Properties

Label 875.2.a.e.1.2
Level $875$
Weight $2$
Character 875.1
Self dual yes
Analytic conductor $6.987$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [875,2,Mod(1,875)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(875, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("875.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 875 = 5^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 875.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.98691017686\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.1241125.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 7x^{4} - 2x^{3} + 11x^{2} + 7x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.218811\) of defining polynomial
Character \(\chi\) \(=\) 875.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.20648 q^{2} -2.49891 q^{3} +2.86854 q^{4} +5.51379 q^{6} +1.00000 q^{7} -1.91642 q^{8} +3.24455 q^{9} -2.20000 q^{11} -7.16823 q^{12} -5.51450 q^{13} -2.20648 q^{14} -1.50855 q^{16} +1.46051 q^{17} -7.15904 q^{18} +2.58741 q^{19} -2.49891 q^{21} +4.85426 q^{22} +8.52954 q^{23} +4.78897 q^{24} +12.1676 q^{26} -0.611121 q^{27} +2.86854 q^{28} +8.01302 q^{29} -5.09498 q^{31} +7.16141 q^{32} +5.49761 q^{33} -3.22259 q^{34} +9.30715 q^{36} -1.35264 q^{37} -5.70907 q^{38} +13.7802 q^{39} -3.94031 q^{41} +5.51379 q^{42} -8.29546 q^{43} -6.31080 q^{44} -18.8202 q^{46} +8.60911 q^{47} +3.76972 q^{48} +1.00000 q^{49} -3.64969 q^{51} -15.8186 q^{52} -4.88674 q^{53} +1.34842 q^{54} -1.91642 q^{56} -6.46571 q^{57} -17.6806 q^{58} -14.7225 q^{59} +2.64108 q^{61} +11.2420 q^{62} +3.24455 q^{63} -12.7844 q^{64} -12.1304 q^{66} +8.63974 q^{67} +4.18954 q^{68} -21.3145 q^{69} +0.518346 q^{71} -6.21794 q^{72} -11.8032 q^{73} +2.98458 q^{74} +7.42211 q^{76} -2.20000 q^{77} -30.4058 q^{78} +4.53964 q^{79} -8.20653 q^{81} +8.69420 q^{82} +11.3883 q^{83} -7.16823 q^{84} +18.3037 q^{86} -20.0238 q^{87} +4.21613 q^{88} +7.74549 q^{89} -5.51450 q^{91} +24.4673 q^{92} +12.7319 q^{93} -18.9958 q^{94} -17.8957 q^{96} -9.25710 q^{97} -2.20648 q^{98} -7.13803 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{2} - 5 q^{3} + 4 q^{4} - 2 q^{6} + 6 q^{7} - 12 q^{8} + 7 q^{9} + q^{11} - 11 q^{12} - 22 q^{13} - 2 q^{14} + 8 q^{16} - 4 q^{17} + 14 q^{18} - 17 q^{19} - 5 q^{21} - 9 q^{22} - 3 q^{23} + 7 q^{24}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.20648 −1.56022 −0.780108 0.625645i \(-0.784836\pi\)
−0.780108 + 0.625645i \(0.784836\pi\)
\(3\) −2.49891 −1.44275 −0.721373 0.692546i \(-0.756489\pi\)
−0.721373 + 0.692546i \(0.756489\pi\)
\(4\) 2.86854 1.43427
\(5\) 0 0
\(6\) 5.51379 2.25100
\(7\) 1.00000 0.377964
\(8\) −1.91642 −0.677557
\(9\) 3.24455 1.08152
\(10\) 0 0
\(11\) −2.20000 −0.663326 −0.331663 0.943398i \(-0.607610\pi\)
−0.331663 + 0.943398i \(0.607610\pi\)
\(12\) −7.16823 −2.06929
\(13\) −5.51450 −1.52945 −0.764724 0.644359i \(-0.777124\pi\)
−0.764724 + 0.644359i \(0.777124\pi\)
\(14\) −2.20648 −0.589706
\(15\) 0 0
\(16\) −1.50855 −0.377136
\(17\) 1.46051 0.354226 0.177113 0.984191i \(-0.443324\pi\)
0.177113 + 0.984191i \(0.443324\pi\)
\(18\) −7.15904 −1.68740
\(19\) 2.58741 0.593593 0.296797 0.954941i \(-0.404082\pi\)
0.296797 + 0.954941i \(0.404082\pi\)
\(20\) 0 0
\(21\) −2.49891 −0.545307
\(22\) 4.85426 1.03493
\(23\) 8.52954 1.77853 0.889265 0.457391i \(-0.151216\pi\)
0.889265 + 0.457391i \(0.151216\pi\)
\(24\) 4.78897 0.977544
\(25\) 0 0
\(26\) 12.1676 2.38627
\(27\) −0.611121 −0.117610
\(28\) 2.86854 0.542104
\(29\) 8.01302 1.48798 0.743990 0.668190i \(-0.232931\pi\)
0.743990 + 0.668190i \(0.232931\pi\)
\(30\) 0 0
\(31\) −5.09498 −0.915085 −0.457542 0.889188i \(-0.651270\pi\)
−0.457542 + 0.889188i \(0.651270\pi\)
\(32\) 7.16141 1.26597
\(33\) 5.49761 0.957011
\(34\) −3.22259 −0.552669
\(35\) 0 0
\(36\) 9.30715 1.55119
\(37\) −1.35264 −0.222373 −0.111187 0.993800i \(-0.535465\pi\)
−0.111187 + 0.993800i \(0.535465\pi\)
\(38\) −5.70907 −0.926133
\(39\) 13.7802 2.20660
\(40\) 0 0
\(41\) −3.94031 −0.615373 −0.307686 0.951488i \(-0.599555\pi\)
−0.307686 + 0.951488i \(0.599555\pi\)
\(42\) 5.51379 0.850796
\(43\) −8.29546 −1.26505 −0.632523 0.774542i \(-0.717980\pi\)
−0.632523 + 0.774542i \(0.717980\pi\)
\(44\) −6.31080 −0.951389
\(45\) 0 0
\(46\) −18.8202 −2.77489
\(47\) 8.60911 1.25577 0.627884 0.778307i \(-0.283921\pi\)
0.627884 + 0.778307i \(0.283921\pi\)
\(48\) 3.76972 0.544112
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −3.64969 −0.511059
\(52\) −15.8186 −2.19364
\(53\) −4.88674 −0.671245 −0.335622 0.941997i \(-0.608947\pi\)
−0.335622 + 0.941997i \(0.608947\pi\)
\(54\) 1.34842 0.183497
\(55\) 0 0
\(56\) −1.91642 −0.256093
\(57\) −6.46571 −0.856405
\(58\) −17.6806 −2.32157
\(59\) −14.7225 −1.91671 −0.958355 0.285579i \(-0.907814\pi\)
−0.958355 + 0.285579i \(0.907814\pi\)
\(60\) 0 0
\(61\) 2.64108 0.338156 0.169078 0.985603i \(-0.445921\pi\)
0.169078 + 0.985603i \(0.445921\pi\)
\(62\) 11.2420 1.42773
\(63\) 3.24455 0.408775
\(64\) −12.7844 −1.59805
\(65\) 0 0
\(66\) −12.1304 −1.49314
\(67\) 8.63974 1.05551 0.527756 0.849396i \(-0.323033\pi\)
0.527756 + 0.849396i \(0.323033\pi\)
\(68\) 4.18954 0.508057
\(69\) −21.3145 −2.56597
\(70\) 0 0
\(71\) 0.518346 0.0615164 0.0307582 0.999527i \(-0.490208\pi\)
0.0307582 + 0.999527i \(0.490208\pi\)
\(72\) −6.21794 −0.732791
\(73\) −11.8032 −1.38146 −0.690730 0.723113i \(-0.742711\pi\)
−0.690730 + 0.723113i \(0.742711\pi\)
\(74\) 2.98458 0.346950
\(75\) 0 0
\(76\) 7.42211 0.851374
\(77\) −2.20000 −0.250714
\(78\) −30.4058 −3.44278
\(79\) 4.53964 0.510750 0.255375 0.966842i \(-0.417801\pi\)
0.255375 + 0.966842i \(0.417801\pi\)
\(80\) 0 0
\(81\) −8.20653 −0.911836
\(82\) 8.69420 0.960114
\(83\) 11.3883 1.25003 0.625015 0.780612i \(-0.285093\pi\)
0.625015 + 0.780612i \(0.285093\pi\)
\(84\) −7.16823 −0.782118
\(85\) 0 0
\(86\) 18.3037 1.97374
\(87\) −20.0238 −2.14678
\(88\) 4.21613 0.449441
\(89\) 7.74549 0.821021 0.410510 0.911856i \(-0.365351\pi\)
0.410510 + 0.911856i \(0.365351\pi\)
\(90\) 0 0
\(91\) −5.51450 −0.578077
\(92\) 24.4673 2.55090
\(93\) 12.7319 1.32024
\(94\) −18.9958 −1.95927
\(95\) 0 0
\(96\) −17.8957 −1.82648
\(97\) −9.25710 −0.939916 −0.469958 0.882689i \(-0.655731\pi\)
−0.469958 + 0.882689i \(0.655731\pi\)
\(98\) −2.20648 −0.222888
\(99\) −7.13803 −0.717399
\(100\) 0 0
\(101\) −8.29649 −0.825532 −0.412766 0.910837i \(-0.635437\pi\)
−0.412766 + 0.910837i \(0.635437\pi\)
\(102\) 8.05296 0.797362
\(103\) −6.23818 −0.614666 −0.307333 0.951602i \(-0.599437\pi\)
−0.307333 + 0.951602i \(0.599437\pi\)
\(104\) 10.5681 1.03629
\(105\) 0 0
\(106\) 10.7825 1.04729
\(107\) −18.9353 −1.83054 −0.915271 0.402838i \(-0.868024\pi\)
−0.915271 + 0.402838i \(0.868024\pi\)
\(108\) −1.75303 −0.168685
\(109\) −0.278409 −0.0266668 −0.0133334 0.999911i \(-0.504244\pi\)
−0.0133334 + 0.999911i \(0.504244\pi\)
\(110\) 0 0
\(111\) 3.38014 0.320829
\(112\) −1.50855 −0.142544
\(113\) −11.6014 −1.09137 −0.545684 0.837991i \(-0.683730\pi\)
−0.545684 + 0.837991i \(0.683730\pi\)
\(114\) 14.2665 1.33618
\(115\) 0 0
\(116\) 22.9857 2.13417
\(117\) −17.8921 −1.65413
\(118\) 32.4849 2.99048
\(119\) 1.46051 0.133885
\(120\) 0 0
\(121\) −6.15999 −0.559999
\(122\) −5.82748 −0.527595
\(123\) 9.84648 0.887827
\(124\) −14.6152 −1.31248
\(125\) 0 0
\(126\) −7.15904 −0.637778
\(127\) −1.65648 −0.146988 −0.0734942 0.997296i \(-0.523415\pi\)
−0.0734942 + 0.997296i \(0.523415\pi\)
\(128\) 13.8857 1.22733
\(129\) 20.7296 1.82514
\(130\) 0 0
\(131\) 7.06316 0.617112 0.308556 0.951206i \(-0.400154\pi\)
0.308556 + 0.951206i \(0.400154\pi\)
\(132\) 15.7701 1.37261
\(133\) 2.58741 0.224357
\(134\) −19.0634 −1.64683
\(135\) 0 0
\(136\) −2.79896 −0.240009
\(137\) −12.7607 −1.09022 −0.545112 0.838363i \(-0.683513\pi\)
−0.545112 + 0.838363i \(0.683513\pi\)
\(138\) 47.0301 4.00347
\(139\) −16.3872 −1.38994 −0.694970 0.719038i \(-0.744583\pi\)
−0.694970 + 0.719038i \(0.744583\pi\)
\(140\) 0 0
\(141\) −21.5134 −1.81176
\(142\) −1.14372 −0.0959788
\(143\) 12.1319 1.01452
\(144\) −4.89456 −0.407880
\(145\) 0 0
\(146\) 26.0435 2.15538
\(147\) −2.49891 −0.206107
\(148\) −3.88012 −0.318944
\(149\) −11.8198 −0.968318 −0.484159 0.874980i \(-0.660874\pi\)
−0.484159 + 0.874980i \(0.660874\pi\)
\(150\) 0 0
\(151\) 23.9836 1.95175 0.975877 0.218321i \(-0.0700581\pi\)
0.975877 + 0.218321i \(0.0700581\pi\)
\(152\) −4.95857 −0.402193
\(153\) 4.73871 0.383102
\(154\) 4.85426 0.391167
\(155\) 0 0
\(156\) 39.5292 3.16487
\(157\) −14.5670 −1.16257 −0.581286 0.813699i \(-0.697450\pi\)
−0.581286 + 0.813699i \(0.697450\pi\)
\(158\) −10.0166 −0.796880
\(159\) 12.2115 0.968436
\(160\) 0 0
\(161\) 8.52954 0.672222
\(162\) 18.1075 1.42266
\(163\) 2.50219 0.195986 0.0979932 0.995187i \(-0.468758\pi\)
0.0979932 + 0.995187i \(0.468758\pi\)
\(164\) −11.3029 −0.882612
\(165\) 0 0
\(166\) −25.1281 −1.95032
\(167\) −3.92813 −0.303968 −0.151984 0.988383i \(-0.548566\pi\)
−0.151984 + 0.988383i \(0.548566\pi\)
\(168\) 4.78897 0.369477
\(169\) 17.4097 1.33921
\(170\) 0 0
\(171\) 8.39500 0.641982
\(172\) −23.7959 −1.81442
\(173\) −21.7981 −1.65728 −0.828638 0.559784i \(-0.810884\pi\)
−0.828638 + 0.559784i \(0.810884\pi\)
\(174\) 44.1821 3.34944
\(175\) 0 0
\(176\) 3.31880 0.250164
\(177\) 36.7903 2.76533
\(178\) −17.0903 −1.28097
\(179\) −19.3974 −1.44983 −0.724914 0.688840i \(-0.758120\pi\)
−0.724914 + 0.688840i \(0.758120\pi\)
\(180\) 0 0
\(181\) −24.0082 −1.78451 −0.892257 0.451527i \(-0.850879\pi\)
−0.892257 + 0.451527i \(0.850879\pi\)
\(182\) 12.1676 0.901924
\(183\) −6.59982 −0.487873
\(184\) −16.3462 −1.20506
\(185\) 0 0
\(186\) −28.0926 −2.05985
\(187\) −3.21313 −0.234967
\(188\) 24.6956 1.80111
\(189\) −0.611121 −0.0444525
\(190\) 0 0
\(191\) 27.3408 1.97831 0.989154 0.146882i \(-0.0469237\pi\)
0.989154 + 0.146882i \(0.0469237\pi\)
\(192\) 31.9471 2.30558
\(193\) 3.42208 0.246326 0.123163 0.992386i \(-0.460696\pi\)
0.123163 + 0.992386i \(0.460696\pi\)
\(194\) 20.4256 1.46647
\(195\) 0 0
\(196\) 2.86854 0.204896
\(197\) 3.95530 0.281803 0.140902 0.990024i \(-0.455000\pi\)
0.140902 + 0.990024i \(0.455000\pi\)
\(198\) 15.7499 1.11930
\(199\) 0.587532 0.0416490 0.0208245 0.999783i \(-0.493371\pi\)
0.0208245 + 0.999783i \(0.493371\pi\)
\(200\) 0 0
\(201\) −21.5899 −1.52284
\(202\) 18.3060 1.28801
\(203\) 8.01302 0.562404
\(204\) −10.4693 −0.732997
\(205\) 0 0
\(206\) 13.7644 0.959011
\(207\) 27.6745 1.92351
\(208\) 8.31887 0.576810
\(209\) −5.69232 −0.393746
\(210\) 0 0
\(211\) 12.7869 0.880290 0.440145 0.897927i \(-0.354927\pi\)
0.440145 + 0.897927i \(0.354927\pi\)
\(212\) −14.0178 −0.962747
\(213\) −1.29530 −0.0887526
\(214\) 41.7803 2.85604
\(215\) 0 0
\(216\) 1.17117 0.0796877
\(217\) −5.09498 −0.345870
\(218\) 0.614303 0.0416059
\(219\) 29.4952 1.99310
\(220\) 0 0
\(221\) −8.05399 −0.541770
\(222\) −7.45820 −0.500562
\(223\) −14.2942 −0.957208 −0.478604 0.878031i \(-0.658857\pi\)
−0.478604 + 0.878031i \(0.658857\pi\)
\(224\) 7.16141 0.478492
\(225\) 0 0
\(226\) 25.5982 1.70277
\(227\) 4.20386 0.279020 0.139510 0.990221i \(-0.455447\pi\)
0.139510 + 0.990221i \(0.455447\pi\)
\(228\) −18.5472 −1.22832
\(229\) −1.47983 −0.0977900 −0.0488950 0.998804i \(-0.515570\pi\)
−0.0488950 + 0.998804i \(0.515570\pi\)
\(230\) 0 0
\(231\) 5.49761 0.361716
\(232\) −15.3563 −1.00819
\(233\) −5.38055 −0.352491 −0.176246 0.984346i \(-0.556395\pi\)
−0.176246 + 0.984346i \(0.556395\pi\)
\(234\) 39.4785 2.58079
\(235\) 0 0
\(236\) −42.2322 −2.74908
\(237\) −11.3442 −0.736883
\(238\) −3.22259 −0.208889
\(239\) 13.8530 0.896074 0.448037 0.894015i \(-0.352123\pi\)
0.448037 + 0.894015i \(0.352123\pi\)
\(240\) 0 0
\(241\) −13.7783 −0.887538 −0.443769 0.896141i \(-0.646359\pi\)
−0.443769 + 0.896141i \(0.646359\pi\)
\(242\) 13.5919 0.873719
\(243\) 22.3407 1.43316
\(244\) 7.57605 0.485007
\(245\) 0 0
\(246\) −21.7260 −1.38520
\(247\) −14.2683 −0.907869
\(248\) 9.76412 0.620022
\(249\) −28.4584 −1.80348
\(250\) 0 0
\(251\) 6.65792 0.420244 0.210122 0.977675i \(-0.432614\pi\)
0.210122 + 0.977675i \(0.432614\pi\)
\(252\) 9.30715 0.586295
\(253\) −18.7650 −1.17975
\(254\) 3.65498 0.229334
\(255\) 0 0
\(256\) −5.06963 −0.316852
\(257\) 20.8599 1.30121 0.650603 0.759418i \(-0.274516\pi\)
0.650603 + 0.759418i \(0.274516\pi\)
\(258\) −45.7394 −2.84761
\(259\) −1.35264 −0.0840493
\(260\) 0 0
\(261\) 25.9987 1.60928
\(262\) −15.5847 −0.962827
\(263\) −5.32090 −0.328101 −0.164050 0.986452i \(-0.552456\pi\)
−0.164050 + 0.986452i \(0.552456\pi\)
\(264\) −10.5357 −0.648430
\(265\) 0 0
\(266\) −5.70907 −0.350045
\(267\) −19.3553 −1.18452
\(268\) 24.7835 1.51389
\(269\) −12.9333 −0.788558 −0.394279 0.918991i \(-0.629006\pi\)
−0.394279 + 0.918991i \(0.629006\pi\)
\(270\) 0 0
\(271\) −25.6222 −1.55643 −0.778217 0.627995i \(-0.783876\pi\)
−0.778217 + 0.627995i \(0.783876\pi\)
\(272\) −2.20325 −0.133592
\(273\) 13.7802 0.834018
\(274\) 28.1563 1.70098
\(275\) 0 0
\(276\) −61.1417 −3.68030
\(277\) −0.458679 −0.0275593 −0.0137797 0.999905i \(-0.504386\pi\)
−0.0137797 + 0.999905i \(0.504386\pi\)
\(278\) 36.1579 2.16861
\(279\) −16.5309 −0.989681
\(280\) 0 0
\(281\) −3.41984 −0.204011 −0.102005 0.994784i \(-0.532526\pi\)
−0.102005 + 0.994784i \(0.532526\pi\)
\(282\) 47.4688 2.82673
\(283\) 1.57036 0.0933484 0.0466742 0.998910i \(-0.485138\pi\)
0.0466742 + 0.998910i \(0.485138\pi\)
\(284\) 1.48690 0.0882312
\(285\) 0 0
\(286\) −26.7688 −1.58287
\(287\) −3.94031 −0.232589
\(288\) 23.2356 1.36917
\(289\) −14.8669 −0.874524
\(290\) 0 0
\(291\) 23.1327 1.35606
\(292\) −33.8580 −1.98139
\(293\) −5.05836 −0.295513 −0.147756 0.989024i \(-0.547205\pi\)
−0.147756 + 0.989024i \(0.547205\pi\)
\(294\) 5.51379 0.321571
\(295\) 0 0
\(296\) 2.59224 0.150671
\(297\) 1.34447 0.0780139
\(298\) 26.0802 1.51079
\(299\) −47.0361 −2.72017
\(300\) 0 0
\(301\) −8.29546 −0.478142
\(302\) −52.9192 −3.04516
\(303\) 20.7322 1.19103
\(304\) −3.90323 −0.223866
\(305\) 0 0
\(306\) −10.4559 −0.597722
\(307\) −6.48905 −0.370350 −0.185175 0.982706i \(-0.559285\pi\)
−0.185175 + 0.982706i \(0.559285\pi\)
\(308\) −6.31080 −0.359591
\(309\) 15.5886 0.886807
\(310\) 0 0
\(311\) 6.87065 0.389599 0.194799 0.980843i \(-0.437594\pi\)
0.194799 + 0.980843i \(0.437594\pi\)
\(312\) −26.4088 −1.49510
\(313\) 7.45113 0.421163 0.210581 0.977576i \(-0.432464\pi\)
0.210581 + 0.977576i \(0.432464\pi\)
\(314\) 32.1418 1.81386
\(315\) 0 0
\(316\) 13.0222 0.732554
\(317\) 6.89000 0.386981 0.193490 0.981102i \(-0.438019\pi\)
0.193490 + 0.981102i \(0.438019\pi\)
\(318\) −26.9444 −1.51097
\(319\) −17.6287 −0.987016
\(320\) 0 0
\(321\) 47.3176 2.64101
\(322\) −18.8202 −1.04881
\(323\) 3.77895 0.210266
\(324\) −23.5408 −1.30782
\(325\) 0 0
\(326\) −5.52102 −0.305781
\(327\) 0.695719 0.0384734
\(328\) 7.55129 0.416950
\(329\) 8.60911 0.474636
\(330\) 0 0
\(331\) −18.6329 −1.02416 −0.512078 0.858939i \(-0.671124\pi\)
−0.512078 + 0.858939i \(0.671124\pi\)
\(332\) 32.6679 1.79288
\(333\) −4.38873 −0.240501
\(334\) 8.66733 0.474255
\(335\) 0 0
\(336\) 3.76972 0.205655
\(337\) −4.77614 −0.260173 −0.130086 0.991503i \(-0.541525\pi\)
−0.130086 + 0.991503i \(0.541525\pi\)
\(338\) −38.4141 −2.08945
\(339\) 28.9909 1.57457
\(340\) 0 0
\(341\) 11.2090 0.606999
\(342\) −18.5234 −1.00163
\(343\) 1.00000 0.0539949
\(344\) 15.8976 0.857141
\(345\) 0 0
\(346\) 48.0970 2.58571
\(347\) 27.0162 1.45030 0.725152 0.688589i \(-0.241770\pi\)
0.725152 + 0.688589i \(0.241770\pi\)
\(348\) −57.4392 −3.07907
\(349\) 15.1923 0.813227 0.406613 0.913600i \(-0.366710\pi\)
0.406613 + 0.913600i \(0.366710\pi\)
\(350\) 0 0
\(351\) 3.37003 0.179879
\(352\) −15.7551 −0.839751
\(353\) 17.0965 0.909956 0.454978 0.890503i \(-0.349647\pi\)
0.454978 + 0.890503i \(0.349647\pi\)
\(354\) −81.1770 −4.31451
\(355\) 0 0
\(356\) 22.2183 1.17757
\(357\) −3.64969 −0.193162
\(358\) 42.7999 2.26204
\(359\) 19.8353 1.04687 0.523434 0.852066i \(-0.324651\pi\)
0.523434 + 0.852066i \(0.324651\pi\)
\(360\) 0 0
\(361\) −12.3053 −0.647647
\(362\) 52.9735 2.78423
\(363\) 15.3933 0.807937
\(364\) −15.8186 −0.829119
\(365\) 0 0
\(366\) 14.5624 0.761187
\(367\) 5.79323 0.302404 0.151202 0.988503i \(-0.451686\pi\)
0.151202 + 0.988503i \(0.451686\pi\)
\(368\) −12.8672 −0.670749
\(369\) −12.7845 −0.665537
\(370\) 0 0
\(371\) −4.88674 −0.253707
\(372\) 36.5220 1.89358
\(373\) −20.0950 −1.04048 −0.520239 0.854021i \(-0.674157\pi\)
−0.520239 + 0.854021i \(0.674157\pi\)
\(374\) 7.08970 0.366600
\(375\) 0 0
\(376\) −16.4987 −0.850855
\(377\) −44.1878 −2.27579
\(378\) 1.34842 0.0693555
\(379\) 20.6237 1.05937 0.529684 0.848195i \(-0.322310\pi\)
0.529684 + 0.848195i \(0.322310\pi\)
\(380\) 0 0
\(381\) 4.13939 0.212067
\(382\) −60.3268 −3.08659
\(383\) −33.1106 −1.69187 −0.845936 0.533285i \(-0.820957\pi\)
−0.845936 + 0.533285i \(0.820957\pi\)
\(384\) −34.6991 −1.77073
\(385\) 0 0
\(386\) −7.55073 −0.384322
\(387\) −26.9151 −1.36817
\(388\) −26.5544 −1.34810
\(389\) 1.19542 0.0606101 0.0303050 0.999541i \(-0.490352\pi\)
0.0303050 + 0.999541i \(0.490352\pi\)
\(390\) 0 0
\(391\) 12.4575 0.630002
\(392\) −1.91642 −0.0967939
\(393\) −17.6502 −0.890336
\(394\) −8.72727 −0.439674
\(395\) 0 0
\(396\) −20.4757 −1.02895
\(397\) 21.0786 1.05790 0.528952 0.848651i \(-0.322585\pi\)
0.528952 + 0.848651i \(0.322585\pi\)
\(398\) −1.29638 −0.0649814
\(399\) −6.46571 −0.323691
\(400\) 0 0
\(401\) −12.4069 −0.619573 −0.309786 0.950806i \(-0.600258\pi\)
−0.309786 + 0.950806i \(0.600258\pi\)
\(402\) 47.6377 2.37595
\(403\) 28.0962 1.39957
\(404\) −23.7988 −1.18404
\(405\) 0 0
\(406\) −17.6806 −0.877471
\(407\) 2.97582 0.147506
\(408\) 6.99434 0.346272
\(409\) −0.519751 −0.0257001 −0.0128500 0.999917i \(-0.504090\pi\)
−0.0128500 + 0.999917i \(0.504090\pi\)
\(410\) 0 0
\(411\) 31.8879 1.57292
\(412\) −17.8945 −0.881598
\(413\) −14.7225 −0.724448
\(414\) −61.0633 −3.00110
\(415\) 0 0
\(416\) −39.4916 −1.93624
\(417\) 40.9501 2.00533
\(418\) 12.5600 0.614328
\(419\) −8.52079 −0.416268 −0.208134 0.978100i \(-0.566739\pi\)
−0.208134 + 0.978100i \(0.566739\pi\)
\(420\) 0 0
\(421\) 31.2241 1.52177 0.760886 0.648886i \(-0.224765\pi\)
0.760886 + 0.648886i \(0.224765\pi\)
\(422\) −28.2141 −1.37344
\(423\) 27.9327 1.35814
\(424\) 9.36505 0.454807
\(425\) 0 0
\(426\) 2.85805 0.138473
\(427\) 2.64108 0.127811
\(428\) −54.3167 −2.62550
\(429\) −30.3166 −1.46370
\(430\) 0 0
\(431\) −26.8792 −1.29472 −0.647362 0.762182i \(-0.724128\pi\)
−0.647362 + 0.762182i \(0.724128\pi\)
\(432\) 0.921904 0.0443551
\(433\) 9.60392 0.461535 0.230767 0.973009i \(-0.425876\pi\)
0.230767 + 0.973009i \(0.425876\pi\)
\(434\) 11.2420 0.539631
\(435\) 0 0
\(436\) −0.798628 −0.0382474
\(437\) 22.0694 1.05572
\(438\) −65.0804 −3.10966
\(439\) −5.50040 −0.262520 −0.131260 0.991348i \(-0.541902\pi\)
−0.131260 + 0.991348i \(0.541902\pi\)
\(440\) 0 0
\(441\) 3.24455 0.154503
\(442\) 17.7710 0.845278
\(443\) −24.6319 −1.17029 −0.585147 0.810927i \(-0.698963\pi\)
−0.585147 + 0.810927i \(0.698963\pi\)
\(444\) 9.69607 0.460155
\(445\) 0 0
\(446\) 31.5397 1.49345
\(447\) 29.5367 1.39704
\(448\) −12.7844 −0.604007
\(449\) −9.58488 −0.452339 −0.226169 0.974088i \(-0.572620\pi\)
−0.226169 + 0.974088i \(0.572620\pi\)
\(450\) 0 0
\(451\) 8.66869 0.408193
\(452\) −33.2791 −1.56532
\(453\) −59.9328 −2.81589
\(454\) −9.27572 −0.435331
\(455\) 0 0
\(456\) 12.3910 0.580263
\(457\) 34.0352 1.59210 0.796049 0.605232i \(-0.206920\pi\)
0.796049 + 0.605232i \(0.206920\pi\)
\(458\) 3.26521 0.152573
\(459\) −0.892549 −0.0416606
\(460\) 0 0
\(461\) −3.56421 −0.166002 −0.0830009 0.996549i \(-0.526450\pi\)
−0.0830009 + 0.996549i \(0.526450\pi\)
\(462\) −12.1304 −0.564355
\(463\) 0.987927 0.0459129 0.0229564 0.999736i \(-0.492692\pi\)
0.0229564 + 0.999736i \(0.492692\pi\)
\(464\) −12.0880 −0.561172
\(465\) 0 0
\(466\) 11.8721 0.549962
\(467\) −6.28063 −0.290633 −0.145317 0.989385i \(-0.546420\pi\)
−0.145317 + 0.989385i \(0.546420\pi\)
\(468\) −51.3243 −2.37246
\(469\) 8.63974 0.398946
\(470\) 0 0
\(471\) 36.4016 1.67730
\(472\) 28.2146 1.29868
\(473\) 18.2500 0.839137
\(474\) 25.0306 1.14970
\(475\) 0 0
\(476\) 4.18954 0.192027
\(477\) −15.8553 −0.725963
\(478\) −30.5662 −1.39807
\(479\) −4.84962 −0.221585 −0.110792 0.993844i \(-0.535339\pi\)
−0.110792 + 0.993844i \(0.535339\pi\)
\(480\) 0 0
\(481\) 7.45916 0.340108
\(482\) 30.4015 1.38475
\(483\) −21.3145 −0.969845
\(484\) −17.6702 −0.803190
\(485\) 0 0
\(486\) −49.2944 −2.23604
\(487\) −5.15932 −0.233791 −0.116896 0.993144i \(-0.537294\pi\)
−0.116896 + 0.993144i \(0.537294\pi\)
\(488\) −5.06142 −0.229120
\(489\) −6.25274 −0.282759
\(490\) 0 0
\(491\) 30.7290 1.38678 0.693391 0.720562i \(-0.256116\pi\)
0.693391 + 0.720562i \(0.256116\pi\)
\(492\) 28.2451 1.27339
\(493\) 11.7031 0.527082
\(494\) 31.4827 1.41647
\(495\) 0 0
\(496\) 7.68600 0.345112
\(497\) 0.518346 0.0232510
\(498\) 62.7928 2.81381
\(499\) −34.2964 −1.53532 −0.767659 0.640859i \(-0.778578\pi\)
−0.767659 + 0.640859i \(0.778578\pi\)
\(500\) 0 0
\(501\) 9.81605 0.438549
\(502\) −14.6906 −0.655672
\(503\) 19.4215 0.865960 0.432980 0.901404i \(-0.357462\pi\)
0.432980 + 0.901404i \(0.357462\pi\)
\(504\) −6.21794 −0.276969
\(505\) 0 0
\(506\) 41.4046 1.84066
\(507\) −43.5053 −1.93214
\(508\) −4.75167 −0.210821
\(509\) −3.66252 −0.162338 −0.0811691 0.996700i \(-0.525865\pi\)
−0.0811691 + 0.996700i \(0.525865\pi\)
\(510\) 0 0
\(511\) −11.8032 −0.522143
\(512\) −16.5853 −0.732975
\(513\) −1.58122 −0.0698127
\(514\) −46.0269 −2.03016
\(515\) 0 0
\(516\) 59.4638 2.61775
\(517\) −18.9401 −0.832983
\(518\) 2.98458 0.131135
\(519\) 54.4714 2.39103
\(520\) 0 0
\(521\) 5.74690 0.251776 0.125888 0.992044i \(-0.459822\pi\)
0.125888 + 0.992044i \(0.459822\pi\)
\(522\) −57.3655 −2.51082
\(523\) −23.5769 −1.03095 −0.515473 0.856906i \(-0.672384\pi\)
−0.515473 + 0.856906i \(0.672384\pi\)
\(524\) 20.2610 0.885106
\(525\) 0 0
\(526\) 11.7405 0.511908
\(527\) −7.44127 −0.324147
\(528\) −8.29340 −0.360924
\(529\) 49.7530 2.16317
\(530\) 0 0
\(531\) −47.7681 −2.07296
\(532\) 7.42211 0.321789
\(533\) 21.7288 0.941180
\(534\) 42.7070 1.84811
\(535\) 0 0
\(536\) −16.5574 −0.715170
\(537\) 48.4723 2.09173
\(538\) 28.5371 1.23032
\(539\) −2.20000 −0.0947608
\(540\) 0 0
\(541\) −17.6997 −0.760969 −0.380484 0.924787i \(-0.624243\pi\)
−0.380484 + 0.924787i \(0.624243\pi\)
\(542\) 56.5347 2.42837
\(543\) 59.9943 2.57460
\(544\) 10.4593 0.448440
\(545\) 0 0
\(546\) −30.4058 −1.30125
\(547\) −10.7570 −0.459934 −0.229967 0.973198i \(-0.573862\pi\)
−0.229967 + 0.973198i \(0.573862\pi\)
\(548\) −36.6047 −1.56368
\(549\) 8.56913 0.365721
\(550\) 0 0
\(551\) 20.7330 0.883255
\(552\) 40.8477 1.73859
\(553\) 4.53964 0.193045
\(554\) 1.01206 0.0429985
\(555\) 0 0
\(556\) −47.0073 −1.99355
\(557\) −11.9343 −0.505672 −0.252836 0.967509i \(-0.581363\pi\)
−0.252836 + 0.967509i \(0.581363\pi\)
\(558\) 36.4751 1.54412
\(559\) 45.7453 1.93482
\(560\) 0 0
\(561\) 8.02933 0.338998
\(562\) 7.54581 0.318301
\(563\) −0.997184 −0.0420263 −0.0210132 0.999779i \(-0.506689\pi\)
−0.0210132 + 0.999779i \(0.506689\pi\)
\(564\) −61.7121 −2.59855
\(565\) 0 0
\(566\) −3.46497 −0.145644
\(567\) −8.20653 −0.344642
\(568\) −0.993370 −0.0416809
\(569\) −4.23527 −0.177552 −0.0887758 0.996052i \(-0.528295\pi\)
−0.0887758 + 0.996052i \(0.528295\pi\)
\(570\) 0 0
\(571\) −7.62526 −0.319107 −0.159554 0.987189i \(-0.551006\pi\)
−0.159554 + 0.987189i \(0.551006\pi\)
\(572\) 34.8009 1.45510
\(573\) −68.3221 −2.85420
\(574\) 8.69420 0.362889
\(575\) 0 0
\(576\) −41.4797 −1.72832
\(577\) −14.0812 −0.586208 −0.293104 0.956081i \(-0.594688\pi\)
−0.293104 + 0.956081i \(0.594688\pi\)
\(578\) 32.8035 1.36445
\(579\) −8.55146 −0.355387
\(580\) 0 0
\(581\) 11.3883 0.472467
\(582\) −51.0417 −2.11575
\(583\) 10.7508 0.445254
\(584\) 22.6199 0.936019
\(585\) 0 0
\(586\) 11.1612 0.461064
\(587\) 13.0536 0.538778 0.269389 0.963031i \(-0.413178\pi\)
0.269389 + 0.963031i \(0.413178\pi\)
\(588\) −7.16823 −0.295613
\(589\) −13.1828 −0.543188
\(590\) 0 0
\(591\) −9.88393 −0.406571
\(592\) 2.04053 0.0838651
\(593\) −13.9564 −0.573119 −0.286559 0.958062i \(-0.592512\pi\)
−0.286559 + 0.958062i \(0.592512\pi\)
\(594\) −2.96654 −0.121719
\(595\) 0 0
\(596\) −33.9057 −1.38883
\(597\) −1.46819 −0.0600890
\(598\) 103.784 4.24405
\(599\) 23.9628 0.979095 0.489548 0.871977i \(-0.337162\pi\)
0.489548 + 0.871977i \(0.337162\pi\)
\(600\) 0 0
\(601\) 30.6762 1.25131 0.625655 0.780100i \(-0.284832\pi\)
0.625655 + 0.780100i \(0.284832\pi\)
\(602\) 18.3037 0.746005
\(603\) 28.0321 1.14156
\(604\) 68.7979 2.79935
\(605\) 0 0
\(606\) −45.7451 −1.85827
\(607\) −35.5284 −1.44205 −0.721027 0.692907i \(-0.756329\pi\)
−0.721027 + 0.692907i \(0.756329\pi\)
\(608\) 18.5295 0.751472
\(609\) −20.0238 −0.811406
\(610\) 0 0
\(611\) −47.4749 −1.92063
\(612\) 13.5932 0.549473
\(613\) −5.02015 −0.202762 −0.101381 0.994848i \(-0.532326\pi\)
−0.101381 + 0.994848i \(0.532326\pi\)
\(614\) 14.3180 0.577826
\(615\) 0 0
\(616\) 4.21613 0.169873
\(617\) −2.39753 −0.0965210 −0.0482605 0.998835i \(-0.515368\pi\)
−0.0482605 + 0.998835i \(0.515368\pi\)
\(618\) −34.3960 −1.38361
\(619\) −31.5481 −1.26802 −0.634012 0.773323i \(-0.718593\pi\)
−0.634012 + 0.773323i \(0.718593\pi\)
\(620\) 0 0
\(621\) −5.21258 −0.209174
\(622\) −15.1599 −0.607858
\(623\) 7.74549 0.310317
\(624\) −20.7881 −0.832191
\(625\) 0 0
\(626\) −16.4408 −0.657105
\(627\) 14.2246 0.568075
\(628\) −41.7861 −1.66745
\(629\) −1.97555 −0.0787705
\(630\) 0 0
\(631\) −8.79197 −0.350003 −0.175001 0.984568i \(-0.555993\pi\)
−0.175001 + 0.984568i \(0.555993\pi\)
\(632\) −8.69987 −0.346062
\(633\) −31.9534 −1.27004
\(634\) −15.2026 −0.603774
\(635\) 0 0
\(636\) 35.0293 1.38900
\(637\) −5.51450 −0.218492
\(638\) 38.8973 1.53996
\(639\) 1.68180 0.0665311
\(640\) 0 0
\(641\) −47.2690 −1.86701 −0.933507 0.358558i \(-0.883268\pi\)
−0.933507 + 0.358558i \(0.883268\pi\)
\(642\) −104.405 −4.12054
\(643\) 2.82283 0.111321 0.0556607 0.998450i \(-0.482273\pi\)
0.0556607 + 0.998450i \(0.482273\pi\)
\(644\) 24.4673 0.964148
\(645\) 0 0
\(646\) −8.33816 −0.328061
\(647\) −4.76624 −0.187380 −0.0936902 0.995601i \(-0.529866\pi\)
−0.0936902 + 0.995601i \(0.529866\pi\)
\(648\) 15.7272 0.617822
\(649\) 32.3896 1.27140
\(650\) 0 0
\(651\) 12.7319 0.499002
\(652\) 7.17763 0.281098
\(653\) 24.3840 0.954221 0.477110 0.878843i \(-0.341684\pi\)
0.477110 + 0.878843i \(0.341684\pi\)
\(654\) −1.53509 −0.0600267
\(655\) 0 0
\(656\) 5.94413 0.232079
\(657\) −38.2961 −1.49407
\(658\) −18.9958 −0.740534
\(659\) 14.8136 0.577058 0.288529 0.957471i \(-0.406834\pi\)
0.288529 + 0.957471i \(0.406834\pi\)
\(660\) 0 0
\(661\) 24.1133 0.937898 0.468949 0.883225i \(-0.344633\pi\)
0.468949 + 0.883225i \(0.344633\pi\)
\(662\) 41.1130 1.59790
\(663\) 20.1262 0.781637
\(664\) −21.8248 −0.846967
\(665\) 0 0
\(666\) 9.68363 0.375233
\(667\) 68.3474 2.64642
\(668\) −11.2680 −0.435973
\(669\) 35.7198 1.38101
\(670\) 0 0
\(671\) −5.81038 −0.224307
\(672\) −17.8957 −0.690343
\(673\) −27.3220 −1.05318 −0.526592 0.850118i \(-0.676530\pi\)
−0.526592 + 0.850118i \(0.676530\pi\)
\(674\) 10.5384 0.405926
\(675\) 0 0
\(676\) 49.9405 1.92079
\(677\) 27.6197 1.06151 0.530756 0.847525i \(-0.321908\pi\)
0.530756 + 0.847525i \(0.321908\pi\)
\(678\) −63.9677 −2.45666
\(679\) −9.25710 −0.355255
\(680\) 0 0
\(681\) −10.5051 −0.402555
\(682\) −24.7323 −0.947050
\(683\) −16.1845 −0.619282 −0.309641 0.950854i \(-0.600209\pi\)
−0.309641 + 0.950854i \(0.600209\pi\)
\(684\) 24.0814 0.920777
\(685\) 0 0
\(686\) −2.20648 −0.0842437
\(687\) 3.69796 0.141086
\(688\) 12.5141 0.477095
\(689\) 26.9479 1.02663
\(690\) 0 0
\(691\) −29.4581 −1.12064 −0.560319 0.828277i \(-0.689321\pi\)
−0.560319 + 0.828277i \(0.689321\pi\)
\(692\) −62.5287 −2.37699
\(693\) −7.13803 −0.271151
\(694\) −59.6105 −2.26279
\(695\) 0 0
\(696\) 38.3741 1.45457
\(697\) −5.75487 −0.217981
\(698\) −33.5215 −1.26881
\(699\) 13.4455 0.508556
\(700\) 0 0
\(701\) −40.3478 −1.52392 −0.761958 0.647626i \(-0.775762\pi\)
−0.761958 + 0.647626i \(0.775762\pi\)
\(702\) −7.43589 −0.280649
\(703\) −3.49985 −0.131999
\(704\) 28.1257 1.06003
\(705\) 0 0
\(706\) −37.7231 −1.41973
\(707\) −8.29649 −0.312022
\(708\) 105.535 3.96623
\(709\) 48.8291 1.83382 0.916908 0.399099i \(-0.130677\pi\)
0.916908 + 0.399099i \(0.130677\pi\)
\(710\) 0 0
\(711\) 14.7291 0.552385
\(712\) −14.8436 −0.556289
\(713\) −43.4578 −1.62751
\(714\) 8.05296 0.301374
\(715\) 0 0
\(716\) −55.6422 −2.07945
\(717\) −34.6173 −1.29281
\(718\) −43.7662 −1.63334
\(719\) −15.5108 −0.578456 −0.289228 0.957260i \(-0.593399\pi\)
−0.289228 + 0.957260i \(0.593399\pi\)
\(720\) 0 0
\(721\) −6.23818 −0.232322
\(722\) 27.1514 1.01047
\(723\) 34.4307 1.28049
\(724\) −68.8685 −2.55948
\(725\) 0 0
\(726\) −33.9649 −1.26055
\(727\) 34.4252 1.27676 0.638380 0.769721i \(-0.279605\pi\)
0.638380 + 0.769721i \(0.279605\pi\)
\(728\) 10.5681 0.391680
\(729\) −31.2079 −1.15585
\(730\) 0 0
\(731\) −12.1156 −0.448112
\(732\) −18.9319 −0.699742
\(733\) −12.0035 −0.443359 −0.221680 0.975120i \(-0.571154\pi\)
−0.221680 + 0.975120i \(0.571154\pi\)
\(734\) −12.7826 −0.471815
\(735\) 0 0
\(736\) 61.0835 2.25157
\(737\) −19.0075 −0.700149
\(738\) 28.2088 1.03838
\(739\) 29.0517 1.06868 0.534341 0.845269i \(-0.320560\pi\)
0.534341 + 0.845269i \(0.320560\pi\)
\(740\) 0 0
\(741\) 35.6552 1.30983
\(742\) 10.7825 0.395837
\(743\) 35.7292 1.31078 0.655389 0.755292i \(-0.272505\pi\)
0.655389 + 0.755292i \(0.272505\pi\)
\(744\) −24.3997 −0.894535
\(745\) 0 0
\(746\) 44.3391 1.62337
\(747\) 36.9500 1.35193
\(748\) −9.21700 −0.337007
\(749\) −18.9353 −0.691880
\(750\) 0 0
\(751\) 5.34762 0.195138 0.0975688 0.995229i \(-0.468893\pi\)
0.0975688 + 0.995229i \(0.468893\pi\)
\(752\) −12.9872 −0.473596
\(753\) −16.6376 −0.606306
\(754\) 97.4994 3.55072
\(755\) 0 0
\(756\) −1.75303 −0.0637570
\(757\) −37.5413 −1.36446 −0.682232 0.731136i \(-0.738990\pi\)
−0.682232 + 0.731136i \(0.738990\pi\)
\(758\) −45.5057 −1.65284
\(759\) 46.8921 1.70207
\(760\) 0 0
\(761\) −1.91338 −0.0693599 −0.0346800 0.999398i \(-0.511041\pi\)
−0.0346800 + 0.999398i \(0.511041\pi\)
\(762\) −9.13346 −0.330870
\(763\) −0.278409 −0.0100791
\(764\) 78.4282 2.83743
\(765\) 0 0
\(766\) 73.0577 2.63968
\(767\) 81.1874 2.93151
\(768\) 12.6686 0.457137
\(769\) −9.89864 −0.356954 −0.178477 0.983944i \(-0.557117\pi\)
−0.178477 + 0.983944i \(0.557117\pi\)
\(770\) 0 0
\(771\) −52.1270 −1.87731
\(772\) 9.81637 0.353299
\(773\) 6.25408 0.224944 0.112472 0.993655i \(-0.464123\pi\)
0.112472 + 0.993655i \(0.464123\pi\)
\(774\) 59.3875 2.13464
\(775\) 0 0
\(776\) 17.7405 0.636847
\(777\) 3.38014 0.121262
\(778\) −2.63766 −0.0945647
\(779\) −10.1952 −0.365281
\(780\) 0 0
\(781\) −1.14036 −0.0408054
\(782\) −27.4872 −0.982939
\(783\) −4.89693 −0.175002
\(784\) −1.50855 −0.0538766
\(785\) 0 0
\(786\) 38.9448 1.38912
\(787\) 31.6351 1.12767 0.563835 0.825888i \(-0.309326\pi\)
0.563835 + 0.825888i \(0.309326\pi\)
\(788\) 11.3459 0.404182
\(789\) 13.2965 0.473366
\(790\) 0 0
\(791\) −11.6014 −0.412498
\(792\) 13.6795 0.486079
\(793\) −14.5642 −0.517191
\(794\) −46.5095 −1.65056
\(795\) 0 0
\(796\) 1.68536 0.0597360
\(797\) −32.3792 −1.14693 −0.573465 0.819230i \(-0.694401\pi\)
−0.573465 + 0.819230i \(0.694401\pi\)
\(798\) 14.2665 0.505027
\(799\) 12.5737 0.444826
\(800\) 0 0
\(801\) 25.1307 0.887949
\(802\) 27.3756 0.966667
\(803\) 25.9671 0.916358
\(804\) −61.9317 −2.18416
\(805\) 0 0
\(806\) −61.9937 −2.18364
\(807\) 32.3192 1.13769
\(808\) 15.8996 0.559345
\(809\) −23.0109 −0.809021 −0.404510 0.914533i \(-0.632558\pi\)
−0.404510 + 0.914533i \(0.632558\pi\)
\(810\) 0 0
\(811\) −20.5186 −0.720504 −0.360252 0.932855i \(-0.617309\pi\)
−0.360252 + 0.932855i \(0.617309\pi\)
\(812\) 22.9857 0.806640
\(813\) 64.0275 2.24554
\(814\) −6.56609 −0.230141
\(815\) 0 0
\(816\) 5.50572 0.192739
\(817\) −21.4638 −0.750922
\(818\) 1.14682 0.0400976
\(819\) −17.8921 −0.625200
\(820\) 0 0
\(821\) 32.2691 1.12620 0.563100 0.826389i \(-0.309608\pi\)
0.563100 + 0.826389i \(0.309608\pi\)
\(822\) −70.3600 −2.45409
\(823\) −13.4406 −0.468509 −0.234255 0.972175i \(-0.575265\pi\)
−0.234255 + 0.972175i \(0.575265\pi\)
\(824\) 11.9550 0.416471
\(825\) 0 0
\(826\) 32.4849 1.13030
\(827\) 17.0571 0.593134 0.296567 0.955012i \(-0.404158\pi\)
0.296567 + 0.955012i \(0.404158\pi\)
\(828\) 79.3856 2.75884
\(829\) 20.0961 0.697966 0.348983 0.937129i \(-0.386527\pi\)
0.348983 + 0.937129i \(0.386527\pi\)
\(830\) 0 0
\(831\) 1.14620 0.0397611
\(832\) 70.4996 2.44414
\(833\) 1.46051 0.0506037
\(834\) −90.3554 −3.12875
\(835\) 0 0
\(836\) −16.3287 −0.564738
\(837\) 3.11365 0.107623
\(838\) 18.8009 0.649468
\(839\) 2.82753 0.0976173 0.0488087 0.998808i \(-0.484458\pi\)
0.0488087 + 0.998808i \(0.484458\pi\)
\(840\) 0 0
\(841\) 35.2085 1.21409
\(842\) −68.8954 −2.37429
\(843\) 8.54589 0.294336
\(844\) 36.6799 1.26257
\(845\) 0 0
\(846\) −61.6330 −2.11898
\(847\) −6.15999 −0.211660
\(848\) 7.37186 0.253151
\(849\) −3.92420 −0.134678
\(850\) 0 0
\(851\) −11.5374 −0.395498
\(852\) −3.71563 −0.127295
\(853\) 22.2079 0.760383 0.380192 0.924908i \(-0.375858\pi\)
0.380192 + 0.924908i \(0.375858\pi\)
\(854\) −5.82748 −0.199412
\(855\) 0 0
\(856\) 36.2880 1.24030
\(857\) 45.4397 1.55219 0.776095 0.630617i \(-0.217198\pi\)
0.776095 + 0.630617i \(0.217198\pi\)
\(858\) 66.8928 2.28368
\(859\) −48.4890 −1.65442 −0.827211 0.561891i \(-0.810074\pi\)
−0.827211 + 0.561891i \(0.810074\pi\)
\(860\) 0 0
\(861\) 9.84648 0.335567
\(862\) 59.3083 2.02005
\(863\) 26.9188 0.916325 0.458163 0.888868i \(-0.348508\pi\)
0.458163 + 0.888868i \(0.348508\pi\)
\(864\) −4.37649 −0.148891
\(865\) 0 0
\(866\) −21.1908 −0.720094
\(867\) 37.1511 1.26172
\(868\) −14.6152 −0.496071
\(869\) −9.98723 −0.338794
\(870\) 0 0
\(871\) −47.6439 −1.61435
\(872\) 0.533549 0.0180683
\(873\) −30.0352 −1.01654
\(874\) −48.6957 −1.64716
\(875\) 0 0
\(876\) 84.6081 2.85864
\(877\) 36.2264 1.22328 0.611640 0.791136i \(-0.290510\pi\)
0.611640 + 0.791136i \(0.290510\pi\)
\(878\) 12.1365 0.409587
\(879\) 12.6404 0.426350
\(880\) 0 0
\(881\) −2.87065 −0.0967148 −0.0483574 0.998830i \(-0.515399\pi\)
−0.0483574 + 0.998830i \(0.515399\pi\)
\(882\) −7.15904 −0.241057
\(883\) 34.7410 1.16913 0.584564 0.811347i \(-0.301265\pi\)
0.584564 + 0.811347i \(0.301265\pi\)
\(884\) −23.1032 −0.777046
\(885\) 0 0
\(886\) 54.3496 1.82591
\(887\) −5.05850 −0.169848 −0.0849240 0.996387i \(-0.527065\pi\)
−0.0849240 + 0.996387i \(0.527065\pi\)
\(888\) −6.47777 −0.217380
\(889\) −1.65648 −0.0555564
\(890\) 0 0
\(891\) 18.0544 0.604845
\(892\) −41.0034 −1.37290
\(893\) 22.2753 0.745415
\(894\) −65.1721 −2.17968
\(895\) 0 0
\(896\) 13.8857 0.463888
\(897\) 117.539 3.92452
\(898\) 21.1488 0.705746
\(899\) −40.8262 −1.36163
\(900\) 0 0
\(901\) −7.13714 −0.237772
\(902\) −19.1273 −0.636868
\(903\) 20.7296 0.689838
\(904\) 22.2332 0.739464
\(905\) 0 0
\(906\) 132.240 4.39339
\(907\) 39.4637 1.31037 0.655185 0.755468i \(-0.272590\pi\)
0.655185 + 0.755468i \(0.272590\pi\)
\(908\) 12.0590 0.400191
\(909\) −26.9184 −0.892828
\(910\) 0 0
\(911\) −34.1840 −1.13257 −0.566283 0.824211i \(-0.691619\pi\)
−0.566283 + 0.824211i \(0.691619\pi\)
\(912\) 9.75382 0.322981
\(913\) −25.0543 −0.829178
\(914\) −75.0978 −2.48402
\(915\) 0 0
\(916\) −4.24496 −0.140257
\(917\) 7.06316 0.233246
\(918\) 1.96939 0.0649996
\(919\) −31.3281 −1.03342 −0.516710 0.856161i \(-0.672843\pi\)
−0.516710 + 0.856161i \(0.672843\pi\)
\(920\) 0 0
\(921\) 16.2156 0.534321
\(922\) 7.86435 0.258999
\(923\) −2.85842 −0.0940861
\(924\) 15.7701 0.518799
\(925\) 0 0
\(926\) −2.17984 −0.0716339
\(927\) −20.2401 −0.664772
\(928\) 57.3846 1.88374
\(929\) −26.4293 −0.867118 −0.433559 0.901125i \(-0.642742\pi\)
−0.433559 + 0.901125i \(0.642742\pi\)
\(930\) 0 0
\(931\) 2.58741 0.0847990
\(932\) −15.4343 −0.505568
\(933\) −17.1691 −0.562092
\(934\) 13.8581 0.453450
\(935\) 0 0
\(936\) 34.2888 1.12076
\(937\) 41.0708 1.34173 0.670863 0.741582i \(-0.265924\pi\)
0.670863 + 0.741582i \(0.265924\pi\)
\(938\) −19.0634 −0.622442
\(939\) −18.6197 −0.607631
\(940\) 0 0
\(941\) −30.1230 −0.981982 −0.490991 0.871165i \(-0.663365\pi\)
−0.490991 + 0.871165i \(0.663365\pi\)
\(942\) −80.3194 −2.61695
\(943\) −33.6090 −1.09446
\(944\) 22.2096 0.722861
\(945\) 0 0
\(946\) −40.2683 −1.30923
\(947\) −37.9041 −1.23172 −0.615860 0.787856i \(-0.711191\pi\)
−0.615860 + 0.787856i \(0.711191\pi\)
\(948\) −32.5412 −1.05689
\(949\) 65.0888 2.11287
\(950\) 0 0
\(951\) −17.2175 −0.558316
\(952\) −2.79896 −0.0907147
\(953\) 23.1391 0.749550 0.374775 0.927116i \(-0.377720\pi\)
0.374775 + 0.927116i \(0.377720\pi\)
\(954\) 34.9843 1.13266
\(955\) 0 0
\(956\) 39.7378 1.28521
\(957\) 44.0525 1.42401
\(958\) 10.7006 0.345720
\(959\) −12.7607 −0.412066
\(960\) 0 0
\(961\) −5.04121 −0.162620
\(962\) −16.4585 −0.530642
\(963\) −61.4366 −1.97977
\(964\) −39.5237 −1.27297
\(965\) 0 0
\(966\) 47.0301 1.51317
\(967\) −55.3866 −1.78111 −0.890557 0.454872i \(-0.849685\pi\)
−0.890557 + 0.454872i \(0.849685\pi\)
\(968\) 11.8051 0.379431
\(969\) −9.44325 −0.303361
\(970\) 0 0
\(971\) −35.7046 −1.14581 −0.572907 0.819620i \(-0.694184\pi\)
−0.572907 + 0.819620i \(0.694184\pi\)
\(972\) 64.0854 2.05554
\(973\) −16.3872 −0.525348
\(974\) 11.3839 0.364765
\(975\) 0 0
\(976\) −3.98419 −0.127531
\(977\) 17.8700 0.571713 0.285856 0.958272i \(-0.407722\pi\)
0.285856 + 0.958272i \(0.407722\pi\)
\(978\) 13.7965 0.441165
\(979\) −17.0401 −0.544604
\(980\) 0 0
\(981\) −0.903313 −0.0288406
\(982\) −67.8029 −2.16368
\(983\) 46.0446 1.46859 0.734297 0.678828i \(-0.237512\pi\)
0.734297 + 0.678828i \(0.237512\pi\)
\(984\) −18.8700 −0.601554
\(985\) 0 0
\(986\) −25.8227 −0.822361
\(987\) −21.5134 −0.684779
\(988\) −40.9292 −1.30213
\(989\) −70.7564 −2.24992
\(990\) 0 0
\(991\) −37.3993 −1.18803 −0.594013 0.804455i \(-0.702457\pi\)
−0.594013 + 0.804455i \(0.702457\pi\)
\(992\) −36.4872 −1.15847
\(993\) 46.5619 1.47760
\(994\) −1.14372 −0.0362766
\(995\) 0 0
\(996\) −81.6342 −2.58668
\(997\) −21.6673 −0.686211 −0.343105 0.939297i \(-0.611479\pi\)
−0.343105 + 0.939297i \(0.611479\pi\)
\(998\) 75.6742 2.39543
\(999\) 0.826629 0.0261534
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 875.2.a.e.1.2 6
3.2 odd 2 7875.2.a.t.1.5 6
5.2 odd 4 875.2.b.c.624.2 12
5.3 odd 4 875.2.b.c.624.11 12
5.4 even 2 875.2.a.h.1.5 yes 6
7.6 odd 2 6125.2.a.s.1.2 6
15.14 odd 2 7875.2.a.q.1.2 6
35.34 odd 2 6125.2.a.t.1.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
875.2.a.e.1.2 6 1.1 even 1 trivial
875.2.a.h.1.5 yes 6 5.4 even 2
875.2.b.c.624.2 12 5.2 odd 4
875.2.b.c.624.11 12 5.3 odd 4
6125.2.a.s.1.2 6 7.6 odd 2
6125.2.a.t.1.5 6 35.34 odd 2
7875.2.a.q.1.2 6 15.14 odd 2
7875.2.a.t.1.5 6 3.2 odd 2