Properties

Label 88.3.h.a
Level $88$
Weight $3$
Character orbit 88.h
Analytic conductor $2.398$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [88,3,Mod(65,88)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(88, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("88.65");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 88 = 2^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 88.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.39782632637\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.1750426112.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 21x^{4} + 4x^{3} + 228x^{2} + 368x + 548 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 - 1) q^{3} + \beta_{3} q^{5} - \beta_{2} q^{7} + (\beta_{3} + 1) q^{9} + (\beta_{4} + \beta_{3} - \beta_{2} + \cdots + 2) q^{11} + (\beta_{5} - 2 \beta_{4} + \beta_{2}) q^{13} + ( - 2 \beta_{3} - 3 \beta_1 - 1) q^{15}+ \cdots + (4 \beta_{5} - \beta_{4} + \beta_{3} + \cdots + 33) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4 q^{3} + 6 q^{9} + 10 q^{11} - 52 q^{23} + 22 q^{25} + 32 q^{27} - 36 q^{31} - 64 q^{33} - 48 q^{37} + 172 q^{45} - 60 q^{47} - 170 q^{49} + 108 q^{53} + 172 q^{55} + 236 q^{59} - 292 q^{67} + 92 q^{69}+ \cdots + 182 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} - 21x^{4} + 4x^{3} + 228x^{2} + 368x + 548 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 137\nu^{5} - 977\nu^{4} - 1209\nu^{3} + 15913\nu^{2} + 22818\nu - 82318 ) / 28204 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 35\nu^{5} - 404\nu^{4} - 103\nu^{3} + 720\nu^{2} + 11182\nu + 8512 ) / 7051 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -405\nu^{5} + 1653\nu^{4} + 5221\nu^{3} - 17397\nu^{2} - 24634\nu + 218 ) / 28204 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 435\nu^{5} - 992\nu^{4} - 11353\nu^{3} + 6934\nu^{2} + 130918\nu + 133996 ) / 14102 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 268\nu^{5} - 676\nu^{4} - 4012\nu^{3} + 1484\nu^{2} + 58224\nu + 53896 ) / 7051 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{5} + 4\beta_{3} + 4\beta _1 + 4 ) / 8 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} - 2\beta_{2} + 5\beta _1 + 17 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 7\beta_{5} - 6\beta_{4} + 9\beta_{3} - 3\beta_{2} + 13\beta _1 + 45 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 18\beta_{5} - 8\beta_{4} + 25\beta_{3} - 52\beta_{2} + 37\beta _1 + 109 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 297\beta_{5} - 220\beta_{4} - 50\beta_{3} - 330\beta_{2} + 86\beta _1 + 470 ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/88\mathbb{Z}\right)^\times\).

\(n\) \(23\) \(45\) \(57\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
65.1
4.50331 1.41421i
4.50331 + 1.41421i
−2.88824 + 1.41421i
−2.88824 1.41421i
−0.615072 + 1.41421i
−0.615072 1.41421i
0 −3.88824 0 5.11838 0 12.7373i 0 6.11838 0
65.2 0 −3.88824 0 5.11838 0 12.7373i 0 6.11838 0
65.3 0 −1.61507 0 −7.39154 0 8.16917i 0 −6.39154 0
65.4 0 −1.61507 0 −7.39154 0 8.16917i 0 −6.39154 0
65.5 0 3.50331 0 2.27316 0 1.73969i 0 3.27316 0
65.6 0 3.50331 0 2.27316 0 1.73969i 0 3.27316 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 65.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 88.3.h.a 6
3.b odd 2 1 792.3.j.a 6
4.b odd 2 1 176.3.h.d 6
8.b even 2 1 704.3.h.h 6
8.d odd 2 1 704.3.h.g 6
11.b odd 2 1 inner 88.3.h.a 6
12.b even 2 1 1584.3.j.k 6
33.d even 2 1 792.3.j.a 6
44.c even 2 1 176.3.h.d 6
88.b odd 2 1 704.3.h.h 6
88.g even 2 1 704.3.h.g 6
132.d odd 2 1 1584.3.j.k 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
88.3.h.a 6 1.a even 1 1 trivial
88.3.h.a 6 11.b odd 2 1 inner
176.3.h.d 6 4.b odd 2 1
176.3.h.d 6 44.c even 2 1
704.3.h.g 6 8.d odd 2 1
704.3.h.g 6 88.g even 2 1
704.3.h.h 6 8.b even 2 1
704.3.h.h 6 88.b odd 2 1
792.3.j.a 6 3.b odd 2 1
792.3.j.a 6 33.d even 2 1
1584.3.j.k 6 12.b even 2 1
1584.3.j.k 6 132.d odd 2 1

Hecke kernels

This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(88, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( (T^{3} + 2 T^{2} - 13 T - 22)^{2} \) Copy content Toggle raw display
$5$ \( (T^{3} - 43 T + 86)^{2} \) Copy content Toggle raw display
$7$ \( T^{6} + 232 T^{4} + \cdots + 32768 \) Copy content Toggle raw display
$11$ \( T^{6} - 10 T^{5} + \cdots + 1771561 \) Copy content Toggle raw display
$13$ \( T^{6} + 904 T^{4} + \cdots + 18096128 \) Copy content Toggle raw display
$17$ \( T^{6} + 552 T^{4} + \cdots + 131072 \) Copy content Toggle raw display
$19$ \( T^{6} + 1608 T^{4} + \cdots + 13770752 \) Copy content Toggle raw display
$23$ \( (T^{3} + 26 T^{2} + \cdots + 514)^{2} \) Copy content Toggle raw display
$29$ \( T^{6} + 928 T^{4} + \cdots + 2097152 \) Copy content Toggle raw display
$31$ \( (T^{3} + 18 T^{2} + \cdots - 12254)^{2} \) Copy content Toggle raw display
$37$ \( (T^{3} + 24 T^{2} + \cdots - 88154)^{2} \) Copy content Toggle raw display
$41$ \( T^{6} + 3944 T^{4} + \cdots + 375160832 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots + 2988572672 \) Copy content Toggle raw display
$47$ \( (T^{3} + 30 T^{2} + \cdots + 73928)^{2} \) Copy content Toggle raw display
$53$ \( (T^{3} - 54 T^{2} + \cdots - 328)^{2} \) Copy content Toggle raw display
$59$ \( (T^{3} - 118 T^{2} + \cdots + 4714)^{2} \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots + 110698299392 \) Copy content Toggle raw display
$67$ \( (T^{3} + 146 T^{2} + \cdots + 31306)^{2} \) Copy content Toggle raw display
$71$ \( (T^{3} - 150 T^{2} + \cdots - 3998)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} + 8808 T^{4} + \cdots + 528515072 \) Copy content Toggle raw display
$79$ \( T^{6} + 20608 T^{4} + \cdots + 33554432 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 560545660928 \) Copy content Toggle raw display
$89$ \( (T^{3} - 192 T^{2} + \cdots - 80082)^{2} \) Copy content Toggle raw display
$97$ \( (T^{3} - 200 T^{2} + \cdots + 175694)^{2} \) Copy content Toggle raw display
show more
show less