Properties

Label 871.1.d.a.870.1
Level 871871
Weight 11
Character 871.870
Self dual yes
Analytic conductor 0.4350.435
Analytic rank 00
Dimension 55
Projective image D11D_{11}
CM discriminant -871
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [871,1,Mod(870,871)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(871, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("871.870");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 871=1367 871 = 13 \cdot 67
Weight: k k == 1 1
Character orbit: [χ][\chi] == 871.d (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 0.4346856260030.434685626003
Analytic rank: 00
Dimension: 55
Coefficient field: Q(ζ22)+\Q(\zeta_{22})^+
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x5x44x3+3x2+3x1 x^{5} - x^{4} - 4x^{3} + 3x^{2} + 3x - 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D11D_{11}
Projective field: Galois closure of 11.1.501292001353351.1

Embedding invariants

Embedding label 870.1
Root 1.309721.30972 of defining polynomial
Character χ\chi == 871.870

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1.91899q2+2.68251q4+1.68251q50.284630q73.22871q8+1.00000q93.22871q10+0.830830q11+1.00000q13+0.546200q14+3.51334q160.284630q171.91899q18+4.51334q201.59435q221.91899q23+1.83083q251.91899q260.763521q281.30972q291.30972q313.51334q32+0.546200q340.478891q35+2.68251q365.43232q401.30972q41+2.22871q44+1.68251q45+3.68251q460.918986q493.51334q50+2.68251q52+1.39788q55+0.918986q56+2.51334q58+2.51334q620.284630q63+3.22871q64+1.68251q65+1.00000q670.763521q68+0.918986q703.22871q720.236479q77+5.91121q80+1.00000q81+2.51334q820.478891q852.68251q883.22871q900.284630q915.14769q92+0.830830q97+1.76352q98+0.830830q99+O(q100)q-1.91899 q^{2} +2.68251 q^{4} +1.68251 q^{5} -0.284630 q^{7} -3.22871 q^{8} +1.00000 q^{9} -3.22871 q^{10} +0.830830 q^{11} +1.00000 q^{13} +0.546200 q^{14} +3.51334 q^{16} -0.284630 q^{17} -1.91899 q^{18} +4.51334 q^{20} -1.59435 q^{22} -1.91899 q^{23} +1.83083 q^{25} -1.91899 q^{26} -0.763521 q^{28} -1.30972 q^{29} -1.30972 q^{31} -3.51334 q^{32} +0.546200 q^{34} -0.478891 q^{35} +2.68251 q^{36} -5.43232 q^{40} -1.30972 q^{41} +2.22871 q^{44} +1.68251 q^{45} +3.68251 q^{46} -0.918986 q^{49} -3.51334 q^{50} +2.68251 q^{52} +1.39788 q^{55} +0.918986 q^{56} +2.51334 q^{58} +2.51334 q^{62} -0.284630 q^{63} +3.22871 q^{64} +1.68251 q^{65} +1.00000 q^{67} -0.763521 q^{68} +0.918986 q^{70} -3.22871 q^{72} -0.236479 q^{77} +5.91121 q^{80} +1.00000 q^{81} +2.51334 q^{82} -0.478891 q^{85} -2.68251 q^{88} -3.22871 q^{90} -0.284630 q^{91} -5.14769 q^{92} +0.830830 q^{97} +1.76352 q^{98} +0.830830 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 5qq2+4q4q5q72q8+5q92q10q11+5q132q14+3q16q17q18+8q202q22q23+4q25q263q28q29+q99+O(q100) 5 q - q^{2} + 4 q^{4} - q^{5} - q^{7} - 2 q^{8} + 5 q^{9} - 2 q^{10} - q^{11} + 5 q^{13} - 2 q^{14} + 3 q^{16} - q^{17} - q^{18} + 8 q^{20} - 2 q^{22} - q^{23} + 4 q^{25} - q^{26} - 3 q^{28} - q^{29}+ \cdots - q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/871Z)×\left(\mathbb{Z}/871\mathbb{Z}\right)^\times.

nn 404404 470470
χ(n)\chi(n) 1-1 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
33 0 0 1.00000 00
−1.00000 π\pi
44 2.68251 2.68251
55 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
66 0 0
77 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
88 −3.22871 −3.22871
99 1.00000 1.00000
1010 −3.22871 −3.22871
1111 0.830830 0.830830 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
1212 0 0
1313 1.00000 1.00000
1414 0.546200 0.546200
1515 0 0
1616 3.51334 3.51334
1717 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
1818 −1.91899 −1.91899
1919 0 0 1.00000 00
−1.00000 π\pi
2020 4.51334 4.51334
2121 0 0
2222 −1.59435 −1.59435
2323 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
2424 0 0
2525 1.83083 1.83083
2626 −1.91899 −1.91899
2727 0 0
2828 −0.763521 −0.763521
2929 −1.30972 −1.30972 −0.654861 0.755750i 0.727273π-0.727273\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
3030 0 0
3131 −1.30972 −1.30972 −0.654861 0.755750i 0.727273π-0.727273\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
3232 −3.51334 −3.51334
3333 0 0
3434 0.546200 0.546200
3535 −0.478891 −0.478891
3636 2.68251 2.68251
3737 0 0 1.00000 00
−1.00000 π\pi
3838 0 0
3939 0 0
4040 −5.43232 −5.43232
4141 −1.30972 −1.30972 −0.654861 0.755750i 0.727273π-0.727273\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
4242 0 0
4343 0 0 1.00000 00
−1.00000 π\pi
4444 2.22871 2.22871
4545 1.68251 1.68251
4646 3.68251 3.68251
4747 0 0 1.00000 00
−1.00000 π\pi
4848 0 0
4949 −0.918986 −0.918986
5050 −3.51334 −3.51334
5151 0 0
5252 2.68251 2.68251
5353 0 0 1.00000 00
−1.00000 π\pi
5454 0 0
5555 1.39788 1.39788
5656 0.918986 0.918986
5757 0 0
5858 2.51334 2.51334
5959 0 0 1.00000 00
−1.00000 π\pi
6060 0 0
6161 0 0 1.00000 00
−1.00000 π\pi
6262 2.51334 2.51334
6363 −0.284630 −0.284630
6464 3.22871 3.22871
6565 1.68251 1.68251
6666 0 0
6767 1.00000 1.00000
6868 −0.763521 −0.763521
6969 0 0
7070 0.918986 0.918986
7171 0 0 1.00000 00
−1.00000 π\pi
7272 −3.22871 −3.22871
7373 0 0 1.00000 00
−1.00000 π\pi
7474 0 0
7575 0 0
7676 0 0
7777 −0.236479 −0.236479
7878 0 0
7979 0 0 1.00000 00
−1.00000 π\pi
8080 5.91121 5.91121
8181 1.00000 1.00000
8282 2.51334 2.51334
8383 0 0 1.00000 00
−1.00000 π\pi
8484 0 0
8585 −0.478891 −0.478891
8686 0 0
8787 0 0
8888 −2.68251 −2.68251
8989 0 0 1.00000 00
−1.00000 π\pi
9090 −3.22871 −3.22871
9191 −0.284630 −0.284630
9292 −5.14769 −5.14769
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 0.830830 0.830830 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
9898 1.76352 1.76352
9999 0.830830 0.830830
100100 4.91121 4.91121
101101 0 0 1.00000 00
−1.00000 π\pi
102102 0 0
103103 −1.30972 −1.30972 −0.654861 0.755750i 0.727273π-0.727273\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
104104 −3.22871 −3.22871
105105 0 0
106106 0 0
107107 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
108108 0 0
109109 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
110110 −2.68251 −2.68251
111111 0 0
112112 −1.00000 −1.00000
113113 0 0 1.00000 00
−1.00000 π\pi
114114 0 0
115115 −3.22871 −3.22871
116116 −3.51334 −3.51334
117117 1.00000 1.00000
118118 0 0
119119 0.0810141 0.0810141
120120 0 0
121121 −0.309721 −0.309721
122122 0 0
123123 0 0
124124 −3.51334 −3.51334
125125 1.39788 1.39788
126126 0.546200 0.546200
127127 0.830830 0.830830 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
128128 −2.68251 −2.68251
129129 0 0
130130 −3.22871 −3.22871
131131 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
132132 0 0
133133 0 0
134134 −1.91899 −1.91899
135135 0 0
136136 0.918986 0.918986
137137 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
138138 0 0
139139 0 0 1.00000 00
−1.00000 π\pi
140140 −1.28463 −1.28463
141141 0 0
142142 0 0
143143 0.830830 0.830830
144144 3.51334 3.51334
145145 −2.20362 −2.20362
146146 0 0
147147 0 0
148148 0 0
149149 0 0 1.00000 00
−1.00000 π\pi
150150 0 0
151151 0 0 1.00000 00
−1.00000 π\pi
152152 0 0
153153 −0.284630 −0.284630
154154 0.453800 0.453800
155155 −2.20362 −2.20362
156156 0 0
157157 0.830830 0.830830 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
158158 0 0
159159 0 0
160160 −5.91121 −5.91121
161161 0.546200 0.546200
162162 −1.91899 −1.91899
163163 0 0 1.00000 00
−1.00000 π\pi
164164 −3.51334 −3.51334
165165 0 0
166166 0 0
167167 0 0 1.00000 00
−1.00000 π\pi
168168 0 0
169169 1.00000 1.00000
170170 0.918986 0.918986
171171 0 0
172172 0 0
173173 0.830830 0.830830 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
174174 0 0
175175 −0.521109 −0.521109
176176 2.91899 2.91899
177177 0 0
178178 0 0
179179 0 0 1.00000 00
−1.00000 π\pi
180180 4.51334 4.51334
181181 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
182182 0.546200 0.546200
183183 0 0
184184 6.19584 6.19584
185185 0 0
186186 0 0
187187 −0.236479 −0.236479
188188 0 0
189189 0 0
190190 0 0
191191 0 0 1.00000 00
−1.00000 π\pi
192192 0 0
193193 0 0 1.00000 00
−1.00000 π\pi
194194 −1.59435 −1.59435
195195 0 0
196196 −2.46519 −2.46519
197197 0.830830 0.830830 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
198198 −1.59435 −1.59435
199199 −1.30972 −1.30972 −0.654861 0.755750i 0.727273π-0.727273\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
200200 −5.91121 −5.91121
201201 0 0
202202 0 0
203203 0.372786 0.372786
204204 0 0
205205 −2.20362 −2.20362
206206 2.51334 2.51334
207207 −1.91899 −1.91899
208208 3.51334 3.51334
209209 0 0
210210 0 0
211211 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
212212 0 0
213213 0 0
214214 −3.22871 −3.22871
215215 0 0
216216 0 0
217217 0.372786 0.372786
218218 3.68251 3.68251
219219 0 0
220220 3.74982 3.74982
221221 −0.284630 −0.284630
222222 0 0
223223 0 0 1.00000 00
−1.00000 π\pi
224224 1.00000 1.00000
225225 1.83083 1.83083
226226 0 0
227227 0 0 1.00000 00
−1.00000 π\pi
228228 0 0
229229 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
230230 6.19584 6.19584
231231 0 0
232232 4.22871 4.22871
233233 0 0 1.00000 00
−1.00000 π\pi
234234 −1.91899 −1.91899
235235 0 0
236236 0 0
237237 0 0
238238 −0.155465 −0.155465
239239 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
240240 0 0
241241 0 0 1.00000 00
−1.00000 π\pi
242242 0.594351 0.594351
243243 0 0
244244 0 0
245245 −1.54620 −1.54620
246246 0 0
247247 0 0
248248 4.22871 4.22871
249249 0 0
250250 −2.68251 −2.68251
251251 0 0 1.00000 00
−1.00000 π\pi
252252 −0.763521 −0.763521
253253 −1.59435 −1.59435
254254 −1.59435 −1.59435
255255 0 0
256256 1.91899 1.91899
257257 −1.30972 −1.30972 −0.654861 0.755750i 0.727273π-0.727273\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
258258 0 0
259259 0 0
260260 4.51334 4.51334
261261 −1.30972 −1.30972
262262 −3.22871 −3.22871
263263 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 2.68251 2.68251
269269 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
270270 0 0
271271 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
272272 −1.00000 −1.00000
273273 0 0
274274 3.68251 3.68251
275275 1.52111 1.52111
276276 0 0
277277 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
278278 0 0
279279 −1.30972 −1.30972
280280 1.54620 1.54620
281281 2.00000 2.00000 1.00000 00
1.00000 00
282282 0 0
283283 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
284284 0 0
285285 0 0
286286 −1.59435 −1.59435
287287 0.372786 0.372786
288288 −3.51334 −3.51334
289289 −0.918986 −0.918986
290290 4.22871 4.22871
291291 0 0
292292 0 0
293293 0 0 1.00000 00
−1.00000 π\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 −1.91899 −1.91899
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 0 0
306306 0.546200 0.546200
307307 0 0 1.00000 00
−1.00000 π\pi
308308 −0.634356 −0.634356
309309 0 0
310310 4.22871 4.22871
311311 0 0 1.00000 00
−1.00000 π\pi
312312 0 0
313313 0 0 1.00000 00
−1.00000 π\pi
314314 −1.59435 −1.59435
315315 −0.478891 −0.478891
316316 0 0
317317 0 0 1.00000 00
−1.00000 π\pi
318318 0 0
319319 −1.08816 −1.08816
320320 5.43232 5.43232
321321 0 0
322322 −1.04815 −1.04815
323323 0 0
324324 2.68251 2.68251
325325 1.83083 1.83083
326326 0 0
327327 0 0
328328 4.22871 4.22871
329329 0 0
330330 0 0
331331 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
332332 0 0
333333 0 0
334334 0 0
335335 1.68251 1.68251
336336 0 0
337337 0 0 1.00000 00
−1.00000 π\pi
338338 −1.91899 −1.91899
339339 0 0
340340 −1.28463 −1.28463
341341 −1.08816 −1.08816
342342 0 0
343343 0.546200 0.546200
344344 0 0
345345 0 0
346346 −1.59435 −1.59435
347347 0 0 1.00000 00
−1.00000 π\pi
348348 0 0
349349 0 0 1.00000 00
−1.00000 π\pi
350350 1.00000 1.00000
351351 0 0
352352 −2.91899 −2.91899
353353 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 0 0 1.00000 00
−1.00000 π\pi
360360 −5.43232 −5.43232
361361 1.00000 1.00000
362362 −3.22871 −3.22871
363363 0 0
364364 −0.763521 −0.763521
365365 0 0
366366 0 0
367367 0 0 1.00000 00
−1.00000 π\pi
368368 −6.74204 −6.74204
369369 −1.30972 −1.30972
370370 0 0
371371 0 0
372372 0 0
373373 0 0 1.00000 00
−1.00000 π\pi
374374 0.453800 0.453800
375375 0 0
376376 0 0
377377 −1.30972 −1.30972
378378 0 0
379379 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
380380 0 0
381381 0 0
382382 0 0
383383 0.830830 0.830830 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
384384 0 0
385385 −0.397877 −0.397877
386386 0 0
387387 0 0
388388 2.22871 2.22871
389389 0.830830 0.830830 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
390390 0 0
391391 0.546200 0.546200
392392 2.96714 2.96714
393393 0 0
394394 −1.59435 −1.59435
395395 0 0
396396 2.22871 2.22871
397397 0 0 1.00000 00
−1.00000 π\pi
398398 2.51334 2.51334
399399 0 0
400400 6.43232 6.43232
401401 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
402402 0 0
403403 −1.30972 −1.30972
404404 0 0
405405 1.68251 1.68251
406406 −0.715370 −0.715370
407407 0 0
408408 0 0
409409 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
410410 4.22871 4.22871
411411 0 0
412412 −3.51334 −3.51334
413413 0 0
414414 3.68251 3.68251
415415 0 0
416416 −3.51334 −3.51334
417417 0 0
418418 0 0
419419 0.830830 0.830830 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
420420 0 0
421421 0 0 1.00000 00
−1.00000 π\pi
422422 3.68251 3.68251
423423 0 0
424424 0 0
425425 −0.521109 −0.521109
426426 0 0
427427 0 0
428428 4.51334 4.51334
429429 0 0
430430 0 0
431431 0 0 1.00000 00
−1.00000 π\pi
432432 0 0
433433 0 0 1.00000 00
−1.00000 π\pi
434434 −0.715370 −0.715370
435435 0 0
436436 −5.14769 −5.14769
437437 0 0
438438 0 0
439439 0.830830 0.830830 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
440440 −4.51334 −4.51334
441441 −0.918986 −0.918986
442442 0.546200 0.546200
443443 0 0 1.00000 00
−1.00000 π\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 −0.918986 −0.918986
449449 0 0 1.00000 00
−1.00000 π\pi
450450 −3.51334 −3.51334
451451 −1.08816 −1.08816
452452 0 0
453453 0 0
454454 0 0
455455 −0.478891 −0.478891
456456 0 0
457457 0 0 1.00000 00
−1.00000 π\pi
458458 3.68251 3.68251
459459 0 0
460460 −8.66103 −8.66103
461461 0 0 1.00000 00
−1.00000 π\pi
462462 0 0
463463 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
464464 −4.60149 −4.60149
465465 0 0
466466 0 0
467467 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
468468 2.68251 2.68251
469469 −0.284630 −0.284630
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0.217321 0.217321
477477 0 0
478478 −3.22871 −3.22871
479479 0 0 1.00000 00
−1.00000 π\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 −0.830830 −0.830830
485485 1.39788 1.39788
486486 0 0
487487 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
488488 0 0
489489 0 0
490490 2.96714 2.96714
491491 −1.30972 −1.30972 −0.654861 0.755750i 0.727273π-0.727273\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
492492 0 0
493493 0.372786 0.372786
494494 0 0
495495 1.39788 1.39788
496496 −4.60149 −4.60149
497497 0 0
498498 0 0
499499 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
500500 3.74982 3.74982
501501 0 0
502502 0 0
503503 0 0 1.00000 00
−1.00000 π\pi
504504 0.918986 0.918986
505505 0 0
506506 3.05954 3.05954
507507 0 0
508508 2.22871 2.22871
509509 0 0 1.00000 00
−1.00000 π\pi
510510 0 0
511511 0 0
512512 −1.00000 −1.00000
513513 0 0
514514 2.51334 2.51334
515515 −2.20362 −2.20362
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 −5.43232 −5.43232
521521 0 0 1.00000 00
−1.00000 π\pi
522522 2.51334 2.51334
523523 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
524524 4.51334 4.51334
525525 0 0
526526 0.546200 0.546200
527527 0.372786 0.372786
528528 0 0
529529 2.68251 2.68251
530530 0 0
531531 0 0
532532 0 0
533533 −1.30972 −1.30972
534534 0 0
535535 2.83083 2.83083
536536 −3.22871 −3.22871
537537 0 0
538538 0.546200 0.546200
539539 −0.763521 −0.763521
540540 0 0
541541 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
542542 −3.22871 −3.22871
543543 0 0
544544 1.00000 1.00000
545545 −3.22871 −3.22871
546546 0 0
547547 0 0 1.00000 00
−1.00000 π\pi
548548 −5.14769 −5.14769
549549 0 0
550550 −2.91899 −2.91899
551551 0 0
552552 0 0
553553 0 0
554554 0.546200 0.546200
555555 0 0
556556 0 0
557557 0 0 1.00000 00
−1.00000 π\pi
558558 2.51334 2.51334
559559 0 0
560560 −1.68251 −1.68251
561561 0 0
562562 −3.83797 −3.83797
563563 0 0 1.00000 00
−1.00000 π\pi
564564 0 0
565565 0 0
566566 3.68251 3.68251
567567 −0.284630 −0.284630
568568 0 0
569569 0.830830 0.830830 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
570570 0 0
571571 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
572572 2.22871 2.22871
573573 0 0
574574 −0.715370 −0.715370
575575 −3.51334 −3.51334
576576 3.22871 3.22871
577577 0.830830 0.830830 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
578578 1.76352 1.76352
579579 0 0
580580 −5.91121 −5.91121
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 1.68251 1.68251
586586 0 0
587587 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 2.00000 2.00000 1.00000 00
1.00000 00
594594 0 0
595595 0.136307 0.136307
596596 0 0
597597 0 0
598598 3.68251 3.68251
599599 0 0 1.00000 00
−1.00000 π\pi
600600 0 0
601601 0.830830 0.830830 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
602602 0 0
603603 1.00000 1.00000
604604 0 0
605605 −0.521109 −0.521109
606606 0 0
607607 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 −0.763521 −0.763521
613613 0 0 1.00000 00
−1.00000 π\pi
614614 0 0
615615 0 0
616616 0.763521 0.763521
617617 0 0 1.00000 00
−1.00000 π\pi
618618 0 0
619619 0 0 1.00000 00
−1.00000 π\pi
620620 −5.91121 −5.91121
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 0.521109 0.521109
626626 0 0
627627 0 0
628628 2.22871 2.22871
629629 0 0
630630 0.918986 0.918986
631631 −1.30972 −1.30972 −0.654861 0.755750i 0.727273π-0.727273\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
632632 0 0
633633 0 0
634634 0 0
635635 1.39788 1.39788
636636 0 0
637637 −0.918986 −0.918986
638638 2.08816 2.08816
639639 0 0
640640 −4.51334 −4.51334
641641 0 0 1.00000 00
−1.00000 π\pi
642642 0 0
643643 0 0 1.00000 00
−1.00000 π\pi
644644 1.46519 1.46519
645645 0 0
646646 0 0
647647 0 0 1.00000 00
−1.00000 π\pi
648648 −3.22871 −3.22871
649649 0 0
650650 −3.51334 −3.51334
651651 0 0
652652 0 0
653653 0 0 1.00000 00
−1.00000 π\pi
654654 0 0
655655 2.83083 2.83083
656656 −4.60149 −4.60149
657657 0 0
658658 0 0
659659 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
660660 0 0
661661 0.830830 0.830830 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
662662 −3.22871 −3.22871
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 2.51334 2.51334
668668 0 0
669669 0 0
670670 −3.22871 −3.22871
671671 0 0
672672 0 0
673673 0 0 1.00000 00
−1.00000 π\pi
674674 0 0
675675 0 0
676676 2.68251 2.68251
677677 0 0 1.00000 00
−1.00000 π\pi
678678 0 0
679679 −0.236479 −0.236479
680680 1.54620 1.54620
681681 0 0
682682 2.08816 2.08816
683683 −1.30972 −1.30972 −0.654861 0.755750i 0.727273π-0.727273\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
684684 0 0
685685 −3.22871 −3.22871
686686 −1.04815 −1.04815
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 0 0 1.00000 00
−1.00000 π\pi
692692 2.22871 2.22871
693693 −0.236479 −0.236479
694694 0 0
695695 0 0
696696 0 0
697697 0.372786 0.372786
698698 0 0
699699 0 0
700700 −1.39788 −1.39788
701701 0 0 1.00000 00
−1.00000 π\pi
702702 0 0
703703 0 0
704704 2.68251 2.68251
705705 0 0
706706 0.546200 0.546200
707707 0 0
708708 0 0
709709 0 0 1.00000 00
−1.00000 π\pi
710710 0 0
711711 0 0
712712 0 0
713713 2.51334 2.51334
714714 0 0
715715 1.39788 1.39788
716716 0 0
717717 0 0
718718 0 0
719719 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
720720 5.91121 5.91121
721721 0.372786 0.372786
722722 −1.91899 −1.91899
723723 0 0
724724 4.51334 4.51334
725725 −2.39788 −2.39788
726726 0 0
727727 0 0 1.00000 00
−1.00000 π\pi
728728 0.918986 0.918986
729729 1.00000 1.00000
730730 0 0
731731 0 0
732732 0 0
733733 −1.30972 −1.30972 −0.654861 0.755750i 0.727273π-0.727273\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
734734 0 0
735735 0 0
736736 6.74204 6.74204
737737 0.830830 0.830830
738738 2.51334 2.51334
739739 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 1.00000 00
−1.00000 π\pi
744744 0 0
745745 0 0
746746 0 0
747747 0 0
748748 −0.634356 −0.634356
749749 −0.478891 −0.478891
750750 0 0
751751 −1.30972 −1.30972 −0.654861 0.755750i 0.727273π-0.727273\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
752752 0 0
753753 0 0
754754 2.51334 2.51334
755755 0 0
756756 0 0
757757 0 0 1.00000 00
−1.00000 π\pi
758758 −3.22871 −3.22871
759759 0 0
760760 0 0
761761 0 0 1.00000 00
−1.00000 π\pi
762762 0 0
763763 0.546200 0.546200
764764 0 0
765765 −0.478891 −0.478891
766766 −1.59435 −1.59435
767767 0 0
768768 0 0
769769 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
770770 0.763521 0.763521
771771 0 0
772772 0 0
773773 0 0 1.00000 00
−1.00000 π\pi
774774 0 0
775775 −2.39788 −2.39788
776776 −2.68251 −2.68251
777777 0 0
778778 −1.59435 −1.59435
779779 0 0
780780 0 0
781781 0 0
782782 −1.04815 −1.04815
783783 0 0
784784 −3.22871 −3.22871
785785 1.39788 1.39788
786786 0 0
787787 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
788788 2.22871 2.22871
789789 0 0
790790 0 0
791791 0 0
792792 −2.68251 −2.68251
793793 0 0
794794 0 0
795795 0 0
796796 −3.51334 −3.51334
797797 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
798798 0 0
799799 0 0
800800 −6.43232 −6.43232
801801 0 0
802802 0.546200 0.546200
803803 0 0
804804 0 0
805805 0.918986 0.918986
806806 2.51334 2.51334
807807 0 0
808808 0 0
809809 0 0 1.00000 00
−1.00000 π\pi
810810 −3.22871 −3.22871
811811 2.00000 2.00000 1.00000 00
1.00000 00
812812 1.00000 1.00000
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 3.68251 3.68251
819819 −0.284630 −0.284630
820820 −5.91121 −5.91121
821821 0 0 1.00000 00
−1.00000 π\pi
822822 0 0
823823 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
824824 4.22871 4.22871
825825 0 0
826826 0 0
827827 0 0 1.00000 00
−1.00000 π\pi
828828 −5.14769 −5.14769
829829 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
830830 0 0
831831 0 0
832832 3.22871 3.22871
833833 0.261571 0.261571
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 −1.59435 −1.59435
839839 0 0 1.00000 00
−1.00000 π\pi
840840 0 0
841841 0.715370 0.715370
842842 0 0
843843 0 0
844844 −5.14769 −5.14769
845845 1.68251 1.68251
846846 0 0
847847 0.0881559 0.0881559
848848 0 0
849849 0 0
850850 1.00000 1.00000
851851 0 0
852852 0 0
853853 0 0 1.00000 00
−1.00000 π\pi
854854 0 0
855855 0 0
856856 −5.43232 −5.43232
857857 0 0 1.00000 00
−1.00000 π\pi
858858 0 0
859859 −1.30972 −1.30972 −0.654861 0.755750i 0.727273π-0.727273\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 1.00000 00
−1.00000 π\pi
864864 0 0
865865 1.39788 1.39788
866866 0 0
867867 0 0
868868 1.00000 1.00000
869869 0 0
870870 0 0
871871 1.00000 1.00000
872872 6.19584 6.19584
873873 0.830830 0.830830
874874 0 0
875875 −0.397877 −0.397877
876876 0 0
877877 0 0 1.00000 00
−1.00000 π\pi
878878 −1.59435 −1.59435
879879 0 0
880880 4.91121 4.91121
881881 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
882882 1.76352 1.76352
883883 0 0 1.00000 00
−1.00000 π\pi
884884 −0.763521 −0.763521
885885 0 0
886886 0 0
887887 2.00000 2.00000 1.00000 00
1.00000 00
888888 0 0
889889 −0.236479 −0.236479
890890 0 0
891891 0.830830 0.830830
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0.763521 0.763521
897897 0 0
898898 0 0
899899 1.71537 1.71537
900900 4.91121 4.91121
901901 0 0
902902 2.08816 2.08816
903903 0 0
904904 0 0
905905 2.83083 2.83083
906906 0 0
907907 2.00000 2.00000 1.00000 00
1.00000 00
908908 0 0
909909 0 0
910910 0.918986 0.918986
911911 0.830830 0.830830 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 −5.14769 −5.14769
917917 −0.478891 −0.478891
918918 0 0
919919 0 0 1.00000 00
−1.00000 π\pi
920920 10.4246 10.4246
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 −3.22871 −3.22871
927927 −1.30972 −1.30972
928928 4.60149 4.60149
929929 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
930930 0 0
931931 0 0
932932 0 0
933933 0 0
934934 0.546200 0.546200
935935 −0.397877 −0.397877
936936 −3.22871 −3.22871
937937 0 0 1.00000 00
−1.00000 π\pi
938938 0.546200 0.546200
939939 0 0
940940 0 0
941941 −1.30972 −1.30972 −0.654861 0.755750i 0.727273π-0.727273\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
942942 0 0
943943 2.51334 2.51334
944944 0 0
945945 0 0
946946 0 0
947947 0 0 1.00000 00
−1.00000 π\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 −0.261571 −0.261571
953953 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
954954 0 0
955955 0 0
956956 4.51334 4.51334
957957 0 0
958958 0 0
959959 0.546200 0.546200
960960 0 0
961961 0.715370 0.715370
962962 0 0
963963 1.68251 1.68251
964964 0 0
965965 0 0
966966 0 0
967967 0 0 1.00000 00
−1.00000 π\pi
968968 1.00000 1.00000
969969 0 0
970970 −2.68251 −2.68251
971971 2.00000 2.00000 1.00000 00
1.00000 00
972972 0 0
973973 0 0
974974 3.68251 3.68251
975975 0 0
976976 0 0
977977 0 0 1.00000 00
−1.00000 π\pi
978978 0 0
979979 0 0
980980 −4.14769 −4.14769
981981 −1.91899 −1.91899
982982 2.51334 2.51334
983983 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
984984 0 0
985985 1.39788 1.39788
986986 −0.715370 −0.715370
987987 0 0
988988 0 0
989989 0 0
990990 −2.68251 −2.68251
991991 0 0 1.00000 00
−1.00000 π\pi
992992 4.60149 4.60149
993993 0 0
994994 0 0
995995 −2.20362 −2.20362
996996 0 0
997997 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
998998 0.546200 0.546200
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 871.1.d.a.870.1 5
13.12 even 2 871.1.d.b.870.5 yes 5
67.66 odd 2 871.1.d.b.870.5 yes 5
871.870 odd 2 CM 871.1.d.a.870.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
871.1.d.a.870.1 5 1.1 even 1 trivial
871.1.d.a.870.1 5 871.870 odd 2 CM
871.1.d.b.870.5 yes 5 13.12 even 2
871.1.d.b.870.5 yes 5 67.66 odd 2