\(328\) 3.80385i 0.210032i
\(329\) −2.26795 + 2.26795i −0.125036 + 0.125036i
\(330\) 5.59808 + 3.23205i 0.308164 + 0.177919i
\(331\) −2.36603 2.36603i −0.130049 0.130049i 0.639086 0.769135i \(-0.279313\pi\)
−0.769135 + 0.639086i \(0.779313\pi\)
\(332\) 24.0000 1.31717
\(333\) −3.80385 + 14.1962i −0.208450 + 0.777944i
\(334\) 4.46410 + 4.46410i 0.244265 + 0.244265i
\(335\) 33.3205i 1.82049i
\(336\) −10.5622 + 18.2942i −0.576214 + 0.998032i
\(337\) −1.07180 1.07180i −0.0583845 0.0583845i 0.677312 0.735696i \(-0.263145\pi\)
−0.735696 + 0.677312i \(0.763145\pi\)
\(338\) 27.1244 + 27.1244i 1.47537 + 1.47537i
\(339\) 3.75833 + 14.0263i 0.204124 + 0.761803i
\(340\) 4.73205 4.73205i 0.256631 0.256631i
\(341\) −0.464102 −0.0251325
\(342\) 7.09808 + 12.2942i 0.383820 + 0.664796i
\(343\) 17.8564 0.964155
\(344\) 2.60770i 0.140598i
\(345\) 8.19615 + 4.73205i 0.441266 + 0.254765i
\(346\) −18.3923 18.3923i −0.988776 0.988776i
\(347\) 19.5167 1.04771 0.523855 0.851808i \(-0.324494\pi\)
0.523855 + 0.851808i \(0.324494\pi\)
\(348\) −2.30385 + 15.9904i −0.123499 + 0.857174i
\(349\) 26.6603 1.42709 0.713545 0.700609i \(-0.247088\pi\)
0.713545 + 0.700609i \(0.247088\pi\)
\(350\) 33.3205 + 33.3205i 1.78106 + 1.78106i
\(351\) 29.7846i 1.58978i
\(352\) 3.92820i 0.209374i
\(353\) −8.78461 −0.467558 −0.233779 0.972290i \(-0.575109\pi\)
−0.233779 + 0.972290i \(0.575109\pi\)
\(354\) 0.464102 + 1.73205i 0.0246667 + 0.0920575i
\(355\) −62.4449 −3.31423
\(356\) −8.66025 + 8.66025i −0.458993 + 0.458993i
\(357\) 4.73205 1.26795i 0.250447 0.0671070i
\(358\) −22.6603 22.6603i −1.19763 1.19763i
\(359\) −6.49038 6.49038i −0.342549 0.342549i 0.514776 0.857325i \(-0.327875\pi\)
−0.857325 + 0.514776i \(0.827875\pi\)
\(360\) 5.59808 + 1.50000i 0.295045 + 0.0790569i
\(361\) 13.0000i 0.684211i
\(362\) −22.2942 22.2942i −1.17176 1.17176i
\(363\) −16.0981 9.29423i −0.844930 0.487820i
\(364\) 27.1244 1.42170
\(365\) −14.9282 14.9282i −0.781378 0.781378i
\(366\) 4.73205 8.19615i 0.247348 0.428420i
\(367\) −7.53590 + 7.53590i −0.393371 + 0.393371i −0.875887 0.482516i \(-0.839723\pi\)
0.482516 + 0.875887i \(0.339723\pi\)
\(368\) 6.53590i 0.340707i
\(369\) −21.2942 5.70577i −1.10853 0.297031i
\(370\) 35.3205i 1.83623i
\(371\) 10.7321i 0.557180i
\(372\) 2.59808 0.696152i 0.134704 0.0360938i
\(373\) −24.4641 −1.26670 −0.633352 0.773864i \(-0.718321\pi\)
−0.633352 + 0.773864i \(0.718321\pi\)
\(374\) 0.732051 0.732051i 0.0378534 0.0378534i
\(375\) 12.6962 21.9904i 0.655626 1.13558i
\(376\) 0.607695i 0.0313395i
\(377\) −28.6603 + 11.4641i −1.47608 + 0.590431i
\(378\) −19.3923 19.3923i −0.997433 0.997433i
\(379\) −8.85641 + 8.85641i −0.454923 + 0.454923i −0.896985 0.442062i \(-0.854247\pi\)
0.442062 + 0.896985i \(0.354247\pi\)
\(380\) 11.1962 + 11.1962i 0.574351 + 0.574351i
\(381\) −5.70577 21.2942i −0.292316 1.09094i
\(382\) 43.5167i 2.22651i
\(383\) 9.26795 0.473570 0.236785 0.971562i \(-0.423906\pi\)
0.236785 + 0.971562i \(0.423906\pi\)
\(384\) 1.83975 + 6.86603i 0.0938841 + 0.350380i
\(385\) 3.73205 + 3.73205i 0.190203 + 0.190203i
\(386\) 27.1244 1.38059
\(387\) 14.5981 + 3.91154i 0.742062 + 0.198835i
\(388\) 13.3923 13.3923i 0.679891 0.679891i
\(389\) 11.8038 11.8038i 0.598479 0.598479i −0.341429 0.939908i \(-0.610911\pi\)
0.939908 + 0.341429i \(0.110911\pi\)
\(390\) −18.5263 69.1410i −0.938115 3.50109i
\(391\) 1.07180 1.07180i 0.0542031 0.0542031i
\(392\) −0.169873 + 0.169873i −0.00857988 + 0.00857988i
\(393\) 7.22243 + 26.9545i 0.364323 + 1.35967i
\(394\) −34.0526 + 34.0526i −1.71554 + 1.71554i
\(395\) 6.83013 6.83013i 0.343661 0.343661i
\(396\) −2.59808 0.696152i −0.130558 0.0349830i
\(397\) −8.32051 −0.417594 −0.208797 0.977959i \(-0.566955\pi\)
−0.208797 + 0.977959i \(0.566955\pi\)
\(398\) −3.73205 3.73205i −0.187071 0.187071i
\(399\) 3.00000 + 11.1962i 0.150188 + 0.560509i
\(400\) 39.8564 1.99282
\(401\) 26.2679i 1.31176i 0.754866 + 0.655879i \(0.227702\pi\)
−0.754866 + 0.655879i \(0.772298\pi\)
\(402\) −7.73205 28.8564i −0.385640 1.43923i
\(403\) 3.63397 + 3.63397i 0.181021 + 0.181021i
\(404\) 7.26795 7.26795i 0.361594 0.361594i
\(405\) −16.7942 + 29.0885i −0.834512 + 1.44542i
\(406\) −11.1962 + 26.1244i −0.555656 + 1.29653i
\(407\) 2.53590i 0.125700i
\(408\) 0.464102 0.803848i 0.0229765 0.0397964i
\(409\) 4.60770 4.60770i 0.227836 0.227836i −0.583952 0.811788i \(-0.698494\pi\)
0.811788 + 0.583952i \(0.198494\pi\)
\(410\) −52.9808 −2.61653
\(411\) −11.1962 + 3.00000i −0.552265 + 0.147979i
\(412\) 18.5885i 0.915788i
\(413\) 1.46410i 0.0720437i
\(414\) −8.19615 2.19615i −0.402819 0.107935i
\(415\) 51.7128i 2.53848i
\(416\) 30.7583 30.7583i 1.50805 1.50805i
\(417\) −9.92820 + 17.1962i −0.486186 + 0.842099i
\(418\) 1.73205 + 1.73205i 0.0847174 + 0.0847174i
\(419\) 2.33975 0.114304 0.0571520 0.998365i \(-0.481798\pi\)
0.0571520 + 0.998365i \(0.481798\pi\)
\(420\) −26.4904 15.2942i −1.29260 0.746282i
\(421\) −6.19615 6.19615i −0.301982 0.301982i 0.539807 0.841789i \(-0.318497\pi\)
−0.841789 + 0.539807i \(0.818497\pi\)
\(422\) 38.3205i 1.86541i
\(423\) −3.40192 0.911543i −0.165407 0.0443207i
\(424\) −1.43782 1.43782i −0.0698268 0.0698268i
\(425\) −6.53590 6.53590i −0.317038 0.317038i
\(426\) 54.0788 14.4904i 2.62013 0.702061i
\(427\) 5.46410 5.46410i 0.264426 0.264426i
\(428\) 9.12436 0.441042
\(429\) −1.33013 4.96410i −0.0642191 0.239669i
\(430\) 36.3205 1.75153
\(431\) 30.3923i 1.46395i 0.681334 + 0.731973i \(0.261400\pi\)
−0.681334 + 0.731973i \(0.738600\pi\)
\(432\) −23.1962 −1.11603
\(433\) 5.46410 + 5.46410i 0.262588 + 0.262588i 0.826105 0.563517i \(-0.190552\pi\)
−0.563517 + 0.826105i \(0.690552\pi\)
\(434\) 4.73205 0.227146
\(435\) 34.4545 + 4.96410i 1.65197 + 0.238010i
\(436\) −12.1244 −0.580651
\(437\) 2.53590 + 2.53590i 0.121308 + 0.121308i
\(438\) 16.3923 + 9.46410i 0.783255 + 0.452212i
\(439\) 26.2487i 1.25278i 0.779509 + 0.626391i \(0.215469\pi\)
−0.779509 + 0.626391i \(0.784531\pi\)
\(440\) 1.00000 0.0476731
\(441\) −0.696152 1.20577i −0.0331501 0.0574177i
\(442\) −11.4641 −0.545292
\(443\) 17.9282 17.9282i 0.851795 0.851795i −0.138559 0.990354i \(-0.544247\pi\)
0.990354 + 0.138559i \(0.0442472\pi\)
\(444\) −3.80385 14.1962i −0.180523 0.673720i
\(445\) 18.6603 + 18.6603i 0.884581 + 0.884581i
\(446\) −1.00000 1.00000i −0.0473514 0.0473514i
\(447\) 9.99038 17.3038i 0.472529 0.818444i
\(448\) 15.6603i 0.739877i
\(449\) 0.856406 + 0.856406i 0.0404163 + 0.0404163i 0.727026 0.686610i \(-0.240902\pi\)
−0.686610 + 0.727026i \(0.740902\pi\)
\(450\) −13.3923 + 49.9808i −0.631319 + 2.35612i
\(451\) −3.80385 −0.179116
\(452\) −10.2679 10.2679i −0.482964 0.482964i
\(453\) −8.49038 4.90192i −0.398913 0.230312i
\(454\) 12.4641 12.4641i 0.584969 0.584969i
\(455\) 58.4449i 2.73994i
\(456\) 1.90192 + 1.09808i 0.0890657 + 0.0514221i
\(457\) 28.2487i 1.32142i −0.750642 0.660709i \(-0.770256\pi\)
0.750642 0.660709i \(-0.229744\pi\)
\(458\) 55.5167i 2.59412i
\(459\) 3.80385 + 3.80385i 0.177548 + 0.177548i
\(460\) −9.46410 −0.441266
\(461\) −16.8564 + 16.8564i −0.785081 + 0.785081i −0.980683 0.195602i \(-0.937334\pi\)
0.195602 + 0.980683i \(0.437334\pi\)
\(462\) −4.09808 2.36603i −0.190660 0.110077i
\(463\) 22.0000i 1.02243i 0.859454 + 0.511213i \(0.170804\pi\)
−0.859454 + 0.511213i \(0.829196\pi\)
\(464\) 8.92820 + 22.3205i 0.414481 + 1.03620i
\(465\) −1.50000 5.59808i −0.0695608 0.259605i
\(466\) −27.4904 + 27.4904i −1.27347 + 1.27347i
\(467\) 4.90192 + 4.90192i 0.226834 + 0.226834i 0.811369 0.584535i \(-0.198723\pi\)
−0.584535 + 0.811369i \(0.698723\pi\)
\(468\) 14.8923 + 25.7942i 0.688397 + 1.19234i
\(469\) 24.3923i 1.12633i
\(470\) −8.46410 −0.390420
\(471\) 13.0981 3.50962i 0.603527 0.161715i
\(472\) 0.196152 + 0.196152i 0.00902865 + 0.00902865i
\(473\) 2.60770 0.119902
\(474\) −4.33013 + 7.50000i −0.198889 + 0.344486i
\(475\) 15.4641 15.4641i 0.709542 0.709542i
\(476\) −3.46410 + 3.46410i −0.158777 + 0.158777i
\(477\) 10.2058 5.89230i 0.467290 0.269790i
\(478\) −8.19615 + 8.19615i −0.374883 + 0.374883i
\(479\) −2.90192 + 2.90192i −0.132592 + 0.132592i −0.770288 0.637696i \(-0.779888\pi\)
0.637696 + 0.770288i \(0.279888\pi\)
\(480\) −47.3827 + 12.6962i −2.16271 + 0.579497i
\(481\) 19.8564 19.8564i 0.905374 0.905374i
\(482\) −18.4904 + 18.4904i −0.842214 + 0.842214i
\(483\) −6.00000 3.46410i −0.273009 0.157622i
\(484\) 18.5885 0.844930
\(485\) −28.8564 28.8564i −1.31030 1.31030i
\(486\) 7.79423 29.0885i 0.353553 1.31948i
\(487\) −32.4449 −1.47022 −0.735109 0.677949i \(-0.762869\pi\)
−0.735109 + 0.677949i \(0.762869\pi\)
\(488\) 1.46410i 0.0662768i
\(489\) 21.5263 5.76795i 0.973452 0.260836i
\(490\) −2.36603 2.36603i −0.106886 0.106886i
\(491\) −28.5622 + 28.5622i −1.28899 + 1.28899i −0.353594 + 0.935399i \(0.615041\pi\)
−0.935399 + 0.353594i \(0.884959\pi\)
\(492\) 21.2942 5.70577i 0.960018 0.257236i
\(493\) 2.19615 5.12436i 0.0989097 0.230789i
\(494\) 27.1244i 1.22038i
\(495\) −1.50000 + 5.59808i −0.0674200 + 0.251615i
\(496\) 2.83013 2.83013i 0.127076 0.127076i
\(497\) 45.7128 2.05050
\(498\) 12.0000 + 44.7846i 0.537733 + 2.00685i
\(499\) 38.6410i 1.72981i −0.501936 0.864905i \(-0.667379\pi\)
0.501936 0.864905i \(-0.332621\pi\)
\(500\) 25.3923i 1.13558i
\(501\) −2.83013 + 4.90192i −0.126441 + 0.219002i
\(502\) 29.0526i 1.29668i
\(503\) −14.1699 + 14.1699i −0.631803 + 0.631803i −0.948520 0.316717i \(-0.897420\pi\)
0.316717 + 0.948520i \(0.397420\pi\)
\(504\) −4.09808 1.09808i −0.182543 0.0489122i
\(505\) −15.6603 15.6603i −0.696872 0.696872i
\(506\) −1.46410 −0.0650873
\(507\) −17.1962 + 29.7846i −0.763708 + 1.32278i
\(508\) 15.5885 + 15.5885i 0.691626 + 0.691626i
\(509\) 27.6410i 1.22517i −0.790406 0.612583i \(-0.790130\pi\)
0.790406 0.612583i \(-0.209870\pi\)
\(510\) 11.1962 + 6.46410i 0.495774 + 0.286235i
\(511\) 10.9282 + 10.9282i 0.483435 + 0.483435i
\(512\) −20.6865 20.6865i −0.914224 0.914224i
\(513\) −9.00000 + 9.00000i −0.397360 + 0.397360i
\(514\) 13.5622 13.5622i 0.598202 0.598202i
\(515\) 40.0526 1.76493
\(516\) −14.5981 + 3.91154i −0.642644 + 0.172196i
\(517\) −0.607695 −0.0267264
\(518\) 25.8564i 1.13607i
\(519\) 11.6603 20.1962i 0.511828 0.886513i
\(520\) −7.83013 7.83013i −0.343374 0.343374i
\(521\) 18.3205 0.802636 0.401318 0.915939i \(-0.368552\pi\)
0.401318 + 0.915939i \(0.368552\pi\)
\(522\) −30.9904 + 3.69615i −1.35641 + 0.161776i
\(523\) 20.9282 0.915126 0.457563 0.889177i \(-0.348722\pi\)
0.457563 + 0.889177i \(0.348722\pi\)
\(524\) −19.7321 19.7321i −0.861999 0.861999i
\(525\) −21.1244 + 36.5885i −0.921942 + 1.59685i
\(526\) 41.7846i 1.82190i
\(527\) −0.928203 −0.0404332
\(528\) −3.86603 + 1.03590i −0.168247 + 0.0450817i
\(529\) 20.8564 0.906800
\(530\) 20.0263 20.0263i 0.869886 0.869886i
\(531\) −1.39230 + 0.803848i −0.0604209 + 0.0348840i
\(532\) −8.19615 8.19615i −0.355348 0.355348i
\(533\) 29.7846 + 29.7846i 1.29011 + 1.29011i
\(534\) −20.4904 11.8301i −0.886706 0.511940i
\(535\) 19.6603i 0.849987i
\(536\) −3.26795 3.26795i −0.141154 0.141154i
\(537\) 14.3660 24.8827i 0.619940 1.07377i
\(538\) 5.46410 0.235574
\(539\) −0.169873 0.169873i −0.00731695 0.00731695i
\(540\) 33.5885i 1.44542i
\(541\) −15.2679 + 15.2679i −0.656420 + 0.656420i −0.954531 0.298111i \(-0.903643\pi\)
0.298111 + 0.954531i \(0.403643\pi\)
\(542\) 19.5885i 0.841396i
\(543\) 14.1340 24.4808i 0.606547 1.05057i
\(544\) 7.85641i 0.336841i
\(545\) 26.1244i 1.11904i
\(546\) 13.5622 + 50.6147i 0.580408 + 2.16611i
\(547\) 3.66025 0.156501 0.0782506 0.996934i \(-0.475067\pi\)
0.0782506 + 0.996934i \(0.475067\pi\)
\(548\) 8.19615 8.19615i 0.350122 0.350122i
\(549\) 8.19615 + 2.19615i 0.349803 + 0.0937295i
\(550\) 8.92820i 0.380700i
\(551\) 12.1244 + 5.19615i 0.516515 + 0.221364i
\(552\) −1.26795 + 0.339746i −0.0539675 + 0.0144605i
\(553\) −5.00000 + 5.00000i −0.212622 + 0.212622i
\(554\) −7.66025 7.66025i −0.325453 0.325453i
\(555\) −30.5885 + 8.19615i −1.29841 + 0.347907i
\(556\) 19.8564i 0.842099i
\(557\) −23.0718 −0.977583 −0.488792 0.872401i \(-0.662562\pi\)
−0.488792 + 0.872401i \(0.662562\pi\)
\(558\) 2.59808 + 4.50000i 0.109985 + 0.190500i
\(559\) −20.4186 20.4186i −0.863614 0.863614i
\(560\) −45.5167 −1.92343
\(561\) 0.803848 + 0.464102i 0.0339385 + 0.0195944i
\(562\) −2.36603 + 2.36603i −0.0998048 + 0.0998048i
\(563\) −15.9545 + 15.9545i −0.672401 + 0.672401i −0.958269 0.285868i \(-0.907718\pi\)
0.285868 + 0.958269i \(0.407718\pi\)
\(564\) 3.40192 0.911543i 0.143247 0.0383829i
\(565\) −22.1244 + 22.1244i −0.930779 + 0.930779i
\(566\) 8.19615 8.19615i 0.344510 0.344510i
\(567\) 12.2942 21.2942i 0.516309 0.894274i
\(568\) 6.12436 6.12436i 0.256972 0.256972i
\(569\) −15.7846 + 15.7846i −0.661725 + 0.661725i −0.955787 0.294061i \(-0.904993\pi\)
0.294061 + 0.955787i \(0.404993\pi\)
\(570\) −15.2942 + 26.4904i −0.640605 + 1.10956i
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 3.63397 + 3.63397i 0.151944 + 0.151944i
\(573\) 37.6865 10.0981i 1.57438 0.421853i
\(574\) 38.7846 1.61884
\(575\) 13.0718i 0.545132i
\(576\) 14.8923 8.59808i 0.620513 0.358253i
\(577\) 12.3923 + 12.3923i 0.515898 + 0.515898i 0.916328 0.400429i \(-0.131139\pi\)
−0.400429 + 0.916328i \(0.631139\pi\)
\(578\) −21.7583 + 21.7583i −0.905027 + 0.905027i
\(579\) 6.29423 + 23.4904i 0.261579 + 0.976227i
\(580\) −32.3205 + 12.9282i −1.34204 + 0.536814i
\(581\) 37.8564i 1.57055i
\(582\) 31.6865 + 18.2942i 1.31345 + 0.758320i
\(583\) 1.43782 1.43782i 0.0595485 0.0595485i
\(584\) 2.92820 0.121170
\(585\) 55.5788 32.0885i 2.29790 1.32669i
\(586\) 44.0526i 1.81979i
\(587\) 21.6077i 0.891845i −0.895072 0.445923i \(-0.852876\pi\)
0.895072 0.445923i \(-0.147124\pi\)
\(588\) 1.20577 + 0.696152i 0.0497252 + 0.0287088i
\(589\) 2.19615i 0.0904909i
\(590\) −2.73205 + 2.73205i −0.112477 + 0.112477i
\(591\) −37.3923 21.5885i −1.53811 0.888030i
\(592\) −15.4641 15.4641i −0.635571 0.635571i
\(593\) 21.3923 0.878477 0.439238 0.898371i \(-0.355248\pi\)
0.439238 + 0.898371i \(0.355248\pi\)
\(594\) 5.19615i 0.213201i
\(595\) 7.46410 + 7.46410i 0.305998 + 0.305998i
\(596\) 19.9808i 0.818444i
\(597\) 2.36603 4.09808i 0.0968350 0.167723i
\(598\) 11.4641 + 11.4641i 0.468802 + 0.468802i
\(599\) −0.437822 0.437822i −0.0178889 0.0178889i 0.698106 0.715995i \(-0.254027\pi\)
−0.715995 + 0.698106i \(0.754027\pi\)
\(600\) 2.07180 + 7.73205i 0.0845807 + 0.315660i
\(601\) −21.5885 + 21.5885i −0.880612 + 0.880612i −0.993597 0.112985i \(-0.963959\pi\)
0.112985 + 0.993597i \(0.463959\pi\)
\(602\) −26.5885 −1.08366
\(603\) 23.1962 13.3923i 0.944620 0.545377i
\(604\) 9.80385 0.398913
\(605\) 40.0526i 1.62837i
\(606\) 17.1962 + 9.92820i 0.698546 + 0.403306i
\(607\) 17.3660 + 17.3660i 0.704865 + 0.704865i 0.965451 0.260586i \(-0.0839156\pi\)
−0.260586 + 0.965451i \(0.583916\pi\)
\(608\) −18.5885 −0.753861
\(609\) −25.2224 3.63397i −1.02206 0.147256i
\(610\) 20.3923 0.825660
\(611\) 4.75833 + 4.75833i 0.192501 + 0.192501i
\(612\) −5.19615 1.39230i −0.210042 0.0562806i
\(613\) 19.7846i 0.799093i −0.916713 0.399546i \(-0.869168\pi\)
0.916713 0.399546i \(-0.130832\pi\)
\(614\) −6.80385 −0.274581
\(615\) −12.2942 45.8827i −0.495751 1.85017i
\(616\) −0.732051 −0.0294952
\(617\) −15.8038 + 15.8038i −0.636239 + 0.636239i −0.949626 0.313387i \(-0.898536\pi\)
0.313387 + 0.949626i \(0.398536\pi\)
\(618\) −34.6865 + 9.29423i −1.39530 + 0.373869i
\(619\) 17.6865 + 17.6865i 0.710882 + 0.710882i 0.966720 0.255838i \(-0.0823513\pi\)
−0.255838 + 0.966720i \(0.582351\pi\)
\(620\) 4.09808 + 4.09808i 0.164583 + 0.164583i
\(621\) 7.60770i 0.305286i
\(622\) 44.9808i 1.80356i
\(623\) −13.6603 13.6603i −0.547287 0.547287i
\(624\) 38.3827 + 22.1603i 1.53654 + 0.887120i
\(625\) 10.0718 0.402872
\(626\) −10.3660 10.3660i −0.414310 0.414310i
\(627\) −1.09808 + 1.90192i −0.0438529 + 0.0759555i
\(628\) −9.58846 + 9.58846i −0.382621 + 0.382621i
\(629\) 5.07180i 0.202226i
\(630\) 15.2942 57.0788i 0.609337 2.27408i
\(631\) 22.5885i 0.899232i 0.893222 + 0.449616i \(0.148439\pi\)
−0.893222 + 0.449616i \(0.851561\pi\)
\(632\) 1.33975i 0.0532922i
\(633\) 33.1865 8.89230i 1.31905 0.353437i
\(634\) −50.2487 −1.99563
\(635\) 33.5885 33.5885i 1.33292 1.33292i
\(636\) −5.89230 + 10.2058i −0.233645 + 0.404685i
\(637\) 2.66025i 0.105403i
\(638\) −5.00000 + 2.00000i −0.197952 + 0.0791808i
\(639\) 25.0981 + 43.4711i 0.992865 + 1.71969i
\(640\) −10.8301 + 10.8301i −0.428098 + 0.428098i
\(641\) −30.0526 30.0526i −1.18700 1.18700i −0.977891 0.209113i \(-0.932942\pi\)
−0.209113 0.977891i \(-0.567058\pi\)
\(642\) 4.56218 + 17.0263i 0.180055 + 0.671974i
\(643\) 12.4449i 0.490778i 0.969425 + 0.245389i \(0.0789156\pi\)
−0.969425 + 0.245389i \(0.921084\pi\)
\(644\) 6.92820 0.273009
\(645\) 8.42820 + 31.4545i 0.331860 + 1.23852i
\(646\) 3.46410 + 3.46410i 0.136293 + 0.136293i
\(647\) −9.85641 −0.387495 −0.193748 0.981051i \(-0.562064\pi\)
−0.193748 + 0.981051i \(0.562064\pi\)
\(648\) −1.20577 4.50000i −0.0473672 0.176777i
\(649\) −0.196152 + 0.196152i −0.00769966 + 0.00769966i
\(650\) 69.9090 69.9090i 2.74206 2.74206i
\(651\) 1.09808 + 4.09808i 0.0430370 + 0.160616i
\(652\) −15.7583 + 15.7583i −0.617144 + 0.617144i
\(653\) 9.39230 9.39230i 0.367549 0.367549i −0.499033 0.866583i \(-0.666312\pi\)
0.866583 + 0.499033i \(0.166312\pi\)
\(654\) −6.06218 22.6244i −0.237050 0.884682i
\(655\) −42.5167 + 42.5167i −1.66126 + 1.66126i
\(656\) 23.1962 23.1962i 0.905658 0.905658i
\(657\) −4.39230 + 16.3923i −0.171360 + 0.639525i
\(658\) 6.19615 0.241551
\(659\) −5.75833 5.75833i −0.224313 0.224313i 0.585999 0.810312i \(-0.300702\pi\)
−0.810312 + 0.585999i \(0.800702\pi\)
\(660\) −1.50000 5.59808i −0.0583874 0.217905i
\(661\) −26.3923 −1.02654 −0.513271 0.858227i \(-0.671566\pi\)
−0.513271 + 0.858227i \(0.671566\pi\)
\(662\) 6.46410i 0.251234i
\(663\) −2.66025 9.92820i −0.103316 0.385579i
\(664\) 5.07180 + 5.07180i 0.196824 + 0.196824i
\(665\) −17.6603 + 17.6603i −0.684835 + 0.684835i
\(666\) 24.5885 14.1962i 0.952783 0.550090i
\(667\) −7.32051 + 2.92820i −0.283451 + 0.113380i
\(668\) 5.66025i 0.219002i
\(669\) 0.633975 1.09808i 0.0245109 0.0424541i
\(670\) 45.5167 45.5167i 1.75846 1.75846i
\(671\) 1.46410 0.0565210
\(672\) 34.6865 9.29423i 1.33806 0.358533i
\(673\) 10.3205i 0.397826i −0.980017 0.198913i \(-0.936259\pi\)
0.980017 0.198913i \(-0.0637412\pi\)
\(674\) 2.92820i 0.112790i
\(675\) −46.3923 −1.78564
\(676\) 34.3923i 1.32278i
\(677\) 15.0526 15.0526i 0.578517 0.578517i −0.355978 0.934494i \(-0.615852\pi\)
0.934494 + 0.355978i \(0.115852\pi\)
\(678\) 14.0263 24.2942i 0.538676 0.933014i
\(679\) 21.1244 + 21.1244i 0.810678 + 0.810678i
\(680\) 2.00000 0.0766965
\(681\) 13.6865 + 7.90192i 0.524469 + 0.302802i
\(682\) 0.633975 + 0.633975i 0.0242761 + 0.0242761i
\(683\) 12.9282i 0.494684i −0.968928 0.247342i \(-0.920443\pi\)
0.968928 0.247342i \(-0.0795571\pi\)
\(684\) 3.29423 12.2942i 0.125958 0.470082i
\(685\) −17.6603 17.6603i −0.674764 0.674764i
\(686\) −24.3923 24.3923i −0.931303 0.931303i
\(687\) −48.0788 + 12.8827i −1.83432 + 0.491505i
\(688\) −15.9019 + 15.9019i −0.606255 + 0.606255i
\(689\) −22.5167 −0.857816
\(690\) −4.73205 17.6603i −0.180146 0.672314i
\(691\) −25.7128 −0.978162 −0.489081 0.872239i \(-0.662668\pi\)
−0.489081 + 0.872239i \(0.662668\pi\)
\(692\) 23.3205i 0.886513i
\(693\) 1.09808 4.09808i 0.0417125 0.155673i
\(694\) −26.6603 26.6603i −1.01201 1.01201i
\(695\) −42.7846 −1.62291
\(696\) −3.86603 + 2.89230i −0.146541 + 0.109633i
\(697\) −7.60770 −0.288162
\(698\) −36.4186 36.4186i −1.37846 1.37846i
\(699\) −30.1865 17.4282i −1.14176 0.659195i
\(700\) 42.2487i 1.59685i
\(701\) −41.1051 −1.55252 −0.776259 0.630414i \(-0.782885\pi\)
−0.776259 + 0.630414i \(0.782885\pi\)
\(702\) −40.6865 + 40.6865i −1.53561 + 1.53561i
\(703\) −12.0000 −0.452589
\(704\) 2.09808 2.09808i 0.0790742 0.0790742i
\(705\) −1.96410 7.33013i −0.0739723 0.276069i
\(706\) 12.0000 + 12.0000i 0.451626 + 0.451626i
\(707\) 11.4641 + 11.4641i 0.431152 + 0.431152i
\(708\) 0.803848 1.39230i 0.0302104 0.0523260i
\(709\) 9.58846i 0.360102i 0.983657 + 0.180051i \(0.0576263\pi\)
−0.983657 + 0.180051i \(0.942374\pi\)
\(710\) 85.3013 + 85.3013i 3.20130 + 3.20130i
\(711\) −7.50000 2.00962i −0.281272 0.0753666i
\(712\) −3.66025 −0.137174
\(713\) 0.928203 + 0.928203i 0.0347615 + 0.0347615i
\(714\) −8.19615 4.73205i −0.306733 0.177093i
\(715\) 7.83013 7.83013i 0.292830 0.292830i
\(716\) 28.7321i 1.07377i
\(717\) −9.00000 5.19615i −0.336111 0.194054i
\(718\) 17.7321i 0.661754i
\(719\) 42.0526i 1.56830i 0.620574 + 0.784148i \(0.286900\pi\)
−0.620574 + 0.784148i \(0.713100\pi\)
\(720\) −24.9904 43.2846i −0.931337 1.61312i
\(721\) −29.3205 −1.09195
\(722\) 17.7583 17.7583i 0.660897 0.660897i
\(723\) −20.3038 11.7224i −0.755108 0.435962i
\(724\) 28.2679i 1.05057i
\(725\) 17.8564 + 44.6410i 0.663170 + 1.65793i
\(726\) 9.29423 + 34.6865i 0.344941 + 1.28734i
\(727\) 34.3205 34.3205i 1.27288 1.27288i 0.328306 0.944572i \(-0.393522\pi\)
0.944572 0.328306i \(-0.106478\pi\)
\(728\) 5.73205 + 5.73205i 0.212444 + 0.212444i
\(729\) 27.0000 1.00000
\(730\) 40.7846i 1.50951i
\(731\) 5.21539 0.192898
\(732\) −8.19615 + 2.19615i −0.302939 + 0.0811721i
\(733\) 30.9808 + 30.9808i 1.14430 + 1.14430i 0.987655 + 0.156646i \(0.0500681\pi\)
0.156646 + 0.987655i \(0.449932\pi\)
\(734\) 20.5885 0.759934
\(735\) 1.50000 2.59808i 0.0553283 0.0958315i
\(736\) 7.85641 7.85641i 0.289591 0.289591i
\(737\) 3.26795 3.26795i 0.120376 0.120376i
\(738\) 21.2942 + 36.8827i 0.783851 + 1.35767i
\(739\) 32.6147 32.6147i 1.19975 1.19975i 0.225512 0.974240i \(-0.427594\pi\)
0.974240 0.225512i \(-0.0724055\pi\)
\(740\) 22.3923 22.3923i 0.823157 0.823157i
\(741\) 23.4904 6.29423i 0.862941 0.231224i
\(742\) −14.6603 + 14.6603i −0.538195 + 0.538195i
\(743\) −7.19615 + 7.19615i −0.264001 + 0.264001i −0.826677 0.562676i \(-0.809772\pi\)
0.562676 + 0.826677i \(0.309772\pi\)
\(744\) 0.696152 + 0.401924i 0.0255222 + 0.0147352i
\(745\) 43.0526 1.57732
\(746\) 33.4186 + 33.4186i 1.22354 + 1.22354i
\(747\) −36.0000 + 20.7846i −1.31717 + 0.760469i
\(748\) −0.928203 −0.0339385
\(749\) 14.3923i 0.525883i
\(750\) −47.3827 + 12.6962i −1.73017 + 0.463598i
\(751\) 30.7128 + 30.7128i 1.12073 + 1.12073i 0.991632 + 0.129094i \(0.0412069\pi\)
0.129094 + 0.991632i \(0.458793\pi\)
\(752\) 3.70577 3.70577i 0.135136 0.135136i
\(753\) −25.1603 + 6.74167i −0.916891 + 0.245680i
\(754\) 54.8109 + 23.4904i 1.99609 + 0.855469i
\(755\) 21.1244i 0.768794i
\(756\) 24.5885i 0.894274i
\(757\) 2.58846 2.58846i 0.0940791 0.0940791i −0.658501 0.752580i \(-0.728809\pi\)
0.752580 + 0.658501i \(0.228809\pi\)
\(758\) 24.1962 0.878844
\(759\) −0.339746 1.26795i −0.0123320 0.0460236i
\(760\) 4.73205i 0.171650i
\(761\) 11.7128i 0.424589i −0.977206 0.212295i \(-0.931906\pi\)
0.977206 0.212295i \(-0.0680936\pi\)
\(762\) −21.2942 + 36.8827i −0.771409 + 1.33612i
\(763\) 19.1244i 0.692348i
\(764\) −27.5885 + 27.5885i −0.998115 + 0.998115i
\(765\) −3.00000 + 11.1962i −0.108465 + 0.404798i
\(766\) −12.6603 12.6603i −0.457434 0.457434i
\(767\) 3.07180 0.110916
\(768\) 16.7942 29.0885i 0.606010 1.04964i
\(769\) −2.19615 2.19615i −0.0791953 0.0791953i 0.666400 0.745595i \(-0.267835\pi\)
−0.745595 + 0.666400i \(0.767835\pi\)
\(770\) 10.1962i 0.367444i
\(771\) 14.8923 + 8.59808i 0.536333 + 0.309652i
\(772\) −17.1962 17.1962i −0.618903 0.618903i
\(773\) 3.00000 + 3.00000i 0.107903 + 0.107903i 0.758997 0.651094i \(-0.225690\pi\)
−0.651094 + 0.758997i \(0.725690\pi\)
\(774\) −14.5981 25.2846i −0.524717 0.908837i
\(775\) 5.66025 5.66025i 0.203322 0.203322i
\(776\) 5.66025 0.203191
\(777\) 22.3923 6.00000i 0.803319 0.215249i
\(778\) −32.2487 −1.15617
\(779\) 18.0000i 0.644917i
\(780\) −32.0885 + 55.5788i −1.14895 + 1.99004i
\(781\) 6.12436 + 6.12436i 0.219147 + 0.219147i
\(782\) −2.92820 −0.104712
\(783\) −10.3923 25.9808i −0.371391 0.928477i
\(784\) 2.07180 0.0739927
\(785\) 20.6603 + 20.6603i 0.737396 + 0.737396i
\(786\) 26.9545 46.6865i 0.961435 1.66525i
\(787\) 31.5167i 1.12345i −0.827325 0.561724i \(-0.810138\pi\)
0.827325 0.561724i \(-0.189862\pi\)
\(788\) 43.1769 1.53811
\(789\) −36.1865 + 9.69615i −1.28827 + 0.345192i
\(790\) −18.6603 −0.663902
\(791\) 16.1962 16.1962i 0.575869 0.575869i
\(792\) −0.401924 0.696152i −0.0142817 0.0247367i
\(793\) −11.4641 11.4641i −0.407102 0.407102i
\(794\) 11.3660 + 11.3660i 0.403365 + 0.403365i
\(795\) 21.9904 + 12.6962i 0.779918 + 0.450286i
\(796\) 4.73205i 0.167723i
\(797\) 22.3923 + 22.3923i 0.793176 + 0.793176i 0.982009 0.188833i \(-0.0604705\pi\)
−0.188833 + 0.982009i \(0.560471\pi\)
\(798\) 11.1962 19.3923i 0.396339 0.686480i
\(799\) −1.21539 −0.0429974
\(800\) −47.9090 47.9090i −1.69384 1.69384i
\(801\) 5.49038 20.4904i 0.193993 0.723992i
\(802\) 35.8827 35.8827i 1.26706 1.26706i
\(803\) 2.92820i 0.103334i
\(804\) −13.3923 + 23.1962i −0.472310 + 0.818065i
\(805\) 14.9282i 0.526150i
\(806\) 9.92820i 0.349706i
\(807\) 1.26795 + 4.73205i 0.0446339 + 0.166576i
\(808\) 3.07180 0.108065
\(809\) 34.7846 34.7846i 1.22296 1.22296i 0.256388 0.966574i \(-0.417468\pi\)
0.966574 0.256388i \(-0.0825324\pi\)
\(810\) 62.6769 16.7942i 2.20224 0.590089i
\(811\) 3.51666i 0.123487i 0.998092 + 0.0617433i \(0.0196660\pi\)
−0.998092 + 0.0617433i \(0.980334\pi\)
\(812\) 23.6603 9.46410i 0.830312 0.332125i
\(813\) −16.9641 + 4.54552i −0.594957 + 0.159418i
\(814\) 3.46410 3.46410i 0.121417 0.121417i
\(815\) 33.9545 + 33.9545i 1.18937 + 1.18937i
\(816\) −7.73205 + 2.07180i −0.270676 + 0.0725274i
\(817\) 12.3397i 0.431713i
\(818\) −12.5885 −0.440145
\(819\) −40.6865 + 23.4904i −1.42170 + 0.820820i
\(820\) 33.5885 + 33.5885i 1.17296 + 1.17296i
\(821\) 3.00000 0.104701 0.0523504 0.998629i \(-0.483329\pi\)
0.0523504 + 0.998629i \(0.483329\pi\)
\(822\) 19.3923 + 11.1962i 0.676384 + 0.390511i
\(823\) 25.5359 25.5359i 0.890125 0.890125i −0.104409 0.994534i \(-0.533295\pi\)
0.994534 + 0.104409i \(0.0332951\pi\)
\(824\) −3.92820 + 3.92820i −0.136845 + 0.136845i
\(825\) −7.73205 + 2.07180i −0.269195 + 0.0721307i
\(826\) 2.00000 2.00000i 0.0695889 0.0695889i
\(827\) 5.36603 5.36603i 0.186595 0.186595i −0.607627 0.794222i \(-0.707879\pi\)
0.794222 + 0.607627i \(0.207879\pi\)
\(828\) 3.80385 + 6.58846i 0.132193 + 0.228965i
\(829\) −10.1962 + 10.1962i −0.354127 + 0.354127i −0.861643 0.507516i \(-0.830564\pi\)
0.507516 + 0.861643i \(0.330564\pi\)
\(830\) −70.6410 + 70.6410i −2.45199 + 2.45199i
\(831\) 4.85641 8.41154i 0.168467 0.291793i
\(832\) −32.8564 −1.13909
\(833\) −0.339746 0.339746i −0.0117715 0.0117715i
\(834\) 37.0526 9.92820i 1.28303 0.343786i
\(835\) −12.1962 −0.422065
\(836\) 2.19615i 0.0759555i
\(837\) −3.29423 + 3.29423i −0.113865 + 0.113865i
\(838\) −3.19615 3.19615i −0.110409 0.110409i
\(839\) −14.0981 + 14.0981i −0.486720 + 0.486720i −0.907269 0.420550i \(-0.861837\pi\)
0.420550 + 0.907269i \(0.361837\pi\)
\(840\) −2.36603 8.83013i −0.0816356 0.304668i
\(841\) −21.0000 + 20.0000i −0.724138 + 0.689655i
\(842\) 16.9282i 0.583384i
\(843\) −2.59808 1.50000i −0.0894825 0.0516627i
\(844\) −24.2942 + 24.2942i −0.836242 + 0.836242i
\(845\) −74.1051 −2.54929
\(846\) 3.40192 + 5.89230i 0.116961 + 0.202582i
\(847\) 29.3205i 1.00746i
\(848\) 17.5359i 0.602185i
\(849\) 9.00000 + 5.19615i 0.308879 + 0.178331i
\(850\) 17.8564i 0.612470i
\(851\) 5.07180 5.07180i 0.173859 0.173859i
\(852\) −43.4711 25.0981i −1.48930 0.859846i
\(853\) −24.8564 24.8564i −0.851067 0.851067i 0.139197 0.990265i \(-0.455548\pi\)
−0.990265 + 0.139197i \(0.955548\pi\)
\(854\) −14.9282 −0.510833
\(855\) −26.4904 7.09808i −0.905952 0.242749i
\(856\) 1.92820 + 1.92820i 0.0659046 + 0.0659046i
\(857\) 32.3205i 1.10405i 0.833828 + 0.552024i \(0.186144\pi\)
−0.833828 + 0.552024i \(0.813856\pi\)
\(858\) −4.96410 + 8.59808i −0.169472 + 0.293533i
\(859\) −28.5429 28.5429i −0.973873 0.973873i 0.0257947 0.999667i \(-0.491788\pi\)
−0.999667 + 0.0257947i \(0.991788\pi\)
\(860\) −23.0263 23.0263i −0.785190 0.785190i
\(861\) 9.00000 + 33.5885i 0.306719 + 1.14469i
\(862\) 41.5167 41.5167i 1.41406 1.41406i
\(863\) 24.5885 0.837001 0.418500 0.908217i \(-0.362556\pi\)
0.418500 + 0.908217i \(0.362556\pi\)
\(864\) 27.8827 + 27.8827i 0.948588 + 0.948588i
\(865\) 50.2487 1.70851
\(866\) 14.9282i 0.507281i
\(867\) −23.8923 13.7942i −0.811425 0.468477i
\(868\) −3.00000 3.00000i −0.101827 0.101827i
\(869\) −1.33975 −0.0454478
\(870\) −40.2846 53.8468i −1.36578 1.82558i
\(871\) −51.1769 −1.73406
\(872\) −2.56218 2.56218i −0.0867663 0.0867663i
\(873\) −8.49038 + 31.6865i −0.287356 + 1.07243i
\(874\) 6.92820i 0.234350i
\(875\) −40.0526 −1.35402
\(876\) −4.39230 16.3923i −0.148402 0.553845i
\(877\) 22.2679 0.751935 0.375968 0.926633i \(-0.377310\pi\)
0.375968 + 0.926633i \(0.377310\pi\)
\(878\) 35.8564 35.8564i 1.21010 1.21010i
\(879\) 38.1506 10.2224i 1.28679 0.344794i
\(880\) −6.09808 6.09808i −0.205566 0.205566i
\(881\) −21.7321 21.7321i −0.732171 0.732171i 0.238878 0.971050i \(-0.423220\pi\)
−0.971050 + 0.238878i \(0.923220\pi\)
\(882\) −0.696152 + 2.59808i −0.0234407 + 0.0874818i
\(883\) 33.1244i 1.11472i −0.830270 0.557362i \(-0.811814\pi\)
0.830270 0.557362i \(-0.188186\pi\)
\(884\) 7.26795 + 7.26795i 0.244448 + 0.244448i
\(885\) −3.00000 1.73205i −0.100844 0.0582223i
\(886\) −48.9808 −1.64554
\(887\) −21.4904 21.4904i −0.721576 0.721576i 0.247350 0.968926i \(-0.420440\pi\)
−0.968926 + 0.247350i \(0.920440\pi\)
\(888\) 2.19615 3.80385i 0.0736980 0.127649i
\(889\) −24.5885 + 24.5885i −0.824670 + 0.824670i
\(890\) 50.9808i 1.70888i
\(891\) 4.50000 1.20577i 0.150756 0.0403949i
\(892\) 1.26795i 0.0424541i
\(893\) 2.87564i 0.0962298i
\(894\) −37.2846 + 9.99038i −1.24698 + 0.334128i
\(895\) 61.9090 2.06939
\(896\) 7.92820 7.92820i 0.264863 0.264863i
\(897\) −7.26795 + 12.5885i −0.242670 + 0.420316i
\(898\) 2.33975i 0.0780783i
\(899\) 4.43782 + 1.90192i 0.148010 + 0.0634327i
\(900\) 40.1769 23.1962i 1.33923 0.773205i
\(901\) 2.87564 2.87564i 0.0958016 0.0958016i
\(902\) 5.19615 + 5.19615i 0.173013 + 0.173013i
\(903\) −6.16987 23.0263i −0.205321 0.766267i
\(904\) 4.33975i 0.144338i
\(905\) 60.9090 2.02468
\(906\) 4.90192 + 18.2942i 0.162856 + 0.607785i
\(907\) 5.92820 + 5.92820i 0.196843 + 0.196843i 0.798645 0.601802i \(-0.205550\pi\)
−0.601802 + 0.798645i \(0.705550\pi\)
\(908\) −15.8038 −0.524469
\(909\) −4.60770 + 17.1962i −0.152828 + 0.570360i
\(910\) −79.8372 + 79.8372i −2.64658 + 2.64658i
\(911\) 22.0788 22.0788i 0.731505 0.731505i −0.239413 0.970918i \(-0.576955\pi\)
0.970918 + 0.239413i \(0.0769551\pi\)
\(912\) −4.90192 18.2942i −0.162319 0.605782i
\(913\) −5.07180 + 5.07180i −0.167852 + 0.167852i
\(914\) −38.5885 + 38.5885i −1.27639 + 1.27639i
\(915\) 4.73205 + 17.6603i 0.156437 + 0.583830i
\(916\) 35.1962 35.1962i 1.16291 1.16291i
\(917\) 31.1244 31.1244i 1.02782 1.02782i
\(918\) 10.3923i 0.342997i
\(919\) −42.4449 −1.40013 −0.700063 0.714081i \(-0.746845\pi\)
−0.700063 + 0.714081i \(0.746845\pi\)
\(920\) −2.00000 2.00000i −0.0659380 0.0659380i
\(921\) −1.57884 5.89230i −0.0520245 0.194158i
\(922\) 46.0526 1.51666
\(923\) 95.9090i 3.15688i
\(924\) 1.09808 + 4.09808i 0.0361241 + 0.134817i
\(925\) −30.9282 30.9282i −1.01691 1.01691i
\(926\) 30.0526 30.0526i 0.987588 0.987588i
\(927\) −16.0981 27.8827i −0.528730 0.915788i
\(928\) 16.0981 37.5622i 0.528445 1.23304i
\(929\) 34.2487i 1.12366i −0.827251 0.561832i \(-0.810097\pi\)
0.827251 0.561832i \(-0.189903\pi\)
\(930\) −5.59808 + 9.69615i −0.183568 + 0.317949i
\(931\) 0.803848 0.803848i 0.0263450 0.0263450i
\(932\) 34.8564 1.14176
\(933\) 38.9545 10.4378i 1.27531 0.341719i
\(934\) 13.3923i 0.438210i
\(935\) 2.00000i 0.0654070i
\(936\) −2.30385 + 8.59808i −0.0753036 + 0.281037i
\(937\) 54.1051i 1.76754i 0.467924 + 0.883769i \(0.345002\pi\)
−0.467924 + 0.883769i \(0.654998\pi\)
\(938\) −33.3205 + 33.3205i −1.08795 + 1.08795i
\(939\) 6.57180 11.3827i 0.214462 0.371460i
\(940\) 5.36603 + 5.36603i 0.175020 + 0.175020i
\(941\) −26.8038 −0.873780 −0.436890 0.899515i \(-0.643920\pi\)
−0.436890 + 0.899515i \(0.643920\pi\)
\(942\) −22.6865 13.0981i −0.739167 0.426758i
\(943\) 7.60770 + 7.60770i 0.247741 + 0.247741i
\(944\) 2.39230i 0.0778629i
\(945\) 52.9808 1.72346
\(946\) −3.56218 3.56218i −0.115816 0.115816i
\(947\) 21.0981 + 21.0981i 0.685595 + 0.685595i 0.961255 0.275660i \(-0.0888963\pi\)
−0.275660 + 0.961255i \(0.588896\pi\)
\(948\) 7.50000 2.00962i 0.243589 0.0652694i
\(949\) 22.9282 22.9282i 0.744281 0.744281i
\(950\) −42.2487 −1.37073
\(951\) −11.6603 43.5167i −0.378110 1.41112i
\(952\) −1.46410 −0.0474518
\(953\) 7.58846i 0.245814i 0.992418 + 0.122907i \(0.0392217\pi\)
−0.992418 + 0.122907i \(0.960778\pi\)
\(954\) −21.9904 5.89230i −0.711965 0.190770i
\(955\) 59.4449 + 59.4449i 1.92359 + 1.92359i
\(956\) 10.3923 0.336111
\(957\) −2.89230 3.86603i −0.0934949 0.124971i
\(958\) 7.92820 0.256149
\(959\) 12.9282 + 12.9282i 0.417473 + 0.417473i
\(960\) 32.0885 + 18.5263i 1.03565 + 0.597933i
\(961\) 30.1962i 0.974069i
\(962\) −54.2487 −1.74905
\(963\) −13.6865 + 7.90192i −0.441042 + 0.254636i
\(964\) 23.4449 0.755108
\(965\) −37.0526 + 37.0526i −1.19276 + 1.19276i
\(966\) 3.46410 + 12.9282i 0.111456 + 0.415958i
\(967\) 12.1699 + 12.1699i 0.391357 + 0.391357i 0.875171 0.483814i \(-0.160749\pi\)
−0.483814 + 0.875171i \(0.660749\pi\)
\(968\) 3.92820 + 3.92820i 0.126257 + 0.126257i
\(969\) −2.19615 + 3.80385i −0.0705506 + 0.122197i
\(970\) 78.8372i 2.53131i
\(971\) −25.7846 25.7846i −0.827468 0.827468i 0.159698 0.987166i \(-0.448948\pi\)
−0.987166 + 0.159698i \(0.948948\pi\)
\(972\) −23.3827 + 13.5000i −0.750000 + 0.433013i
\(973\) 31.3205 1.00409
\(974\) 44.3205 + 44.3205i 1.42012 + 1.42012i
\(975\) 76.7654 + 44.3205i 2.45846 + 1.41939i
\(976\) −8.92820 + 8.92820i −0.285785 + 0.285785i
\(977\) 21.0000i 0.671850i −0.941889 0.335925i \(-0.890951\pi\)
0.941889 0.335925i \(-0.109049\pi\)
\(978\) −37.2846 21.5263i −1.19223 0.688335i
\(979\) 3.66025i 0.116982i
\(980\) 3.00000i 0.0958315i
\(981\) 18.1865 10.5000i 0.580651 0.335239i
\(982\) 78.0333 2.49014
\(983\) −34.6865 + 34.6865i −1.10633 + 1.10633i −0.112699 + 0.993629i \(0.535950\pi\)
−0.993629 + 0.112699i \(0.964050\pi\)
\(984\) 5.70577 + 3.29423i 0.181893 + 0.105016i
\(985\) 93.0333i 2.96429i
\(986\) −10.0000 + 4.00000i −0.318465 + 0.127386i
\(987\) 1.43782 + 5.36603i 0.0457664 + 0.170802i
\(988\) −17.1962 + 17.1962i −0.547082 + 0.547082i
\(989\) −5.21539 5.21539i −0.165840 0.165840i
\(990\) 9.69615 5.59808i 0.308164 0.177919i
\(991\) 29.8038i 0.946750i 0.880861 + 0.473375i \(0.156965\pi\)
−0.880861 + 0.473375i \(0.843035\pi\)
\(992\) −6.80385 −0.216022
\(993\) −5.59808 + 1.50000i −0.177650 + 0.0476011i
\(994\) −62.4449 62.4449i −1.98063 1.98063i
\(995\) 10.1962 0.323240
\(996\) 20.7846 36.0000i 0.658586 1.14070i
\(997\) −18.9282 + 18.9282i −0.599462 + 0.599462i −0.940169 0.340707i \(-0.889334\pi\)
0.340707 + 0.940169i \(0.389334\pi\)
\(998\) −52.7846 + 52.7846i −1.67087 + 1.67087i
\(999\) 18.0000 + 18.0000i 0.569495 + 0.569495i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 87.2.f.a.17.1 4
3.2 odd 2 87.2.f.b.17.2 yes 4
29.12 odd 4 87.2.f.b.41.2 yes 4
87.41 even 4 inner 87.2.f.a.41.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.2.f.a.17.1 4 1.1 even 1 trivial
87.2.f.a.41.1 yes 4 87.41 even 4 inner
87.2.f.b.17.2 yes 4 3.2 odd 2
87.2.f.b.41.2 yes 4 29.12 odd 4