Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [87,2,Mod(7,87)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(87, base_ring=CyclotomicField(14))
chi = DirichletCharacter(H, H._module([0, 6]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("87.7");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 87.g (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7.1 |
|
−0.563916 | − | 2.47068i | −0.900969 | − | 0.433884i | −3.98431 | + | 1.91874i | −0.242440 | − | 1.06220i | −0.563916 | + | 2.47068i | −1.55919 | − | 0.750867i | 3.82730 | + | 4.79928i | 0.623490 | + | 0.781831i | −2.48764 | + | 1.19798i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
7.2 | 0.0321271 | + | 0.140758i | −0.900969 | − | 0.433884i | 1.78316 | − | 0.858723i | −0.345850 | − | 1.51527i | 0.0321271 | − | 0.140758i | 1.37625 | + | 0.662766i | 0.358196 | + | 0.449164i | 0.623490 | + | 0.781831i | 0.202175 | − | 0.0973624i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
7.3 | 0.487716 | + | 2.13682i | −0.900969 | − | 0.433884i | −2.52621 | + | 1.21656i | 0.533332 | + | 2.33668i | 0.487716 | − | 2.13682i | −1.21803 | − | 0.586571i | −1.09855 | − | 1.37753i | 0.623490 | + | 0.781831i | −4.73296 | + | 2.27927i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
16.1 | −2.50290 | − | 1.20533i | 0.623490 | − | 0.781831i | 3.56470 | + | 4.46999i | 2.28635 | + | 1.10105i | −2.50290 | + | 1.20533i | 0.527912 | − | 0.661981i | −2.29793 | − | 10.0679i | −0.222521 | − | 0.974928i | −4.39538 | − | 5.51163i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
16.2 | −1.04865 | − | 0.505001i | 0.623490 | − | 0.781831i | −0.402348 | − | 0.504528i | −2.80239 | − | 1.34956i | −1.04865 | + | 0.505001i | 1.08876 | − | 1.36527i | 0.685121 | + | 3.00171i | −0.222521 | − | 0.974928i | 2.25719 | + | 2.83042i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
16.3 | 0.626118 | + | 0.301523i | 0.623490 | − | 0.781831i | −0.945872 | − | 1.18609i | 1.81798 | + | 0.875492i | 0.626118 | − | 0.301523i | −1.49319 | + | 1.87240i | −0.543873 | − | 2.38286i | −0.222521 | − | 0.974928i | 0.874288 | + | 1.09632i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
25.1 | −0.563916 | + | 2.47068i | −0.900969 | + | 0.433884i | −3.98431 | − | 1.91874i | −0.242440 | + | 1.06220i | −0.563916 | − | 2.47068i | −1.55919 | + | 0.750867i | 3.82730 | − | 4.79928i | 0.623490 | − | 0.781831i | −2.48764 | − | 1.19798i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
25.2 | 0.0321271 | − | 0.140758i | −0.900969 | + | 0.433884i | 1.78316 | + | 0.858723i | −0.345850 | + | 1.51527i | 0.0321271 | + | 0.140758i | 1.37625 | − | 0.662766i | 0.358196 | − | 0.449164i | 0.623490 | − | 0.781831i | 0.202175 | + | 0.0973624i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
25.3 | 0.487716 | − | 2.13682i | −0.900969 | + | 0.433884i | −2.52621 | − | 1.21656i | 0.533332 | − | 2.33668i | 0.487716 | + | 2.13682i | −1.21803 | + | 0.586571i | −1.09855 | + | 1.37753i | 0.623490 | − | 0.781831i | −4.73296 | − | 2.27927i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
49.1 | −2.50290 | + | 1.20533i | 0.623490 | + | 0.781831i | 3.56470 | − | 4.46999i | 2.28635 | − | 1.10105i | −2.50290 | − | 1.20533i | 0.527912 | + | 0.661981i | −2.29793 | + | 10.0679i | −0.222521 | + | 0.974928i | −4.39538 | + | 5.51163i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
49.2 | −1.04865 | + | 0.505001i | 0.623490 | + | 0.781831i | −0.402348 | + | 0.504528i | −2.80239 | + | 1.34956i | −1.04865 | − | 0.505001i | 1.08876 | + | 1.36527i | 0.685121 | − | 3.00171i | −0.222521 | + | 0.974928i | 2.25719 | − | 2.83042i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
49.3 | 0.626118 | − | 0.301523i | 0.623490 | + | 0.781831i | −0.945872 | + | 1.18609i | 1.81798 | − | 0.875492i | 0.626118 | + | 0.301523i | −1.49319 | − | 1.87240i | −0.543873 | + | 2.38286i | −0.222521 | + | 0.974928i | 0.874288 | − | 1.09632i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
52.1 | −0.754870 | + | 0.946578i | −0.222521 | + | 0.974928i | 0.118862 | + | 0.520769i | 1.12131 | − | 1.40607i | −0.754870 | − | 0.946578i | −0.951706 | + | 4.16970i | −2.76431 | − | 1.33122i | −0.900969 | − | 0.433884i | 0.484517 | + | 2.12281i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
52.2 | 0.110403 | − | 0.138441i | −0.222521 | + | 0.974928i | 0.438065 | + | 1.91929i | −2.15193 | + | 2.69844i | 0.110403 | + | 0.138441i | 0.844514 | − | 3.70006i | 0.633146 | + | 0.304907i | −0.900969 | − | 0.433884i | 0.135995 | + | 0.595831i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
52.3 | 1.61397 | − | 2.02385i | −0.222521 | + | 0.974928i | −1.04604 | − | 4.58301i | −0.716354 | + | 0.898279i | 1.61397 | + | 2.02385i | −0.615328 | + | 2.69593i | −6.29911 | − | 3.03349i | −0.900969 | − | 0.433884i | 0.661812 | + | 2.89959i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
82.1 | −0.754870 | − | 0.946578i | −0.222521 | − | 0.974928i | 0.118862 | − | 0.520769i | 1.12131 | + | 1.40607i | −0.754870 | + | 0.946578i | −0.951706 | − | 4.16970i | −2.76431 | + | 1.33122i | −0.900969 | + | 0.433884i | 0.484517 | − | 2.12281i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
82.2 | 0.110403 | + | 0.138441i | −0.222521 | − | 0.974928i | 0.438065 | − | 1.91929i | −2.15193 | − | 2.69844i | 0.110403 | − | 0.138441i | 0.844514 | + | 3.70006i | 0.633146 | − | 0.304907i | −0.900969 | + | 0.433884i | 0.135995 | − | 0.595831i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
82.3 | 1.61397 | + | 2.02385i | −0.222521 | − | 0.974928i | −1.04604 | + | 4.58301i | −0.716354 | − | 0.898279i | 1.61397 | − | 2.02385i | −0.615328 | − | 2.69593i | −6.29911 | + | 3.03349i | −0.900969 | + | 0.433884i | 0.661812 | − | 2.89959i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
29.d | even | 7 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 87.2.g.a | ✓ | 18 |
3.b | odd | 2 | 1 | 261.2.k.c | 18 | ||
29.d | even | 7 | 1 | inner | 87.2.g.a | ✓ | 18 |
29.d | even | 7 | 1 | 2523.2.a.r | 9 | ||
29.e | even | 14 | 1 | 2523.2.a.o | 9 | ||
87.h | odd | 14 | 1 | 7569.2.a.bm | 9 | ||
87.j | odd | 14 | 1 | 261.2.k.c | 18 | ||
87.j | odd | 14 | 1 | 7569.2.a.bj | 9 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
87.2.g.a | ✓ | 18 | 1.a | even | 1 | 1 | trivial |
87.2.g.a | ✓ | 18 | 29.d | even | 7 | 1 | inner |
261.2.k.c | 18 | 3.b | odd | 2 | 1 | ||
261.2.k.c | 18 | 87.j | odd | 14 | 1 | ||
2523.2.a.o | 9 | 29.e | even | 14 | 1 | ||
2523.2.a.r | 9 | 29.d | even | 7 | 1 | ||
7569.2.a.bj | 9 | 87.j | odd | 14 | 1 | ||
7569.2.a.bm | 9 | 87.h | odd | 14 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .