Properties

Label 871.1.d.a.870.3
Level 871871
Weight 11
Character 871.870
Self dual yes
Analytic conductor 0.4350.435
Analytic rank 00
Dimension 55
Projective image D11D_{11}
CM discriminant -871
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [871,1,Mod(870,871)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(871, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("871.870");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 871=1367 871 = 13 \cdot 67
Weight: k k == 1 1
Character orbit: [χ][\chi] == 871.d (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 0.4346856260030.434685626003
Analytic rank: 00
Dimension: 55
Coefficient field: Q(ζ22)+\Q(\zeta_{22})^+
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x5x44x3+3x2+3x1 x^{5} - x^{4} - 4x^{3} + 3x^{2} + 3x - 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D11D_{11}
Projective field: Galois closure of 11.1.501292001353351.1

Embedding invariants

Embedding label 870.3
Root 0.830830-0.830830 of defining polynomial
Character χ\chi == 871.870

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q0.284630q20.918986q41.91899q51.30972q7+0.546200q8+1.00000q9+0.546200q10+1.68251q11+1.00000q13+0.372786q14+0.763521q161.30972q170.284630q18+1.76352q200.478891q220.284630q23+2.68251q250.284630q26+1.20362q28+0.830830q29+0.830830q310.763521q32+0.372786q34+2.51334q350.918986q361.04815q40+0.830830q411.54620q441.91899q45+0.0810141q46+0.715370q490.763521q500.918986q523.22871q550.715370q560.236479q580.236479q621.30972q630.546200q641.91899q65+1.00000q67+1.20362q680.715370q70+0.546200q722.20362q771.46519q80+1.00000q810.236479q82+2.51334q85+0.918986q88+0.546200q901.30972q91+0.261571q92+1.68251q970.203616q98+1.68251q99+O(q100)q-0.284630 q^{2} -0.918986 q^{4} -1.91899 q^{5} -1.30972 q^{7} +0.546200 q^{8} +1.00000 q^{9} +0.546200 q^{10} +1.68251 q^{11} +1.00000 q^{13} +0.372786 q^{14} +0.763521 q^{16} -1.30972 q^{17} -0.284630 q^{18} +1.76352 q^{20} -0.478891 q^{22} -0.284630 q^{23} +2.68251 q^{25} -0.284630 q^{26} +1.20362 q^{28} +0.830830 q^{29} +0.830830 q^{31} -0.763521 q^{32} +0.372786 q^{34} +2.51334 q^{35} -0.918986 q^{36} -1.04815 q^{40} +0.830830 q^{41} -1.54620 q^{44} -1.91899 q^{45} +0.0810141 q^{46} +0.715370 q^{49} -0.763521 q^{50} -0.918986 q^{52} -3.22871 q^{55} -0.715370 q^{56} -0.236479 q^{58} -0.236479 q^{62} -1.30972 q^{63} -0.546200 q^{64} -1.91899 q^{65} +1.00000 q^{67} +1.20362 q^{68} -0.715370 q^{70} +0.546200 q^{72} -2.20362 q^{77} -1.46519 q^{80} +1.00000 q^{81} -0.236479 q^{82} +2.51334 q^{85} +0.918986 q^{88} +0.546200 q^{90} -1.30972 q^{91} +0.261571 q^{92} +1.68251 q^{97} -0.203616 q^{98} +1.68251 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 5qq2+4q4q5q72q8+5q92q10q11+5q132q14+3q16q17q18+8q202q22q23+4q25q263q28q29+q99+O(q100) 5 q - q^{2} + 4 q^{4} - q^{5} - q^{7} - 2 q^{8} + 5 q^{9} - 2 q^{10} - q^{11} + 5 q^{13} - 2 q^{14} + 3 q^{16} - q^{17} - q^{18} + 8 q^{20} - 2 q^{22} - q^{23} + 4 q^{25} - q^{26} - 3 q^{28} - q^{29}+ \cdots - q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/871Z)×\left(\mathbb{Z}/871\mathbb{Z}\right)^\times.

nn 404404 470470
χ(n)\chi(n) 1-1 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
33 0 0 1.00000 00
−1.00000 π\pi
44 −0.918986 −0.918986
55 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
66 0 0
77 −1.30972 −1.30972 −0.654861 0.755750i 0.727273π-0.727273\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
88 0.546200 0.546200
99 1.00000 1.00000
1010 0.546200 0.546200
1111 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
1212 0 0
1313 1.00000 1.00000
1414 0.372786 0.372786
1515 0 0
1616 0.763521 0.763521
1717 −1.30972 −1.30972 −0.654861 0.755750i 0.727273π-0.727273\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
1818 −0.284630 −0.284630
1919 0 0 1.00000 00
−1.00000 π\pi
2020 1.76352 1.76352
2121 0 0
2222 −0.478891 −0.478891
2323 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
2424 0 0
2525 2.68251 2.68251
2626 −0.284630 −0.284630
2727 0 0
2828 1.20362 1.20362
2929 0.830830 0.830830 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
3030 0 0
3131 0.830830 0.830830 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
3232 −0.763521 −0.763521
3333 0 0
3434 0.372786 0.372786
3535 2.51334 2.51334
3636 −0.918986 −0.918986
3737 0 0 1.00000 00
−1.00000 π\pi
3838 0 0
3939 0 0
4040 −1.04815 −1.04815
4141 0.830830 0.830830 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
4242 0 0
4343 0 0 1.00000 00
−1.00000 π\pi
4444 −1.54620 −1.54620
4545 −1.91899 −1.91899
4646 0.0810141 0.0810141
4747 0 0 1.00000 00
−1.00000 π\pi
4848 0 0
4949 0.715370 0.715370
5050 −0.763521 −0.763521
5151 0 0
5252 −0.918986 −0.918986
5353 0 0 1.00000 00
−1.00000 π\pi
5454 0 0
5555 −3.22871 −3.22871
5656 −0.715370 −0.715370
5757 0 0
5858 −0.236479 −0.236479
5959 0 0 1.00000 00
−1.00000 π\pi
6060 0 0
6161 0 0 1.00000 00
−1.00000 π\pi
6262 −0.236479 −0.236479
6363 −1.30972 −1.30972
6464 −0.546200 −0.546200
6565 −1.91899 −1.91899
6666 0 0
6767 1.00000 1.00000
6868 1.20362 1.20362
6969 0 0
7070 −0.715370 −0.715370
7171 0 0 1.00000 00
−1.00000 π\pi
7272 0.546200 0.546200
7373 0 0 1.00000 00
−1.00000 π\pi
7474 0 0
7575 0 0
7676 0 0
7777 −2.20362 −2.20362
7878 0 0
7979 0 0 1.00000 00
−1.00000 π\pi
8080 −1.46519 −1.46519
8181 1.00000 1.00000
8282 −0.236479 −0.236479
8383 0 0 1.00000 00
−1.00000 π\pi
8484 0 0
8585 2.51334 2.51334
8686 0 0
8787 0 0
8888 0.918986 0.918986
8989 0 0 1.00000 00
−1.00000 π\pi
9090 0.546200 0.546200
9191 −1.30972 −1.30972
9292 0.261571 0.261571
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
9898 −0.203616 −0.203616
9999 1.68251 1.68251
100100 −2.46519 −2.46519
101101 0 0 1.00000 00
−1.00000 π\pi
102102 0 0
103103 0.830830 0.830830 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
104104 0.546200 0.546200
105105 0 0
106106 0 0
107107 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
108108 0 0
109109 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
110110 0.918986 0.918986
111111 0 0
112112 −1.00000 −1.00000
113113 0 0 1.00000 00
−1.00000 π\pi
114114 0 0
115115 0.546200 0.546200
116116 −0.763521 −0.763521
117117 1.00000 1.00000
118118 0 0
119119 1.71537 1.71537
120120 0 0
121121 1.83083 1.83083
122122 0 0
123123 0 0
124124 −0.763521 −0.763521
125125 −3.22871 −3.22871
126126 0.372786 0.372786
127127 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
128128 0.918986 0.918986
129129 0 0
130130 0.546200 0.546200
131131 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
132132 0 0
133133 0 0
134134 −0.284630 −0.284630
135135 0 0
136136 −0.715370 −0.715370
137137 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
138138 0 0
139139 0 0 1.00000 00
−1.00000 π\pi
140140 −2.30972 −2.30972
141141 0 0
142142 0 0
143143 1.68251 1.68251
144144 0.763521 0.763521
145145 −1.59435 −1.59435
146146 0 0
147147 0 0
148148 0 0
149149 0 0 1.00000 00
−1.00000 π\pi
150150 0 0
151151 0 0 1.00000 00
−1.00000 π\pi
152152 0 0
153153 −1.30972 −1.30972
154154 0.627214 0.627214
155155 −1.59435 −1.59435
156156 0 0
157157 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
158158 0 0
159159 0 0
160160 1.46519 1.46519
161161 0.372786 0.372786
162162 −0.284630 −0.284630
163163 0 0 1.00000 00
−1.00000 π\pi
164164 −0.763521 −0.763521
165165 0 0
166166 0 0
167167 0 0 1.00000 00
−1.00000 π\pi
168168 0 0
169169 1.00000 1.00000
170170 −0.715370 −0.715370
171171 0 0
172172 0 0
173173 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
174174 0 0
175175 −3.51334 −3.51334
176176 1.28463 1.28463
177177 0 0
178178 0 0
179179 0 0 1.00000 00
−1.00000 π\pi
180180 1.76352 1.76352
181181 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
182182 0.372786 0.372786
183183 0 0
184184 −0.155465 −0.155465
185185 0 0
186186 0 0
187187 −2.20362 −2.20362
188188 0 0
189189 0 0
190190 0 0
191191 0 0 1.00000 00
−1.00000 π\pi
192192 0 0
193193 0 0 1.00000 00
−1.00000 π\pi
194194 −0.478891 −0.478891
195195 0 0
196196 −0.657415 −0.657415
197197 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
198198 −0.478891 −0.478891
199199 0.830830 0.830830 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
200200 1.46519 1.46519
201201 0 0
202202 0 0
203203 −1.08816 −1.08816
204204 0 0
205205 −1.59435 −1.59435
206206 −0.236479 −0.236479
207207 −0.284630 −0.284630
208208 0.763521 0.763521
209209 0 0
210210 0 0
211211 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
212212 0 0
213213 0 0
214214 0.546200 0.546200
215215 0 0
216216 0 0
217217 −1.08816 −1.08816
218218 0.0810141 0.0810141
219219 0 0
220220 2.96714 2.96714
221221 −1.30972 −1.30972
222222 0 0
223223 0 0 1.00000 00
−1.00000 π\pi
224224 1.00000 1.00000
225225 2.68251 2.68251
226226 0 0
227227 0 0 1.00000 00
−1.00000 π\pi
228228 0 0
229229 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
230230 −0.155465 −0.155465
231231 0 0
232232 0.453800 0.453800
233233 0 0 1.00000 00
−1.00000 π\pi
234234 −0.284630 −0.284630
235235 0 0
236236 0 0
237237 0 0
238238 −0.488245 −0.488245
239239 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
240240 0 0
241241 0 0 1.00000 00
−1.00000 π\pi
242242 −0.521109 −0.521109
243243 0 0
244244 0 0
245245 −1.37279 −1.37279
246246 0 0
247247 0 0
248248 0.453800 0.453800
249249 0 0
250250 0.918986 0.918986
251251 0 0 1.00000 00
−1.00000 π\pi
252252 1.20362 1.20362
253253 −0.478891 −0.478891
254254 −0.478891 −0.478891
255255 0 0
256256 0.284630 0.284630
257257 0.830830 0.830830 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
258258 0 0
259259 0 0
260260 1.76352 1.76352
261261 0.830830 0.830830
262262 0.546200 0.546200
263263 −1.30972 −1.30972 −0.654861 0.755750i 0.727273π-0.727273\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 −0.918986 −0.918986
269269 −1.30972 −1.30972 −0.654861 0.755750i 0.727273π-0.727273\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
270270 0 0
271271 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
272272 −1.00000 −1.00000
273273 0 0
274274 0.0810141 0.0810141
275275 4.51334 4.51334
276276 0 0
277277 −1.30972 −1.30972 −0.654861 0.755750i 0.727273π-0.727273\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
278278 0 0
279279 0.830830 0.830830
280280 1.37279 1.37279
281281 2.00000 2.00000 1.00000 00
1.00000 00
282282 0 0
283283 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
284284 0 0
285285 0 0
286286 −0.478891 −0.478891
287287 −1.08816 −1.08816
288288 −0.763521 −0.763521
289289 0.715370 0.715370
290290 0.453800 0.453800
291291 0 0
292292 0 0
293293 0 0 1.00000 00
−1.00000 π\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 −0.284630 −0.284630
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 0 0
306306 0.372786 0.372786
307307 0 0 1.00000 00
−1.00000 π\pi
308308 2.02509 2.02509
309309 0 0
310310 0.453800 0.453800
311311 0 0 1.00000 00
−1.00000 π\pi
312312 0 0
313313 0 0 1.00000 00
−1.00000 π\pi
314314 −0.478891 −0.478891
315315 2.51334 2.51334
316316 0 0
317317 0 0 1.00000 00
−1.00000 π\pi
318318 0 0
319319 1.39788 1.39788
320320 1.04815 1.04815
321321 0 0
322322 −0.106106 −0.106106
323323 0 0
324324 −0.918986 −0.918986
325325 2.68251 2.68251
326326 0 0
327327 0 0
328328 0.453800 0.453800
329329 0 0
330330 0 0
331331 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
332332 0 0
333333 0 0
334334 0 0
335335 −1.91899 −1.91899
336336 0 0
337337 0 0 1.00000 00
−1.00000 π\pi
338338 −0.284630 −0.284630
339339 0 0
340340 −2.30972 −2.30972
341341 1.39788 1.39788
342342 0 0
343343 0.372786 0.372786
344344 0 0
345345 0 0
346346 −0.478891 −0.478891
347347 0 0 1.00000 00
−1.00000 π\pi
348348 0 0
349349 0 0 1.00000 00
−1.00000 π\pi
350350 1.00000 1.00000
351351 0 0
352352 −1.28463 −1.28463
353353 −1.30972 −1.30972 −0.654861 0.755750i 0.727273π-0.727273\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 0 0 1.00000 00
−1.00000 π\pi
360360 −1.04815 −1.04815
361361 1.00000 1.00000
362362 0.546200 0.546200
363363 0 0
364364 1.20362 1.20362
365365 0 0
366366 0 0
367367 0 0 1.00000 00
−1.00000 π\pi
368368 −0.217321 −0.217321
369369 0.830830 0.830830
370370 0 0
371371 0 0
372372 0 0
373373 0 0 1.00000 00
−1.00000 π\pi
374374 0.627214 0.627214
375375 0 0
376376 0 0
377377 0.830830 0.830830
378378 0 0
379379 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
380380 0 0
381381 0 0
382382 0 0
383383 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
384384 0 0
385385 4.22871 4.22871
386386 0 0
387387 0 0
388388 −1.54620 −1.54620
389389 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
390390 0 0
391391 0.372786 0.372786
392392 0.390736 0.390736
393393 0 0
394394 −0.478891 −0.478891
395395 0 0
396396 −1.54620 −1.54620
397397 0 0 1.00000 00
−1.00000 π\pi
398398 −0.236479 −0.236479
399399 0 0
400400 2.04815 2.04815
401401 −1.30972 −1.30972 −0.654861 0.755750i 0.727273π-0.727273\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
402402 0 0
403403 0.830830 0.830830
404404 0 0
405405 −1.91899 −1.91899
406406 0.309721 0.309721
407407 0 0
408408 0 0
409409 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
410410 0.453800 0.453800
411411 0 0
412412 −0.763521 −0.763521
413413 0 0
414414 0.0810141 0.0810141
415415 0 0
416416 −0.763521 −0.763521
417417 0 0
418418 0 0
419419 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
420420 0 0
421421 0 0 1.00000 00
−1.00000 π\pi
422422 0.0810141 0.0810141
423423 0 0
424424 0 0
425425 −3.51334 −3.51334
426426 0 0
427427 0 0
428428 1.76352 1.76352
429429 0 0
430430 0 0
431431 0 0 1.00000 00
−1.00000 π\pi
432432 0 0
433433 0 0 1.00000 00
−1.00000 π\pi
434434 0.309721 0.309721
435435 0 0
436436 0.261571 0.261571
437437 0 0
438438 0 0
439439 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
440440 −1.76352 −1.76352
441441 0.715370 0.715370
442442 0.372786 0.372786
443443 0 0 1.00000 00
−1.00000 π\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0.715370 0.715370
449449 0 0 1.00000 00
−1.00000 π\pi
450450 −0.763521 −0.763521
451451 1.39788 1.39788
452452 0 0
453453 0 0
454454 0 0
455455 2.51334 2.51334
456456 0 0
457457 0 0 1.00000 00
−1.00000 π\pi
458458 0.0810141 0.0810141
459459 0 0
460460 −0.501950 −0.501950
461461 0 0 1.00000 00
−1.00000 π\pi
462462 0 0
463463 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
464464 0.634356 0.634356
465465 0 0
466466 0 0
467467 −1.30972 −1.30972 −0.654861 0.755750i 0.727273π-0.727273\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
468468 −0.918986 −0.918986
469469 −1.30972 −1.30972
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 −1.57640 −1.57640
477477 0 0
478478 0.546200 0.546200
479479 0 0 1.00000 00
−1.00000 π\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 −1.68251 −1.68251
485485 −3.22871 −3.22871
486486 0 0
487487 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
488488 0 0
489489 0 0
490490 0.390736 0.390736
491491 0.830830 0.830830 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
492492 0 0
493493 −1.08816 −1.08816
494494 0 0
495495 −3.22871 −3.22871
496496 0.634356 0.634356
497497 0 0
498498 0 0
499499 −1.30972 −1.30972 −0.654861 0.755750i 0.727273π-0.727273\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
500500 2.96714 2.96714
501501 0 0
502502 0 0
503503 0 0 1.00000 00
−1.00000 π\pi
504504 −0.715370 −0.715370
505505 0 0
506506 0.136307 0.136307
507507 0 0
508508 −1.54620 −1.54620
509509 0 0 1.00000 00
−1.00000 π\pi
510510 0 0
511511 0 0
512512 −1.00000 −1.00000
513513 0 0
514514 −0.236479 −0.236479
515515 −1.59435 −1.59435
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 −1.04815 −1.04815
521521 0 0 1.00000 00
−1.00000 π\pi
522522 −0.236479 −0.236479
523523 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
524524 1.76352 1.76352
525525 0 0
526526 0.372786 0.372786
527527 −1.08816 −1.08816
528528 0 0
529529 −0.918986 −0.918986
530530 0 0
531531 0 0
532532 0 0
533533 0.830830 0.830830
534534 0 0
535535 3.68251 3.68251
536536 0.546200 0.546200
537537 0 0
538538 0.372786 0.372786
539539 1.20362 1.20362
540540 0 0
541541 −1.30972 −1.30972 −0.654861 0.755750i 0.727273π-0.727273\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
542542 0.546200 0.546200
543543 0 0
544544 1.00000 1.00000
545545 0.546200 0.546200
546546 0 0
547547 0 0 1.00000 00
−1.00000 π\pi
548548 0.261571 0.261571
549549 0 0
550550 −1.28463 −1.28463
551551 0 0
552552 0 0
553553 0 0
554554 0.372786 0.372786
555555 0 0
556556 0 0
557557 0 0 1.00000 00
−1.00000 π\pi
558558 −0.236479 −0.236479
559559 0 0
560560 1.91899 1.91899
561561 0 0
562562 −0.569259 −0.569259
563563 0 0 1.00000 00
−1.00000 π\pi
564564 0 0
565565 0 0
566566 0.0810141 0.0810141
567567 −1.30972 −1.30972
568568 0 0
569569 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
570570 0 0
571571 −1.30972 −1.30972 −0.654861 0.755750i 0.727273π-0.727273\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
572572 −1.54620 −1.54620
573573 0 0
574574 0.309721 0.309721
575575 −0.763521 −0.763521
576576 −0.546200 −0.546200
577577 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
578578 −0.203616 −0.203616
579579 0 0
580580 1.46519 1.46519
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 −1.91899 −1.91899
586586 0 0
587587 −1.30972 −1.30972 −0.654861 0.755750i 0.727273π-0.727273\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 2.00000 2.00000 1.00000 00
1.00000 00
594594 0 0
595595 −3.29177 −3.29177
596596 0 0
597597 0 0
598598 0.0810141 0.0810141
599599 0 0 1.00000 00
−1.00000 π\pi
600600 0 0
601601 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
602602 0 0
603603 1.00000 1.00000
604604 0 0
605605 −3.51334 −3.51334
606606 0 0
607607 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 1.20362 1.20362
613613 0 0 1.00000 00
−1.00000 π\pi
614614 0 0
615615 0 0
616616 −1.20362 −1.20362
617617 0 0 1.00000 00
−1.00000 π\pi
618618 0 0
619619 0 0 1.00000 00
−1.00000 π\pi
620620 1.46519 1.46519
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 3.51334 3.51334
626626 0 0
627627 0 0
628628 −1.54620 −1.54620
629629 0 0
630630 −0.715370 −0.715370
631631 0.830830 0.830830 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
632632 0 0
633633 0 0
634634 0 0
635635 −3.22871 −3.22871
636636 0 0
637637 0.715370 0.715370
638638 −0.397877 −0.397877
639639 0 0
640640 −1.76352 −1.76352
641641 0 0 1.00000 00
−1.00000 π\pi
642642 0 0
643643 0 0 1.00000 00
−1.00000 π\pi
644644 −0.342585 −0.342585
645645 0 0
646646 0 0
647647 0 0 1.00000 00
−1.00000 π\pi
648648 0.546200 0.546200
649649 0 0
650650 −0.763521 −0.763521
651651 0 0
652652 0 0
653653 0 0 1.00000 00
−1.00000 π\pi
654654 0 0
655655 3.68251 3.68251
656656 0.634356 0.634356
657657 0 0
658658 0 0
659659 −1.30972 −1.30972 −0.654861 0.755750i 0.727273π-0.727273\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
660660 0 0
661661 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
662662 0.546200 0.546200
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 −0.236479 −0.236479
668668 0 0
669669 0 0
670670 0.546200 0.546200
671671 0 0
672672 0 0
673673 0 0 1.00000 00
−1.00000 π\pi
674674 0 0
675675 0 0
676676 −0.918986 −0.918986
677677 0 0 1.00000 00
−1.00000 π\pi
678678 0 0
679679 −2.20362 −2.20362
680680 1.37279 1.37279
681681 0 0
682682 −0.397877 −0.397877
683683 0.830830 0.830830 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
684684 0 0
685685 0.546200 0.546200
686686 −0.106106 −0.106106
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 0 0 1.00000 00
−1.00000 π\pi
692692 −1.54620 −1.54620
693693 −2.20362 −2.20362
694694 0 0
695695 0 0
696696 0 0
697697 −1.08816 −1.08816
698698 0 0
699699 0 0
700700 3.22871 3.22871
701701 0 0 1.00000 00
−1.00000 π\pi
702702 0 0
703703 0 0
704704 −0.918986 −0.918986
705705 0 0
706706 0.372786 0.372786
707707 0 0
708708 0 0
709709 0 0 1.00000 00
−1.00000 π\pi
710710 0 0
711711 0 0
712712 0 0
713713 −0.236479 −0.236479
714714 0 0
715715 −3.22871 −3.22871
716716 0 0
717717 0 0
718718 0 0
719719 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
720720 −1.46519 −1.46519
721721 −1.08816 −1.08816
722722 −0.284630 −0.284630
723723 0 0
724724 1.76352 1.76352
725725 2.22871 2.22871
726726 0 0
727727 0 0 1.00000 00
−1.00000 π\pi
728728 −0.715370 −0.715370
729729 1.00000 1.00000
730730 0 0
731731 0 0
732732 0 0
733733 0.830830 0.830830 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
734734 0 0
735735 0 0
736736 0.217321 0.217321
737737 1.68251 1.68251
738738 −0.236479 −0.236479
739739 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 1.00000 00
−1.00000 π\pi
744744 0 0
745745 0 0
746746 0 0
747747 0 0
748748 2.02509 2.02509
749749 2.51334 2.51334
750750 0 0
751751 0.830830 0.830830 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
752752 0 0
753753 0 0
754754 −0.236479 −0.236479
755755 0 0
756756 0 0
757757 0 0 1.00000 00
−1.00000 π\pi
758758 0.546200 0.546200
759759 0 0
760760 0 0
761761 0 0 1.00000 00
−1.00000 π\pi
762762 0 0
763763 0.372786 0.372786
764764 0 0
765765 2.51334 2.51334
766766 −0.478891 −0.478891
767767 0 0
768768 0 0
769769 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
770770 −1.20362 −1.20362
771771 0 0
772772 0 0
773773 0 0 1.00000 00
−1.00000 π\pi
774774 0 0
775775 2.22871 2.22871
776776 0.918986 0.918986
777777 0 0
778778 −0.478891 −0.478891
779779 0 0
780780 0 0
781781 0 0
782782 −0.106106 −0.106106
783783 0 0
784784 0.546200 0.546200
785785 −3.22871 −3.22871
786786 0 0
787787 −1.30972 −1.30972 −0.654861 0.755750i 0.727273π-0.727273\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
788788 −1.54620 −1.54620
789789 0 0
790790 0 0
791791 0 0
792792 0.918986 0.918986
793793 0 0
794794 0 0
795795 0 0
796796 −0.763521 −0.763521
797797 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
798798 0 0
799799 0 0
800800 −2.04815 −2.04815
801801 0 0
802802 0.372786 0.372786
803803 0 0
804804 0 0
805805 −0.715370 −0.715370
806806 −0.236479 −0.236479
807807 0 0
808808 0 0
809809 0 0 1.00000 00
−1.00000 π\pi
810810 0.546200 0.546200
811811 2.00000 2.00000 1.00000 00
1.00000 00
812812 1.00000 1.00000
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 0.0810141 0.0810141
819819 −1.30972 −1.30972
820820 1.46519 1.46519
821821 0 0 1.00000 00
−1.00000 π\pi
822822 0 0
823823 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
824824 0.453800 0.453800
825825 0 0
826826 0 0
827827 0 0 1.00000 00
−1.00000 π\pi
828828 0.261571 0.261571
829829 −1.30972 −1.30972 −0.654861 0.755750i 0.727273π-0.727273\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
830830 0 0
831831 0 0
832832 −0.546200 −0.546200
833833 −0.936936 −0.936936
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 −0.478891 −0.478891
839839 0 0 1.00000 00
−1.00000 π\pi
840840 0 0
841841 −0.309721 −0.309721
842842 0 0
843843 0 0
844844 0.261571 0.261571
845845 −1.91899 −1.91899
846846 0 0
847847 −2.39788 −2.39788
848848 0 0
849849 0 0
850850 1.00000 1.00000
851851 0 0
852852 0 0
853853 0 0 1.00000 00
−1.00000 π\pi
854854 0 0
855855 0 0
856856 −1.04815 −1.04815
857857 0 0 1.00000 00
−1.00000 π\pi
858858 0 0
859859 0.830830 0.830830 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 1.00000 00
−1.00000 π\pi
864864 0 0
865865 −3.22871 −3.22871
866866 0 0
867867 0 0
868868 1.00000 1.00000
869869 0 0
870870 0 0
871871 1.00000 1.00000
872872 −0.155465 −0.155465
873873 1.68251 1.68251
874874 0 0
875875 4.22871 4.22871
876876 0 0
877877 0 0 1.00000 00
−1.00000 π\pi
878878 −0.478891 −0.478891
879879 0 0
880880 −2.46519 −2.46519
881881 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
882882 −0.203616 −0.203616
883883 0 0 1.00000 00
−1.00000 π\pi
884884 1.20362 1.20362
885885 0 0
886886 0 0
887887 2.00000 2.00000 1.00000 00
1.00000 00
888888 0 0
889889 −2.20362 −2.20362
890890 0 0
891891 1.68251 1.68251
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 −1.20362 −1.20362
897897 0 0
898898 0 0
899899 0.690279 0.690279
900900 −2.46519 −2.46519
901901 0 0
902902 −0.397877 −0.397877
903903 0 0
904904 0 0
905905 3.68251 3.68251
906906 0 0
907907 2.00000 2.00000 1.00000 00
1.00000 00
908908 0 0
909909 0 0
910910 −0.715370 −0.715370
911911 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 0.261571 0.261571
917917 2.51334 2.51334
918918 0 0
919919 0 0 1.00000 00
−1.00000 π\pi
920920 0.298335 0.298335
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 0.546200 0.546200
927927 0.830830 0.830830
928928 −0.634356 −0.634356
929929 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
930930 0 0
931931 0 0
932932 0 0
933933 0 0
934934 0.372786 0.372786
935935 4.22871 4.22871
936936 0.546200 0.546200
937937 0 0 1.00000 00
−1.00000 π\pi
938938 0.372786 0.372786
939939 0 0
940940 0 0
941941 0.830830 0.830830 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
942942 0 0
943943 −0.236479 −0.236479
944944 0 0
945945 0 0
946946 0 0
947947 0 0 1.00000 00
−1.00000 π\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0.936936 0.936936
953953 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
954954 0 0
955955 0 0
956956 1.76352 1.76352
957957 0 0
958958 0 0
959959 0.372786 0.372786
960960 0 0
961961 −0.309721 −0.309721
962962 0 0
963963 −1.91899 −1.91899
964964 0 0
965965 0 0
966966 0 0
967967 0 0 1.00000 00
−1.00000 π\pi
968968 1.00000 1.00000
969969 0 0
970970 0.918986 0.918986
971971 2.00000 2.00000 1.00000 00
1.00000 00
972972 0 0
973973 0 0
974974 0.0810141 0.0810141
975975 0 0
976976 0 0
977977 0 0 1.00000 00
−1.00000 π\pi
978978 0 0
979979 0 0
980980 1.26157 1.26157
981981 −0.284630 −0.284630
982982 −0.236479 −0.236479
983983 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
984984 0 0
985985 −3.22871 −3.22871
986986 0.309721 0.309721
987987 0 0
988988 0 0
989989 0 0
990990 0.918986 0.918986
991991 0 0 1.00000 00
−1.00000 π\pi
992992 −0.634356 −0.634356
993993 0 0
994994 0 0
995995 −1.59435 −1.59435
996996 0 0
997997 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
998998 0.372786 0.372786
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 871.1.d.a.870.3 5
13.12 even 2 871.1.d.b.870.3 yes 5
67.66 odd 2 871.1.d.b.870.3 yes 5
871.870 odd 2 CM 871.1.d.a.870.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
871.1.d.a.870.3 5 1.1 even 1 trivial
871.1.d.a.870.3 5 871.870 odd 2 CM
871.1.d.b.870.3 yes 5 13.12 even 2
871.1.d.b.870.3 yes 5 67.66 odd 2