Properties

Label 871.1.d.a.870.3
Level $871$
Weight $1$
Character 871.870
Self dual yes
Analytic conductor $0.435$
Analytic rank $0$
Dimension $5$
Projective image $D_{11}$
CM discriminant -871
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [871,1,Mod(870,871)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(871, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("871.870");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 871 = 13 \cdot 67 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 871.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.434685626003\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\Q(\zeta_{22})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 4x^{3} + 3x^{2} + 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{11}\)
Projective field: Galois closure of 11.1.501292001353351.1

Embedding invariants

Embedding label 870.3
Root \(-0.830830\) of defining polynomial
Character \(\chi\) \(=\) 871.870

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.284630 q^{2} -0.918986 q^{4} -1.91899 q^{5} -1.30972 q^{7} +0.546200 q^{8} +1.00000 q^{9} +0.546200 q^{10} +1.68251 q^{11} +1.00000 q^{13} +0.372786 q^{14} +0.763521 q^{16} -1.30972 q^{17} -0.284630 q^{18} +1.76352 q^{20} -0.478891 q^{22} -0.284630 q^{23} +2.68251 q^{25} -0.284630 q^{26} +1.20362 q^{28} +0.830830 q^{29} +0.830830 q^{31} -0.763521 q^{32} +0.372786 q^{34} +2.51334 q^{35} -0.918986 q^{36} -1.04815 q^{40} +0.830830 q^{41} -1.54620 q^{44} -1.91899 q^{45} +0.0810141 q^{46} +0.715370 q^{49} -0.763521 q^{50} -0.918986 q^{52} -3.22871 q^{55} -0.715370 q^{56} -0.236479 q^{58} -0.236479 q^{62} -1.30972 q^{63} -0.546200 q^{64} -1.91899 q^{65} +1.00000 q^{67} +1.20362 q^{68} -0.715370 q^{70} +0.546200 q^{72} -2.20362 q^{77} -1.46519 q^{80} +1.00000 q^{81} -0.236479 q^{82} +2.51334 q^{85} +0.918986 q^{88} +0.546200 q^{90} -1.30972 q^{91} +0.261571 q^{92} +1.68251 q^{97} -0.203616 q^{98} +1.68251 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - q^{2} + 4 q^{4} - q^{5} - q^{7} - 2 q^{8} + 5 q^{9} - 2 q^{10} - q^{11} + 5 q^{13} - 2 q^{14} + 3 q^{16} - q^{17} - q^{18} + 8 q^{20} - 2 q^{22} - q^{23} + 4 q^{25} - q^{26} - 3 q^{28} - q^{29}+ \cdots - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/871\mathbb{Z}\right)^\times\).

\(n\) \(404\) \(470\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(3\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(4\) −0.918986 −0.918986
\(5\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(6\) 0 0
\(7\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(8\) 0.546200 0.546200
\(9\) 1.00000 1.00000
\(10\) 0.546200 0.546200
\(11\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(12\) 0 0
\(13\) 1.00000 1.00000
\(14\) 0.372786 0.372786
\(15\) 0 0
\(16\) 0.763521 0.763521
\(17\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(18\) −0.284630 −0.284630
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 1.76352 1.76352
\(21\) 0 0
\(22\) −0.478891 −0.478891
\(23\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(24\) 0 0
\(25\) 2.68251 2.68251
\(26\) −0.284630 −0.284630
\(27\) 0 0
\(28\) 1.20362 1.20362
\(29\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(30\) 0 0
\(31\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(32\) −0.763521 −0.763521
\(33\) 0 0
\(34\) 0.372786 0.372786
\(35\) 2.51334 2.51334
\(36\) −0.918986 −0.918986
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −1.04815 −1.04815
\(41\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) −1.54620 −1.54620
\(45\) −1.91899 −1.91899
\(46\) 0.0810141 0.0810141
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) 0.715370 0.715370
\(50\) −0.763521 −0.763521
\(51\) 0 0
\(52\) −0.918986 −0.918986
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) −3.22871 −3.22871
\(56\) −0.715370 −0.715370
\(57\) 0 0
\(58\) −0.236479 −0.236479
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) −0.236479 −0.236479
\(63\) −1.30972 −1.30972
\(64\) −0.546200 −0.546200
\(65\) −1.91899 −1.91899
\(66\) 0 0
\(67\) 1.00000 1.00000
\(68\) 1.20362 1.20362
\(69\) 0 0
\(70\) −0.715370 −0.715370
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0.546200 0.546200
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.20362 −2.20362
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) −1.46519 −1.46519
\(81\) 1.00000 1.00000
\(82\) −0.236479 −0.236479
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 2.51334 2.51334
\(86\) 0 0
\(87\) 0 0
\(88\) 0.918986 0.918986
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0.546200 0.546200
\(91\) −1.30972 −1.30972
\(92\) 0.261571 0.261571
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(98\) −0.203616 −0.203616
\(99\) 1.68251 1.68251
\(100\) −2.46519 −2.46519
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(104\) 0.546200 0.546200
\(105\) 0 0
\(106\) 0 0
\(107\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(108\) 0 0
\(109\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(110\) 0.918986 0.918986
\(111\) 0 0
\(112\) −1.00000 −1.00000
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0.546200 0.546200
\(116\) −0.763521 −0.763521
\(117\) 1.00000 1.00000
\(118\) 0 0
\(119\) 1.71537 1.71537
\(120\) 0 0
\(121\) 1.83083 1.83083
\(122\) 0 0
\(123\) 0 0
\(124\) −0.763521 −0.763521
\(125\) −3.22871 −3.22871
\(126\) 0.372786 0.372786
\(127\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(128\) 0.918986 0.918986
\(129\) 0 0
\(130\) 0.546200 0.546200
\(131\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −0.284630 −0.284630
\(135\) 0 0
\(136\) −0.715370 −0.715370
\(137\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) −2.30972 −2.30972
\(141\) 0 0
\(142\) 0 0
\(143\) 1.68251 1.68251
\(144\) 0.763521 0.763521
\(145\) −1.59435 −1.59435
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) −1.30972 −1.30972
\(154\) 0.627214 0.627214
\(155\) −1.59435 −1.59435
\(156\) 0 0
\(157\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 1.46519 1.46519
\(161\) 0.372786 0.372786
\(162\) −0.284630 −0.284630
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) −0.763521 −0.763521
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 1.00000 1.00000
\(170\) −0.715370 −0.715370
\(171\) 0 0
\(172\) 0 0
\(173\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(174\) 0 0
\(175\) −3.51334 −3.51334
\(176\) 1.28463 1.28463
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 1.76352 1.76352
\(181\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(182\) 0.372786 0.372786
\(183\) 0 0
\(184\) −0.155465 −0.155465
\(185\) 0 0
\(186\) 0 0
\(187\) −2.20362 −2.20362
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) −0.478891 −0.478891
\(195\) 0 0
\(196\) −0.657415 −0.657415
\(197\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(198\) −0.478891 −0.478891
\(199\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(200\) 1.46519 1.46519
\(201\) 0 0
\(202\) 0 0
\(203\) −1.08816 −1.08816
\(204\) 0 0
\(205\) −1.59435 −1.59435
\(206\) −0.236479 −0.236479
\(207\) −0.284630 −0.284630
\(208\) 0.763521 0.763521
\(209\) 0 0
\(210\) 0 0
\(211\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0.546200 0.546200
\(215\) 0 0
\(216\) 0 0
\(217\) −1.08816 −1.08816
\(218\) 0.0810141 0.0810141
\(219\) 0 0
\(220\) 2.96714 2.96714
\(221\) −1.30972 −1.30972
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 1.00000 1.00000
\(225\) 2.68251 2.68251
\(226\) 0 0
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(230\) −0.155465 −0.155465
\(231\) 0 0
\(232\) 0.453800 0.453800
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) −0.284630 −0.284630
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) −0.488245 −0.488245
\(239\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) −0.521109 −0.521109
\(243\) 0 0
\(244\) 0 0
\(245\) −1.37279 −1.37279
\(246\) 0 0
\(247\) 0 0
\(248\) 0.453800 0.453800
\(249\) 0 0
\(250\) 0.918986 0.918986
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 1.20362 1.20362
\(253\) −0.478891 −0.478891
\(254\) −0.478891 −0.478891
\(255\) 0 0
\(256\) 0.284630 0.284630
\(257\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 1.76352 1.76352
\(261\) 0.830830 0.830830
\(262\) 0.546200 0.546200
\(263\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −0.918986 −0.918986
\(269\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(270\) 0 0
\(271\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(272\) −1.00000 −1.00000
\(273\) 0 0
\(274\) 0.0810141 0.0810141
\(275\) 4.51334 4.51334
\(276\) 0 0
\(277\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(278\) 0 0
\(279\) 0.830830 0.830830
\(280\) 1.37279 1.37279
\(281\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(282\) 0 0
\(283\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) −0.478891 −0.478891
\(287\) −1.08816 −1.08816
\(288\) −0.763521 −0.763521
\(289\) 0.715370 0.715370
\(290\) 0.453800 0.453800
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −0.284630 −0.284630
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0.372786 0.372786
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 2.02509 2.02509
\(309\) 0 0
\(310\) 0.453800 0.453800
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) −0.478891 −0.478891
\(315\) 2.51334 2.51334
\(316\) 0 0
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 1.39788 1.39788
\(320\) 1.04815 1.04815
\(321\) 0 0
\(322\) −0.106106 −0.106106
\(323\) 0 0
\(324\) −0.918986 −0.918986
\(325\) 2.68251 2.68251
\(326\) 0 0
\(327\) 0 0
\(328\) 0.453800 0.453800
\(329\) 0 0
\(330\) 0 0
\(331\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −1.91899 −1.91899
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) −0.284630 −0.284630
\(339\) 0 0
\(340\) −2.30972 −2.30972
\(341\) 1.39788 1.39788
\(342\) 0 0
\(343\) 0.372786 0.372786
\(344\) 0 0
\(345\) 0 0
\(346\) −0.478891 −0.478891
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 1.00000 1.00000
\(351\) 0 0
\(352\) −1.28463 −1.28463
\(353\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) −1.04815 −1.04815
\(361\) 1.00000 1.00000
\(362\) 0.546200 0.546200
\(363\) 0 0
\(364\) 1.20362 1.20362
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) −0.217321 −0.217321
\(369\) 0.830830 0.830830
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0.627214 0.627214
\(375\) 0 0
\(376\) 0 0
\(377\) 0.830830 0.830830
\(378\) 0 0
\(379\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(384\) 0 0
\(385\) 4.22871 4.22871
\(386\) 0 0
\(387\) 0 0
\(388\) −1.54620 −1.54620
\(389\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(390\) 0 0
\(391\) 0.372786 0.372786
\(392\) 0.390736 0.390736
\(393\) 0 0
\(394\) −0.478891 −0.478891
\(395\) 0 0
\(396\) −1.54620 −1.54620
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) −0.236479 −0.236479
\(399\) 0 0
\(400\) 2.04815 2.04815
\(401\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(402\) 0 0
\(403\) 0.830830 0.830830
\(404\) 0 0
\(405\) −1.91899 −1.91899
\(406\) 0.309721 0.309721
\(407\) 0 0
\(408\) 0 0
\(409\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(410\) 0.453800 0.453800
\(411\) 0 0
\(412\) −0.763521 −0.763521
\(413\) 0 0
\(414\) 0.0810141 0.0810141
\(415\) 0 0
\(416\) −0.763521 −0.763521
\(417\) 0 0
\(418\) 0 0
\(419\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0.0810141 0.0810141
\(423\) 0 0
\(424\) 0 0
\(425\) −3.51334 −3.51334
\(426\) 0 0
\(427\) 0 0
\(428\) 1.76352 1.76352
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0.309721 0.309721
\(435\) 0 0
\(436\) 0.261571 0.261571
\(437\) 0 0
\(438\) 0 0
\(439\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(440\) −1.76352 −1.76352
\(441\) 0.715370 0.715370
\(442\) 0.372786 0.372786
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0.715370 0.715370
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) −0.763521 −0.763521
\(451\) 1.39788 1.39788
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 2.51334 2.51334
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0.0810141 0.0810141
\(459\) 0 0
\(460\) −0.501950 −0.501950
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(464\) 0.634356 0.634356
\(465\) 0 0
\(466\) 0 0
\(467\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(468\) −0.918986 −0.918986
\(469\) −1.30972 −1.30972
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) −1.57640 −1.57640
\(477\) 0 0
\(478\) 0.546200 0.546200
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −1.68251 −1.68251
\(485\) −3.22871 −3.22871
\(486\) 0 0
\(487\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0.390736 0.390736
\(491\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(492\) 0 0
\(493\) −1.08816 −1.08816
\(494\) 0 0
\(495\) −3.22871 −3.22871
\(496\) 0.634356 0.634356
\(497\) 0 0
\(498\) 0 0
\(499\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(500\) 2.96714 2.96714
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) −0.715370 −0.715370
\(505\) 0 0
\(506\) 0.136307 0.136307
\(507\) 0 0
\(508\) −1.54620 −1.54620
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −1.00000
\(513\) 0 0
\(514\) −0.236479 −0.236479
\(515\) −1.59435 −1.59435
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) −1.04815 −1.04815
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) −0.236479 −0.236479
\(523\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(524\) 1.76352 1.76352
\(525\) 0 0
\(526\) 0.372786 0.372786
\(527\) −1.08816 −1.08816
\(528\) 0 0
\(529\) −0.918986 −0.918986
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0.830830 0.830830
\(534\) 0 0
\(535\) 3.68251 3.68251
\(536\) 0.546200 0.546200
\(537\) 0 0
\(538\) 0.372786 0.372786
\(539\) 1.20362 1.20362
\(540\) 0 0
\(541\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(542\) 0.546200 0.546200
\(543\) 0 0
\(544\) 1.00000 1.00000
\(545\) 0.546200 0.546200
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0.261571 0.261571
\(549\) 0 0
\(550\) −1.28463 −1.28463
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0.372786 0.372786
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) −0.236479 −0.236479
\(559\) 0 0
\(560\) 1.91899 1.91899
\(561\) 0 0
\(562\) −0.569259 −0.569259
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0.0810141 0.0810141
\(567\) −1.30972 −1.30972
\(568\) 0 0
\(569\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(570\) 0 0
\(571\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(572\) −1.54620 −1.54620
\(573\) 0 0
\(574\) 0.309721 0.309721
\(575\) −0.763521 −0.763521
\(576\) −0.546200 −0.546200
\(577\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(578\) −0.203616 −0.203616
\(579\) 0 0
\(580\) 1.46519 1.46519
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −1.91899 −1.91899
\(586\) 0 0
\(587\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(594\) 0 0
\(595\) −3.29177 −3.29177
\(596\) 0 0
\(597\) 0 0
\(598\) 0.0810141 0.0810141
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(602\) 0 0
\(603\) 1.00000 1.00000
\(604\) 0 0
\(605\) −3.51334 −3.51334
\(606\) 0 0
\(607\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 1.20362 1.20362
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) −1.20362 −1.20362
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 1.46519 1.46519
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 3.51334 3.51334
\(626\) 0 0
\(627\) 0 0
\(628\) −1.54620 −1.54620
\(629\) 0 0
\(630\) −0.715370 −0.715370
\(631\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −3.22871 −3.22871
\(636\) 0 0
\(637\) 0.715370 0.715370
\(638\) −0.397877 −0.397877
\(639\) 0 0
\(640\) −1.76352 −1.76352
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) −0.342585 −0.342585
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 0.546200 0.546200
\(649\) 0 0
\(650\) −0.763521 −0.763521
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 3.68251 3.68251
\(656\) 0.634356 0.634356
\(657\) 0 0
\(658\) 0 0
\(659\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(660\) 0 0
\(661\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(662\) 0.546200 0.546200
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −0.236479 −0.236479
\(668\) 0 0
\(669\) 0 0
\(670\) 0.546200 0.546200
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −0.918986 −0.918986
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) −2.20362 −2.20362
\(680\) 1.37279 1.37279
\(681\) 0 0
\(682\) −0.397877 −0.397877
\(683\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(684\) 0 0
\(685\) 0.546200 0.546200
\(686\) −0.106106 −0.106106
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) −1.54620 −1.54620
\(693\) −2.20362 −2.20362
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −1.08816 −1.08816
\(698\) 0 0
\(699\) 0 0
\(700\) 3.22871 3.22871
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −0.918986 −0.918986
\(705\) 0 0
\(706\) 0.372786 0.372786
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −0.236479 −0.236479
\(714\) 0 0
\(715\) −3.22871 −3.22871
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(720\) −1.46519 −1.46519
\(721\) −1.08816 −1.08816
\(722\) −0.284630 −0.284630
\(723\) 0 0
\(724\) 1.76352 1.76352
\(725\) 2.22871 2.22871
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) −0.715370 −0.715370
\(729\) 1.00000 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0.217321 0.217321
\(737\) 1.68251 1.68251
\(738\) −0.236479 −0.236479
\(739\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 2.02509 2.02509
\(749\) 2.51334 2.51334
\(750\) 0 0
\(751\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) −0.236479 −0.236479
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0.546200 0.546200
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0.372786 0.372786
\(764\) 0 0
\(765\) 2.51334 2.51334
\(766\) −0.478891 −0.478891
\(767\) 0 0
\(768\) 0 0
\(769\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(770\) −1.20362 −1.20362
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) 2.22871 2.22871
\(776\) 0.918986 0.918986
\(777\) 0 0
\(778\) −0.478891 −0.478891
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) −0.106106 −0.106106
\(783\) 0 0
\(784\) 0.546200 0.546200
\(785\) −3.22871 −3.22871
\(786\) 0 0
\(787\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(788\) −1.54620 −1.54620
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0.918986 0.918986
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) −0.763521 −0.763521
\(797\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −2.04815 −2.04815
\(801\) 0 0
\(802\) 0.372786 0.372786
\(803\) 0 0
\(804\) 0 0
\(805\) −0.715370 −0.715370
\(806\) −0.236479 −0.236479
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 0.546200 0.546200
\(811\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(812\) 1.00000 1.00000
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0.0810141 0.0810141
\(819\) −1.30972 −1.30972
\(820\) 1.46519 1.46519
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(824\) 0.453800 0.453800
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0.261571 0.261571
\(829\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −0.546200 −0.546200
\(833\) −0.936936 −0.936936
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) −0.478891 −0.478891
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) −0.309721 −0.309721
\(842\) 0 0
\(843\) 0 0
\(844\) 0.261571 0.261571
\(845\) −1.91899 −1.91899
\(846\) 0 0
\(847\) −2.39788 −2.39788
\(848\) 0 0
\(849\) 0 0
\(850\) 1.00000 1.00000
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −1.04815 −1.04815
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) −3.22871 −3.22871
\(866\) 0 0
\(867\) 0 0
\(868\) 1.00000 1.00000
\(869\) 0 0
\(870\) 0 0
\(871\) 1.00000 1.00000
\(872\) −0.155465 −0.155465
\(873\) 1.68251 1.68251
\(874\) 0 0
\(875\) 4.22871 4.22871
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) −0.478891 −0.478891
\(879\) 0 0
\(880\) −2.46519 −2.46519
\(881\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(882\) −0.203616 −0.203616
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 1.20362 1.20362
\(885\) 0 0
\(886\) 0 0
\(887\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(888\) 0 0
\(889\) −2.20362 −2.20362
\(890\) 0 0
\(891\) 1.68251 1.68251
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) −1.20362 −1.20362
\(897\) 0 0
\(898\) 0 0
\(899\) 0.690279 0.690279
\(900\) −2.46519 −2.46519
\(901\) 0 0
\(902\) −0.397877 −0.397877
\(903\) 0 0
\(904\) 0 0
\(905\) 3.68251 3.68251
\(906\) 0 0
\(907\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(908\) 0 0
\(909\) 0 0
\(910\) −0.715370 −0.715370
\(911\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0.261571 0.261571
\(917\) 2.51334 2.51334
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0.298335 0.298335
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0.546200 0.546200
\(927\) 0.830830 0.830830
\(928\) −0.634356 −0.634356
\(929\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0.372786 0.372786
\(935\) 4.22871 4.22871
\(936\) 0.546200 0.546200
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0.372786 0.372786
\(939\) 0 0
\(940\) 0 0
\(941\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(942\) 0 0
\(943\) −0.236479 −0.236479
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0.936936 0.936936
\(953\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 1.76352 1.76352
\(957\) 0 0
\(958\) 0 0
\(959\) 0.372786 0.372786
\(960\) 0 0
\(961\) −0.309721 −0.309721
\(962\) 0 0
\(963\) −1.91899 −1.91899
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 1.00000 1.00000
\(969\) 0 0
\(970\) 0.918986 0.918986
\(971\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0.0810141 0.0810141
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 1.26157 1.26157
\(981\) −0.284630 −0.284630
\(982\) −0.236479 −0.236479
\(983\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(984\) 0 0
\(985\) −3.22871 −3.22871
\(986\) 0.309721 0.309721
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0.918986 0.918986
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) −0.634356 −0.634356
\(993\) 0 0
\(994\) 0 0
\(995\) −1.59435 −1.59435
\(996\) 0 0
\(997\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(998\) 0.372786 0.372786
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 871.1.d.a.870.3 5
13.12 even 2 871.1.d.b.870.3 yes 5
67.66 odd 2 871.1.d.b.870.3 yes 5
871.870 odd 2 CM 871.1.d.a.870.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
871.1.d.a.870.3 5 1.1 even 1 trivial
871.1.d.a.870.3 5 871.870 odd 2 CM
871.1.d.b.870.3 yes 5 13.12 even 2
871.1.d.b.870.3 yes 5 67.66 odd 2