Properties

Label 88.4.i.a.49.3
Level $88$
Weight $4$
Character 88.49
Analytic conductor $5.192$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [88,4,Mod(9,88)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(88, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 6]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("88.9");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 88 = 2^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 88.i (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.19216808051\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 60 x^{14} - 83 x^{13} + 1685 x^{12} - 14618 x^{11} + 106543 x^{10} - 521269 x^{9} + \cdots + 2025 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 49.3
Root \(2.60776 - 1.89465i\) of defining polynomial
Character \(\chi\) \(=\) 88.49
Dual form 88.4.i.a.9.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.57022 + 3.32046i) q^{3} +(-3.76204 + 11.5784i) q^{5} +(-27.3815 + 19.8938i) q^{7} +(1.51800 + 4.67192i) q^{9} +(34.2797 - 12.4861i) q^{11} +(-6.38348 - 19.6463i) q^{13} +(-55.6388 + 40.4240i) q^{15} +(-18.5932 + 57.2239i) q^{17} +(85.6982 + 62.2634i) q^{19} -191.196 q^{21} +186.999 q^{23} +(-18.7786 - 13.6434i) q^{25} +(38.5577 - 118.668i) q^{27} +(-109.554 + 79.5957i) q^{29} +(27.6973 + 85.2435i) q^{31} +(198.125 + 56.7601i) q^{33} +(-127.328 - 391.874i) q^{35} +(148.834 - 108.135i) q^{37} +(36.0609 - 110.984i) q^{39} +(-301.585 - 219.114i) q^{41} +294.257 q^{43} -59.8040 q^{45} +(-6.86032 - 4.98432i) q^{47} +(247.988 - 763.230i) q^{49} +(-274.985 + 199.788i) q^{51} +(-67.9504 - 209.130i) q^{53} +(15.6071 + 443.876i) q^{55} +(184.916 + 569.114i) q^{57} +(-210.773 + 153.136i) q^{59} +(-159.109 + 489.688i) q^{61} +(-134.507 - 97.7252i) q^{63} +251.487 q^{65} -263.041 q^{67} +(854.625 + 620.922i) q^{69} +(-95.6197 + 294.287i) q^{71} +(170.648 - 123.983i) q^{73} +(-40.5198 - 124.707i) q^{75} +(-690.232 + 1023.84i) q^{77} +(-288.634 - 888.325i) q^{79} +(677.554 - 492.271i) q^{81} +(-73.5873 + 226.478i) q^{83} +(-592.612 - 430.558i) q^{85} -764.980 q^{87} -620.760 q^{89} +(565.629 + 410.954i) q^{91} +(-156.465 + 481.549i) q^{93} +(-1043.31 + 758.008i) q^{95} +(372.130 + 1145.30i) q^{97} +(110.371 + 141.198i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - q^{3} - q^{5} - 13 q^{7} + 7 q^{9} + 83 q^{11} + 69 q^{13} + 93 q^{15} - 217 q^{17} + 126 q^{19} + 34 q^{21} - 92 q^{23} + 307 q^{25} + 158 q^{27} - 553 q^{29} + 205 q^{31} - 198 q^{33} + 7 q^{35}+ \cdots - 3265 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/88\mathbb{Z}\right)^\times\).

\(n\) \(23\) \(45\) \(57\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 4.57022 + 3.32046i 0.879539 + 0.639023i 0.933129 0.359540i \(-0.117067\pi\)
−0.0535904 + 0.998563i \(0.517067\pi\)
\(4\) 0 0
\(5\) −3.76204 + 11.5784i −0.336487 + 1.03560i 0.629498 + 0.777002i \(0.283261\pi\)
−0.965985 + 0.258599i \(0.916739\pi\)
\(6\) 0 0
\(7\) −27.3815 + 19.8938i −1.47846 + 1.07416i −0.500411 + 0.865788i \(0.666818\pi\)
−0.978049 + 0.208376i \(0.933182\pi\)
\(8\) 0 0
\(9\) 1.51800 + 4.67192i 0.0562222 + 0.173034i
\(10\) 0 0
\(11\) 34.2797 12.4861i 0.939611 0.342246i
\(12\) 0 0
\(13\) −6.38348 19.6463i −0.136189 0.419147i 0.859584 0.510995i \(-0.170723\pi\)
−0.995773 + 0.0918474i \(0.970723\pi\)
\(14\) 0 0
\(15\) −55.6388 + 40.4240i −0.957726 + 0.695829i
\(16\) 0 0
\(17\) −18.5932 + 57.2239i −0.265265 + 0.816403i 0.726367 + 0.687307i \(0.241207\pi\)
−0.991632 + 0.129095i \(0.958793\pi\)
\(18\) 0 0
\(19\) 85.6982 + 62.2634i 1.03476 + 0.751800i 0.969257 0.246052i \(-0.0791335\pi\)
0.0655071 + 0.997852i \(0.479133\pi\)
\(20\) 0 0
\(21\) −191.196 −1.98678
\(22\) 0 0
\(23\) 186.999 1.69530 0.847651 0.530555i \(-0.178016\pi\)
0.847651 + 0.530555i \(0.178016\pi\)
\(24\) 0 0
\(25\) −18.7786 13.6434i −0.150229 0.109148i
\(26\) 0 0
\(27\) 38.5577 118.668i 0.274831 0.845843i
\(28\) 0 0
\(29\) −109.554 + 79.5957i −0.701506 + 0.509674i −0.880422 0.474190i \(-0.842741\pi\)
0.178916 + 0.983864i \(0.442741\pi\)
\(30\) 0 0
\(31\) 27.6973 + 85.2435i 0.160470 + 0.493877i 0.998674 0.0514804i \(-0.0163940\pi\)
−0.838204 + 0.545357i \(0.816394\pi\)
\(32\) 0 0
\(33\) 198.125 + 56.7601i 1.04513 + 0.299414i
\(34\) 0 0
\(35\) −127.328 391.874i −0.614922 1.89254i
\(36\) 0 0
\(37\) 148.834 108.135i 0.661303 0.480465i −0.205799 0.978594i \(-0.565979\pi\)
0.867103 + 0.498129i \(0.165979\pi\)
\(38\) 0 0
\(39\) 36.0609 110.984i 0.148061 0.455684i
\(40\) 0 0
\(41\) −301.585 219.114i −1.14877 0.834632i −0.160455 0.987043i \(-0.551296\pi\)
−0.988317 + 0.152412i \(0.951296\pi\)
\(42\) 0 0
\(43\) 294.257 1.04358 0.521789 0.853075i \(-0.325265\pi\)
0.521789 + 0.853075i \(0.325265\pi\)
\(44\) 0 0
\(45\) −59.8040 −0.198112
\(46\) 0 0
\(47\) −6.86032 4.98432i −0.0212911 0.0154689i 0.577089 0.816681i \(-0.304189\pi\)
−0.598380 + 0.801213i \(0.704189\pi\)
\(48\) 0 0
\(49\) 247.988 763.230i 0.722998 2.22516i
\(50\) 0 0
\(51\) −274.985 + 199.788i −0.755011 + 0.548548i
\(52\) 0 0
\(53\) −67.9504 209.130i −0.176108 0.542004i 0.823575 0.567208i \(-0.191976\pi\)
−0.999682 + 0.0252042i \(0.991976\pi\)
\(54\) 0 0
\(55\) 15.6071 + 443.876i 0.0382630 + 1.08822i
\(56\) 0 0
\(57\) 184.916 + 569.114i 0.429698 + 1.32247i
\(58\) 0 0
\(59\) −210.773 + 153.136i −0.465091 + 0.337908i −0.795525 0.605921i \(-0.792805\pi\)
0.330434 + 0.943829i \(0.392805\pi\)
\(60\) 0 0
\(61\) −159.109 + 489.688i −0.333965 + 1.02784i 0.633265 + 0.773935i \(0.281714\pi\)
−0.967230 + 0.253902i \(0.918286\pi\)
\(62\) 0 0
\(63\) −134.507 97.7252i −0.268989 0.195432i
\(64\) 0 0
\(65\) 251.487 0.479895
\(66\) 0 0
\(67\) −263.041 −0.479635 −0.239818 0.970818i \(-0.577088\pi\)
−0.239818 + 0.970818i \(0.577088\pi\)
\(68\) 0 0
\(69\) 854.625 + 620.922i 1.49108 + 1.08334i
\(70\) 0 0
\(71\) −95.6197 + 294.287i −0.159831 + 0.491908i −0.998618 0.0525507i \(-0.983265\pi\)
0.838788 + 0.544459i \(0.183265\pi\)
\(72\) 0 0
\(73\) 170.648 123.983i 0.273601 0.198783i −0.442520 0.896758i \(-0.645916\pi\)
0.716122 + 0.697975i \(0.245916\pi\)
\(74\) 0 0
\(75\) −40.5198 124.707i −0.0623843 0.191999i
\(76\) 0 0
\(77\) −690.232 + 1023.84i −1.02155 + 1.51529i
\(78\) 0 0
\(79\) −288.634 888.325i −0.411062 1.26512i −0.915726 0.401803i \(-0.868384\pi\)
0.504664 0.863316i \(-0.331616\pi\)
\(80\) 0 0
\(81\) 677.554 492.271i 0.929429 0.675269i
\(82\) 0 0
\(83\) −73.5873 + 226.478i −0.0973163 + 0.299509i −0.987850 0.155408i \(-0.950331\pi\)
0.890534 + 0.454917i \(0.150331\pi\)
\(84\) 0 0
\(85\) −592.612 430.558i −0.756209 0.549418i
\(86\) 0 0
\(87\) −764.980 −0.942695
\(88\) 0 0
\(89\) −620.760 −0.739331 −0.369666 0.929165i \(-0.620528\pi\)
−0.369666 + 0.929165i \(0.620528\pi\)
\(90\) 0 0
\(91\) 565.629 + 410.954i 0.651583 + 0.473403i
\(92\) 0 0
\(93\) −156.465 + 481.549i −0.174459 + 0.536928i
\(94\) 0 0
\(95\) −1043.31 + 758.008i −1.12675 + 0.818631i
\(96\) 0 0
\(97\) 372.130 + 1145.30i 0.389527 + 1.19884i 0.933143 + 0.359506i \(0.117055\pi\)
−0.543616 + 0.839334i \(0.682945\pi\)
\(98\) 0 0
\(99\) 110.371 + 141.198i 0.112047 + 0.143343i
\(100\) 0 0
\(101\) −318.523 980.312i −0.313804 0.965789i −0.976244 0.216674i \(-0.930479\pi\)
0.662440 0.749115i \(-0.269521\pi\)
\(102\) 0 0
\(103\) 1232.35 895.352i 1.17890 0.856521i 0.186853 0.982388i \(-0.440171\pi\)
0.992047 + 0.125867i \(0.0401712\pi\)
\(104\) 0 0
\(105\) 719.286 2213.74i 0.668525 2.05751i
\(106\) 0 0
\(107\) 625.775 + 454.652i 0.565383 + 0.410775i 0.833425 0.552633i \(-0.186377\pi\)
−0.268042 + 0.963407i \(0.586377\pi\)
\(108\) 0 0
\(109\) 403.012 0.354143 0.177072 0.984198i \(-0.443338\pi\)
0.177072 + 0.984198i \(0.443338\pi\)
\(110\) 0 0
\(111\) 1039.26 0.888670
\(112\) 0 0
\(113\) 967.999 + 703.293i 0.805856 + 0.585489i 0.912626 0.408795i \(-0.134051\pi\)
−0.106770 + 0.994284i \(0.534051\pi\)
\(114\) 0 0
\(115\) −703.497 + 2165.14i −0.570447 + 1.75566i
\(116\) 0 0
\(117\) 82.0960 59.6462i 0.0648699 0.0471307i
\(118\) 0 0
\(119\) −629.293 1936.76i −0.484766 1.49196i
\(120\) 0 0
\(121\) 1019.19 856.040i 0.765736 0.643155i
\(122\) 0 0
\(123\) −650.749 2002.80i −0.477041 1.46818i
\(124\) 0 0
\(125\) −1002.53 + 728.380i −0.717351 + 0.521186i
\(126\) 0 0
\(127\) 170.598 525.046i 0.119198 0.366852i −0.873602 0.486641i \(-0.838222\pi\)
0.992799 + 0.119789i \(0.0382218\pi\)
\(128\) 0 0
\(129\) 1344.82 + 977.069i 0.917867 + 0.666869i
\(130\) 0 0
\(131\) −2719.39 −1.81369 −0.906847 0.421460i \(-0.861518\pi\)
−0.906847 + 0.421460i \(0.861518\pi\)
\(132\) 0 0
\(133\) −3585.20 −2.33741
\(134\) 0 0
\(135\) 1228.93 + 892.871i 0.783478 + 0.569230i
\(136\) 0 0
\(137\) 594.730 1830.39i 0.370885 1.14147i −0.575328 0.817923i \(-0.695126\pi\)
0.946213 0.323544i \(-0.104874\pi\)
\(138\) 0 0
\(139\) 908.016 659.712i 0.554079 0.402562i −0.275208 0.961385i \(-0.588747\pi\)
0.829287 + 0.558823i \(0.188747\pi\)
\(140\) 0 0
\(141\) −14.8030 45.5588i −0.00884138 0.0272110i
\(142\) 0 0
\(143\) −464.130 593.766i −0.271416 0.347225i
\(144\) 0 0
\(145\) −509.442 1567.90i −0.291771 0.897979i
\(146\) 0 0
\(147\) 3667.63 2664.69i 2.05783 1.49510i
\(148\) 0 0
\(149\) 682.011 2099.01i 0.374983 1.15408i −0.568507 0.822678i \(-0.692479\pi\)
0.943490 0.331401i \(-0.107521\pi\)
\(150\) 0 0
\(151\) 2738.16 + 1989.39i 1.47569 + 1.07215i 0.978915 + 0.204268i \(0.0654814\pi\)
0.496772 + 0.867881i \(0.334519\pi\)
\(152\) 0 0
\(153\) −295.570 −0.156179
\(154\) 0 0
\(155\) −1091.18 −0.565456
\(156\) 0 0
\(157\) 1070.89 + 778.045i 0.544370 + 0.395508i 0.825705 0.564101i \(-0.190777\pi\)
−0.281335 + 0.959610i \(0.590777\pi\)
\(158\) 0 0
\(159\) 383.859 1181.40i 0.191459 0.589250i
\(160\) 0 0
\(161\) −5120.30 + 3720.11i −2.50643 + 1.82103i
\(162\) 0 0
\(163\) 1033.88 + 3181.96i 0.496808 + 1.52902i 0.814119 + 0.580698i \(0.197220\pi\)
−0.317311 + 0.948322i \(0.602780\pi\)
\(164\) 0 0
\(165\) −1402.54 + 2080.43i −0.661745 + 0.981585i
\(166\) 0 0
\(167\) 497.523 + 1531.22i 0.230536 + 0.709517i 0.997682 + 0.0680446i \(0.0216760\pi\)
−0.767146 + 0.641472i \(0.778324\pi\)
\(168\) 0 0
\(169\) 1432.18 1040.54i 0.651880 0.473619i
\(170\) 0 0
\(171\) −160.800 + 494.891i −0.0719103 + 0.221317i
\(172\) 0 0
\(173\) −1433.45 1041.46i −0.629959 0.457692i 0.226427 0.974028i \(-0.427295\pi\)
−0.856386 + 0.516336i \(0.827295\pi\)
\(174\) 0 0
\(175\) 785.605 0.339349
\(176\) 0 0
\(177\) −1471.76 −0.624997
\(178\) 0 0
\(179\) −904.917 657.461i −0.377858 0.274530i 0.382604 0.923913i \(-0.375028\pi\)
−0.760462 + 0.649382i \(0.775028\pi\)
\(180\) 0 0
\(181\) −800.805 + 2464.62i −0.328858 + 1.01212i 0.640810 + 0.767699i \(0.278598\pi\)
−0.969669 + 0.244423i \(0.921402\pi\)
\(182\) 0 0
\(183\) −2353.15 + 1709.66i −0.950546 + 0.690612i
\(184\) 0 0
\(185\) 692.101 + 2130.07i 0.275050 + 0.846517i
\(186\) 0 0
\(187\) 77.1354 + 2193.78i 0.0301642 + 0.857886i
\(188\) 0 0
\(189\) 1305.00 + 4016.37i 0.502247 + 1.54576i
\(190\) 0 0
\(191\) 1057.53 768.341i 0.400629 0.291074i −0.369168 0.929363i \(-0.620357\pi\)
0.769797 + 0.638288i \(0.220357\pi\)
\(192\) 0 0
\(193\) 628.268 1933.61i 0.234320 0.721163i −0.762891 0.646527i \(-0.776221\pi\)
0.997211 0.0746355i \(-0.0237793\pi\)
\(194\) 0 0
\(195\) 1149.35 + 835.054i 0.422086 + 0.306664i
\(196\) 0 0
\(197\) 206.856 0.0748115 0.0374057 0.999300i \(-0.488091\pi\)
0.0374057 + 0.999300i \(0.488091\pi\)
\(198\) 0 0
\(199\) −4390.77 −1.56409 −0.782044 0.623224i \(-0.785823\pi\)
−0.782044 + 0.623224i \(0.785823\pi\)
\(200\) 0 0
\(201\) −1202.15 873.416i −0.421858 0.306498i
\(202\) 0 0
\(203\) 1416.29 4358.89i 0.489675 1.50707i
\(204\) 0 0
\(205\) 3671.56 2667.54i 1.25089 0.908826i
\(206\) 0 0
\(207\) 283.864 + 873.643i 0.0953135 + 0.293345i
\(208\) 0 0
\(209\) 3715.13 + 1064.33i 1.22958 + 0.352256i
\(210\) 0 0
\(211\) −1068.19 3287.56i −0.348518 1.07263i −0.959673 0.281118i \(-0.909295\pi\)
0.611155 0.791511i \(-0.290705\pi\)
\(212\) 0 0
\(213\) −1414.17 + 1027.46i −0.454917 + 0.330517i
\(214\) 0 0
\(215\) −1107.01 + 3407.02i −0.351150 + 1.08073i
\(216\) 0 0
\(217\) −2454.21 1783.09i −0.767754 0.557806i
\(218\) 0 0
\(219\) 1191.58 0.367670
\(220\) 0 0
\(221\) 1242.93 0.378319
\(222\) 0 0
\(223\) 737.404 + 535.756i 0.221436 + 0.160883i 0.692973 0.720964i \(-0.256301\pi\)
−0.471537 + 0.881846i \(0.656301\pi\)
\(224\) 0 0
\(225\) 35.2352 108.443i 0.0104401 0.0321312i
\(226\) 0 0
\(227\) 181.762 132.058i 0.0531451 0.0386122i −0.560896 0.827887i \(-0.689543\pi\)
0.614041 + 0.789274i \(0.289543\pi\)
\(228\) 0 0
\(229\) −1574.52 4845.86i −0.454353 1.39836i −0.871893 0.489697i \(-0.837107\pi\)
0.417539 0.908659i \(-0.362893\pi\)
\(230\) 0 0
\(231\) −6554.13 + 2387.29i −1.86680 + 0.679966i
\(232\) 0 0
\(233\) 107.964 + 332.278i 0.0303560 + 0.0934261i 0.965087 0.261931i \(-0.0843593\pi\)
−0.934731 + 0.355357i \(0.884359\pi\)
\(234\) 0 0
\(235\) 83.5191 60.6802i 0.0231838 0.0168440i
\(236\) 0 0
\(237\) 1630.52 5018.24i 0.446894 1.37540i
\(238\) 0 0
\(239\) −1720.16 1249.77i −0.465556 0.338246i 0.330151 0.943928i \(-0.392900\pi\)
−0.795707 + 0.605682i \(0.792900\pi\)
\(240\) 0 0
\(241\) −2080.20 −0.556007 −0.278004 0.960580i \(-0.589673\pi\)
−0.278004 + 0.960580i \(0.589673\pi\)
\(242\) 0 0
\(243\) 1362.20 0.359610
\(244\) 0 0
\(245\) 7904.01 + 5742.60i 2.06110 + 1.49748i
\(246\) 0 0
\(247\) 676.194 2081.11i 0.174191 0.536105i
\(248\) 0 0
\(249\) −1088.32 + 790.713i −0.276986 + 0.201242i
\(250\) 0 0
\(251\) −1410.50 4341.06i −0.354700 1.09165i −0.956183 0.292769i \(-0.905423\pi\)
0.601483 0.798885i \(-0.294577\pi\)
\(252\) 0 0
\(253\) 6410.26 2334.89i 1.59292 0.580210i
\(254\) 0 0
\(255\) −1278.72 3935.49i −0.314025 0.966469i
\(256\) 0 0
\(257\) 1937.75 1407.86i 0.470324 0.341711i −0.327243 0.944940i \(-0.606120\pi\)
0.797568 + 0.603229i \(0.206120\pi\)
\(258\) 0 0
\(259\) −1924.10 + 5921.76i −0.461612 + 1.42070i
\(260\) 0 0
\(261\) −538.168 391.002i −0.127631 0.0927295i
\(262\) 0 0
\(263\) 4960.41 1.16301 0.581505 0.813543i \(-0.302464\pi\)
0.581505 + 0.813543i \(0.302464\pi\)
\(264\) 0 0
\(265\) 2677.01 0.620557
\(266\) 0 0
\(267\) −2837.01 2061.21i −0.650271 0.472449i
\(268\) 0 0
\(269\) 255.831 787.367i 0.0579862 0.178463i −0.917868 0.396885i \(-0.870091\pi\)
0.975854 + 0.218422i \(0.0700910\pi\)
\(270\) 0 0
\(271\) −1085.93 + 788.976i −0.243416 + 0.176852i −0.702804 0.711384i \(-0.748069\pi\)
0.459388 + 0.888236i \(0.348069\pi\)
\(272\) 0 0
\(273\) 1220.49 + 3756.30i 0.270578 + 0.832752i
\(274\) 0 0
\(275\) −814.077 233.222i −0.178512 0.0511410i
\(276\) 0 0
\(277\) −2346.73 7222.51i −0.509031 1.56664i −0.793887 0.608066i \(-0.791946\pi\)
0.284856 0.958570i \(-0.408054\pi\)
\(278\) 0 0
\(279\) −356.206 + 258.799i −0.0764355 + 0.0555336i
\(280\) 0 0
\(281\) −1863.97 + 5736.71i −0.395712 + 1.21788i 0.532693 + 0.846309i \(0.321180\pi\)
−0.928405 + 0.371569i \(0.878820\pi\)
\(282\) 0 0
\(283\) −1507.05 1094.93i −0.316554 0.229990i 0.418150 0.908378i \(-0.362679\pi\)
−0.734704 + 0.678388i \(0.762679\pi\)
\(284\) 0 0
\(285\) −7285.08 −1.51414
\(286\) 0 0
\(287\) 12616.8 2.59494
\(288\) 0 0
\(289\) 1045.83 + 759.838i 0.212869 + 0.154659i
\(290\) 0 0
\(291\) −2102.20 + 6469.91i −0.423482 + 1.30334i
\(292\) 0 0
\(293\) 3136.46 2278.77i 0.625371 0.454359i −0.229423 0.973327i \(-0.573684\pi\)
0.854793 + 0.518968i \(0.173684\pi\)
\(294\) 0 0
\(295\) −980.126 3016.52i −0.193441 0.595350i
\(296\) 0 0
\(297\) −159.960 4549.35i −0.0312519 0.888822i
\(298\) 0 0
\(299\) −1193.70 3673.84i −0.230882 0.710581i
\(300\) 0 0
\(301\) −8057.19 + 5853.89i −1.54289 + 1.12097i
\(302\) 0 0
\(303\) 1799.37 5537.88i 0.341158 1.04998i
\(304\) 0 0
\(305\) −5071.21 3684.45i −0.952055 0.691708i
\(306\) 0 0
\(307\) 3787.90 0.704192 0.352096 0.935964i \(-0.385469\pi\)
0.352096 + 0.935964i \(0.385469\pi\)
\(308\) 0 0
\(309\) 8605.07 1.58423
\(310\) 0 0
\(311\) −5305.29 3854.52i −0.967317 0.702797i −0.0124785 0.999922i \(-0.503972\pi\)
−0.954839 + 0.297125i \(0.903972\pi\)
\(312\) 0 0
\(313\) −2691.42 + 8283.34i −0.486032 + 1.49585i 0.344448 + 0.938805i \(0.388066\pi\)
−0.830480 + 0.557048i \(0.811934\pi\)
\(314\) 0 0
\(315\) 1637.52 1189.73i 0.292901 0.212805i
\(316\) 0 0
\(317\) −1037.83 3194.11i −0.183881 0.565928i 0.816046 0.577987i \(-0.196161\pi\)
−0.999927 + 0.0120587i \(0.996161\pi\)
\(318\) 0 0
\(319\) −2761.64 + 4096.42i −0.484709 + 0.718983i
\(320\) 0 0
\(321\) 1350.28 + 4155.72i 0.234782 + 0.722585i
\(322\) 0 0
\(323\) −5156.36 + 3746.31i −0.888258 + 0.645357i
\(324\) 0 0
\(325\) −148.171 + 456.023i −0.0252894 + 0.0778326i
\(326\) 0 0
\(327\) 1841.85 + 1338.19i 0.311483 + 0.226305i
\(328\) 0 0
\(329\) 287.003 0.0480941
\(330\) 0 0
\(331\) −3380.77 −0.561402 −0.280701 0.959795i \(-0.590567\pi\)
−0.280701 + 0.959795i \(0.590567\pi\)
\(332\) 0 0
\(333\) 731.126 + 531.194i 0.120317 + 0.0874152i
\(334\) 0 0
\(335\) 989.570 3045.58i 0.161391 0.496711i
\(336\) 0 0
\(337\) −304.122 + 220.957i −0.0491589 + 0.0357161i −0.612093 0.790785i \(-0.709672\pi\)
0.562934 + 0.826502i \(0.309672\pi\)
\(338\) 0 0
\(339\) 2088.72 + 6428.40i 0.334641 + 1.02992i
\(340\) 0 0
\(341\) 2013.81 + 2576.29i 0.319807 + 0.409132i
\(342\) 0 0
\(343\) 4805.89 + 14791.0i 0.756541 + 2.32839i
\(344\) 0 0
\(345\) −10404.4 + 7559.23i −1.62363 + 1.17964i
\(346\) 0 0
\(347\) −3090.54 + 9511.71i −0.478124 + 1.47151i 0.363574 + 0.931565i \(0.381557\pi\)
−0.841698 + 0.539949i \(0.818443\pi\)
\(348\) 0 0
\(349\) 4064.35 + 2952.92i 0.623380 + 0.452912i 0.854101 0.520108i \(-0.174108\pi\)
−0.230720 + 0.973020i \(0.574108\pi\)
\(350\) 0 0
\(351\) −2577.53 −0.391962
\(352\) 0 0
\(353\) −3533.41 −0.532760 −0.266380 0.963868i \(-0.585828\pi\)
−0.266380 + 0.963868i \(0.585828\pi\)
\(354\) 0 0
\(355\) −3047.64 2214.24i −0.455639 0.331041i
\(356\) 0 0
\(357\) 3554.94 10941.0i 0.527023 1.62201i
\(358\) 0 0
\(359\) 1806.59 1312.57i 0.265594 0.192965i −0.447016 0.894526i \(-0.647513\pi\)
0.712610 + 0.701561i \(0.247513\pi\)
\(360\) 0 0
\(361\) 1347.90 + 4148.42i 0.196516 + 0.604814i
\(362\) 0 0
\(363\) 7500.39 528.096i 1.08449 0.0763577i
\(364\) 0 0
\(365\) 793.539 + 2442.26i 0.113797 + 0.350230i
\(366\) 0 0
\(367\) 10883.1 7907.06i 1.54794 1.12465i 0.602844 0.797859i \(-0.294034\pi\)
0.945098 0.326787i \(-0.105966\pi\)
\(368\) 0 0
\(369\) 565.879 1741.60i 0.0798332 0.245701i
\(370\) 0 0
\(371\) 6020.97 + 4374.49i 0.842569 + 0.612162i
\(372\) 0 0
\(373\) −939.175 −0.130372 −0.0651859 0.997873i \(-0.520764\pi\)
−0.0651859 + 0.997873i \(0.520764\pi\)
\(374\) 0 0
\(375\) −7000.33 −0.963988
\(376\) 0 0
\(377\) 2263.10 + 1644.24i 0.309166 + 0.224622i
\(378\) 0 0
\(379\) 77.9211 239.817i 0.0105608 0.0325028i −0.945637 0.325223i \(-0.894561\pi\)
0.956198 + 0.292720i \(0.0945605\pi\)
\(380\) 0 0
\(381\) 2523.06 1833.11i 0.339266 0.246491i
\(382\) 0 0
\(383\) −1522.94 4687.13i −0.203182 0.625329i −0.999783 0.0208240i \(-0.993371\pi\)
0.796602 0.604505i \(-0.206629\pi\)
\(384\) 0 0
\(385\) −9257.73 11843.5i −1.22550 1.56779i
\(386\) 0 0
\(387\) 446.682 + 1374.75i 0.0586722 + 0.180574i
\(388\) 0 0
\(389\) −711.690 + 517.073i −0.0927612 + 0.0673950i −0.633199 0.773989i \(-0.718259\pi\)
0.540438 + 0.841384i \(0.318259\pi\)
\(390\) 0 0
\(391\) −3476.90 + 10700.8i −0.449705 + 1.38405i
\(392\) 0 0
\(393\) −12428.2 9029.61i −1.59521 1.15899i
\(394\) 0 0
\(395\) 11371.2 1.44848
\(396\) 0 0
\(397\) −9864.12 −1.24702 −0.623509 0.781816i \(-0.714293\pi\)
−0.623509 + 0.781816i \(0.714293\pi\)
\(398\) 0 0
\(399\) −16385.1 11904.5i −2.05585 1.49366i
\(400\) 0 0
\(401\) 875.773 2695.35i 0.109062 0.335659i −0.881600 0.471997i \(-0.843533\pi\)
0.990662 + 0.136338i \(0.0435332\pi\)
\(402\) 0 0
\(403\) 1497.92 1088.30i 0.185153 0.134521i
\(404\) 0 0
\(405\) 3150.72 + 9696.91i 0.386569 + 1.18974i
\(406\) 0 0
\(407\) 3751.82 5565.18i 0.456931 0.677778i
\(408\) 0 0
\(409\) 2919.05 + 8983.90i 0.352904 + 1.08613i 0.957215 + 0.289377i \(0.0934482\pi\)
−0.604312 + 0.796748i \(0.706552\pi\)
\(410\) 0 0
\(411\) 8795.79 6390.52i 1.05563 0.766961i
\(412\) 0 0
\(413\) 2724.83 8386.17i 0.324649 0.999168i
\(414\) 0 0
\(415\) −2345.41 1704.04i −0.277426 0.201562i
\(416\) 0 0
\(417\) 6340.38 0.744580
\(418\) 0 0
\(419\) 10842.0 1.26411 0.632057 0.774921i \(-0.282211\pi\)
0.632057 + 0.774921i \(0.282211\pi\)
\(420\) 0 0
\(421\) −13683.9 9941.91i −1.58411 1.15092i −0.911785 0.410668i \(-0.865295\pi\)
−0.672326 0.740255i \(-0.734705\pi\)
\(422\) 0 0
\(423\) 12.8724 39.6171i 0.00147961 0.00455378i
\(424\) 0 0
\(425\) 1129.89 820.910i 0.128959 0.0936940i
\(426\) 0 0
\(427\) −5385.10 16573.6i −0.610313 1.87835i
\(428\) 0 0
\(429\) −149.602 4254.76i −0.0168365 0.478839i
\(430\) 0 0
\(431\) 3069.95 + 9448.33i 0.343096 + 1.05594i 0.962595 + 0.270943i \(0.0873354\pi\)
−0.619500 + 0.784997i \(0.712665\pi\)
\(432\) 0 0
\(433\) −5558.38 + 4038.40i −0.616903 + 0.448206i −0.851838 0.523805i \(-0.824512\pi\)
0.234936 + 0.972011i \(0.424512\pi\)
\(434\) 0 0
\(435\) 2877.89 8857.23i 0.317205 0.976256i
\(436\) 0 0
\(437\) 16025.5 + 11643.2i 1.75424 + 1.27453i
\(438\) 0 0
\(439\) 7685.97 0.835606 0.417803 0.908538i \(-0.362800\pi\)
0.417803 + 0.908538i \(0.362800\pi\)
\(440\) 0 0
\(441\) 3942.19 0.425677
\(442\) 0 0
\(443\) −6498.22 4721.23i −0.696929 0.506349i 0.182002 0.983298i \(-0.441742\pi\)
−0.878931 + 0.476950i \(0.841742\pi\)
\(444\) 0 0
\(445\) 2335.33 7187.39i 0.248775 0.765652i
\(446\) 0 0
\(447\) 10086.6 7328.36i 1.06729 0.775435i
\(448\) 0 0
\(449\) 934.240 + 2875.29i 0.0981949 + 0.302213i 0.988073 0.153985i \(-0.0492109\pi\)
−0.889878 + 0.456198i \(0.849211\pi\)
\(450\) 0 0
\(451\) −13074.1 3745.55i −1.36505 0.391066i
\(452\) 0 0
\(453\) 5908.32 + 18183.9i 0.612797 + 1.88599i
\(454\) 0 0
\(455\) −6886.09 + 5003.04i −0.709506 + 0.515486i
\(456\) 0 0
\(457\) 2322.41 7147.63i 0.237719 0.731624i −0.759030 0.651056i \(-0.774326\pi\)
0.996749 0.0805683i \(-0.0256735\pi\)
\(458\) 0 0
\(459\) 6073.77 + 4412.85i 0.617645 + 0.448746i
\(460\) 0 0
\(461\) 4085.19 0.412725 0.206363 0.978476i \(-0.433837\pi\)
0.206363 + 0.978476i \(0.433837\pi\)
\(462\) 0 0
\(463\) −970.931 −0.0974579 −0.0487290 0.998812i \(-0.515517\pi\)
−0.0487290 + 0.998812i \(0.515517\pi\)
\(464\) 0 0
\(465\) −4986.93 3623.21i −0.497340 0.361339i
\(466\) 0 0
\(467\) −3193.85 + 9829.67i −0.316475 + 0.974011i 0.658668 + 0.752434i \(0.271120\pi\)
−0.975143 + 0.221577i \(0.928880\pi\)
\(468\) 0 0
\(469\) 7202.44 5232.88i 0.709121 0.515207i
\(470\) 0 0
\(471\) 2310.72 + 7111.67i 0.226056 + 0.695730i
\(472\) 0 0
\(473\) 10087.1 3674.13i 0.980556 0.357160i
\(474\) 0 0
\(475\) −759.804 2338.44i −0.0733941 0.225884i
\(476\) 0 0
\(477\) 873.889 634.918i 0.0838839 0.0609452i
\(478\) 0 0
\(479\) −194.181 + 597.629i −0.0185227 + 0.0570070i −0.959891 0.280375i \(-0.909541\pi\)
0.941368 + 0.337382i \(0.109541\pi\)
\(480\) 0 0
\(481\) −3074.53 2233.78i −0.291448 0.211749i
\(482\) 0 0
\(483\) −35753.4 −3.36819
\(484\) 0 0
\(485\) −14660.7 −1.37259
\(486\) 0 0
\(487\) 14233.9 + 10341.5i 1.32443 + 0.962255i 0.999866 + 0.0163922i \(0.00521804\pi\)
0.324565 + 0.945863i \(0.394782\pi\)
\(488\) 0 0
\(489\) −5840.50 + 17975.2i −0.540115 + 1.66230i
\(490\) 0 0
\(491\) −765.687 + 556.304i −0.0703767 + 0.0511317i −0.622417 0.782686i \(-0.713849\pi\)
0.552041 + 0.833817i \(0.313849\pi\)
\(492\) 0 0
\(493\) −2517.82 7749.05i −0.230014 0.707911i
\(494\) 0 0
\(495\) −2050.06 + 746.719i −0.186148 + 0.0678030i
\(496\) 0 0
\(497\) −3236.28 9960.25i −0.292087 0.898950i
\(498\) 0 0
\(499\) −13523.7 + 9825.58i −1.21324 + 0.881469i −0.995521 0.0945424i \(-0.969861\pi\)
−0.217718 + 0.976012i \(0.569861\pi\)
\(500\) 0 0
\(501\) −2810.56 + 8650.01i −0.250632 + 0.771365i
\(502\) 0 0
\(503\) 1315.06 + 955.444i 0.116571 + 0.0846941i 0.644544 0.764568i \(-0.277047\pi\)
−0.527972 + 0.849262i \(0.677047\pi\)
\(504\) 0 0
\(505\) 12548.7 1.10576
\(506\) 0 0
\(507\) 10000.4 0.876007
\(508\) 0 0
\(509\) −8241.22 5987.60i −0.717654 0.521406i 0.167980 0.985790i \(-0.446276\pi\)
−0.885634 + 0.464385i \(0.846276\pi\)
\(510\) 0 0
\(511\) −2206.10 + 6789.69i −0.190983 + 0.587785i
\(512\) 0 0
\(513\) 10693.0 7768.94i 0.920290 0.668629i
\(514\) 0 0
\(515\) 5730.58 + 17636.9i 0.490329 + 1.50908i
\(516\) 0 0
\(517\) −297.405 85.2021i −0.0252995 0.00724794i
\(518\) 0 0
\(519\) −3093.04 9519.39i −0.261598 0.805115i
\(520\) 0 0
\(521\) 9802.50 7121.94i 0.824291 0.598882i −0.0936475 0.995605i \(-0.529853\pi\)
0.917938 + 0.396723i \(0.129853\pi\)
\(522\) 0 0
\(523\) 2969.13 9138.05i 0.248243 0.764013i −0.746843 0.665000i \(-0.768431\pi\)
0.995086 0.0990131i \(-0.0315686\pi\)
\(524\) 0 0
\(525\) 3590.39 + 2608.57i 0.298471 + 0.216852i
\(526\) 0 0
\(527\) −5392.95 −0.445770
\(528\) 0 0
\(529\) 22801.5 1.87405
\(530\) 0 0
\(531\) −1035.39 752.256i −0.0846181 0.0614786i
\(532\) 0 0
\(533\) −2379.63 + 7323.75i −0.193383 + 0.595172i
\(534\) 0 0
\(535\) −7618.32 + 5535.04i −0.615643 + 0.447291i
\(536\) 0 0
\(537\) −1952.60 6009.48i −0.156910 0.482920i
\(538\) 0 0
\(539\) −1028.80 29259.7i −0.0822145 2.33823i
\(540\) 0 0
\(541\) 2366.58 + 7283.59i 0.188073 + 0.578828i 0.999988 0.00494752i \(-0.00157485\pi\)
−0.811915 + 0.583775i \(0.801575\pi\)
\(542\) 0 0
\(543\) −11843.5 + 8604.83i −0.936012 + 0.680053i
\(544\) 0 0
\(545\) −1516.15 + 4666.23i −0.119165 + 0.366751i
\(546\) 0 0
\(547\) 1459.52 + 1060.40i 0.114085 + 0.0828877i 0.643365 0.765560i \(-0.277538\pi\)
−0.529280 + 0.848447i \(0.677538\pi\)
\(548\) 0 0
\(549\) −2529.31 −0.196627
\(550\) 0 0
\(551\) −14344.5 −1.10907
\(552\) 0 0
\(553\) 25575.4 + 18581.6i 1.96668 + 1.42888i
\(554\) 0 0
\(555\) −3909.75 + 12033.0i −0.299026 + 0.920308i
\(556\) 0 0
\(557\) −7180.49 + 5216.93i −0.546225 + 0.396856i −0.826392 0.563096i \(-0.809610\pi\)
0.280167 + 0.959951i \(0.409610\pi\)
\(558\) 0 0
\(559\) −1878.39 5781.08i −0.142124 0.437412i
\(560\) 0 0
\(561\) −6931.82 + 10282.2i −0.521678 + 0.773820i
\(562\) 0 0
\(563\) −1051.54 3236.30i −0.0787159 0.242263i 0.903953 0.427632i \(-0.140652\pi\)
−0.982669 + 0.185369i \(0.940652\pi\)
\(564\) 0 0
\(565\) −11784.6 + 8562.04i −0.877493 + 0.637536i
\(566\) 0 0
\(567\) −8759.26 + 26958.2i −0.648773 + 1.99672i
\(568\) 0 0
\(569\) −14255.4 10357.1i −1.05029 0.763083i −0.0780255 0.996951i \(-0.524862\pi\)
−0.972268 + 0.233868i \(0.924862\pi\)
\(570\) 0 0
\(571\) 9250.73 0.677988 0.338994 0.940789i \(-0.389913\pi\)
0.338994 + 0.940789i \(0.389913\pi\)
\(572\) 0 0
\(573\) 7384.39 0.538372
\(574\) 0 0
\(575\) −3511.57 2551.31i −0.254683 0.185038i
\(576\) 0 0
\(577\) −7065.29 + 21744.7i −0.509761 + 1.56888i 0.282856 + 0.959162i \(0.408718\pi\)
−0.792617 + 0.609720i \(0.791282\pi\)
\(578\) 0 0
\(579\) 9291.80 6750.89i 0.666933 0.484555i
\(580\) 0 0
\(581\) −2490.59 7665.24i −0.177843 0.547346i
\(582\) 0 0
\(583\) −4940.54 6320.47i −0.350971 0.449000i
\(584\) 0 0
\(585\) 381.758 + 1174.93i 0.0269807 + 0.0830382i
\(586\) 0 0
\(587\) −7162.81 + 5204.09i −0.503647 + 0.365921i −0.810408 0.585865i \(-0.800755\pi\)
0.306761 + 0.951787i \(0.400755\pi\)
\(588\) 0 0
\(589\) −2933.94 + 9029.74i −0.205248 + 0.631687i
\(590\) 0 0
\(591\) 945.376 + 686.856i 0.0657996 + 0.0478062i
\(592\) 0 0
\(593\) 12748.1 0.882801 0.441401 0.897310i \(-0.354482\pi\)
0.441401 + 0.897310i \(0.354482\pi\)
\(594\) 0 0
\(595\) 24792.0 1.70819
\(596\) 0 0
\(597\) −20066.8 14579.4i −1.37568 0.999487i
\(598\) 0 0
\(599\) 4042.90 12442.8i 0.275773 0.848743i −0.713240 0.700920i \(-0.752773\pi\)
0.989014 0.147824i \(-0.0472269\pi\)
\(600\) 0 0
\(601\) 6511.48 4730.87i 0.441945 0.321092i −0.344462 0.938800i \(-0.611939\pi\)
0.786407 + 0.617708i \(0.211939\pi\)
\(602\) 0 0
\(603\) −399.296 1228.91i −0.0269661 0.0829932i
\(604\) 0 0
\(605\) 6077.29 + 15021.1i 0.408392 + 1.00941i
\(606\) 0 0
\(607\) −3374.16 10384.6i −0.225622 0.694394i −0.998228 0.0595079i \(-0.981047\pi\)
0.772605 0.634887i \(-0.218953\pi\)
\(608\) 0 0
\(609\) 20946.3 15218.4i 1.39374 1.01261i
\(610\) 0 0
\(611\) −54.1308 + 166.598i −0.00358412 + 0.0110308i
\(612\) 0 0
\(613\) −10058.7 7308.07i −0.662752 0.481517i 0.204839 0.978796i \(-0.434333\pi\)
−0.867591 + 0.497278i \(0.834333\pi\)
\(614\) 0 0
\(615\) 25637.3 1.68097
\(616\) 0 0
\(617\) −25435.2 −1.65961 −0.829807 0.558051i \(-0.811549\pi\)
−0.829807 + 0.558051i \(0.811549\pi\)
\(618\) 0 0
\(619\) 15148.9 + 11006.3i 0.983660 + 0.714671i 0.958524 0.285013i \(-0.0919981\pi\)
0.0251362 + 0.999684i \(0.491998\pi\)
\(620\) 0 0
\(621\) 7210.24 22190.9i 0.465921 1.43396i
\(622\) 0 0
\(623\) 16997.3 12349.3i 1.09307 0.794163i
\(624\) 0 0
\(625\) −5558.50 17107.3i −0.355744 1.09487i
\(626\) 0 0
\(627\) 13444.9 + 17200.2i 0.856360 + 1.09555i
\(628\) 0 0
\(629\) 3420.58 + 10527.5i 0.216832 + 0.667341i
\(630\) 0 0
\(631\) 7931.28 5762.41i 0.500379 0.363547i −0.308783 0.951133i \(-0.599922\pi\)
0.809162 + 0.587586i \(0.199922\pi\)
\(632\) 0 0
\(633\) 6034.33 18571.7i 0.378899 1.16613i
\(634\) 0 0
\(635\) 5437.38 + 3950.49i 0.339804 + 0.246882i
\(636\) 0 0
\(637\) −16577.7 −1.03113
\(638\) 0 0
\(639\) −1520.04 −0.0941028
\(640\) 0 0
\(641\) −23470.8 17052.6i −1.44624 1.05076i −0.986691 0.162607i \(-0.948010\pi\)
−0.459553 0.888150i \(-0.651990\pi\)
\(642\) 0 0
\(643\) 4432.05 13640.5i 0.271824 0.836590i −0.718218 0.695818i \(-0.755042\pi\)
0.990042 0.140771i \(-0.0449582\pi\)
\(644\) 0 0
\(645\) −16372.1 + 11895.1i −0.999461 + 0.726151i
\(646\) 0 0
\(647\) 2014.23 + 6199.15i 0.122392 + 0.376683i 0.993417 0.114556i \(-0.0365444\pi\)
−0.871025 + 0.491238i \(0.836544\pi\)
\(648\) 0 0
\(649\) −5313.18 + 7881.19i −0.321357 + 0.476678i
\(650\) 0 0
\(651\) −5295.60 16298.2i −0.318819 0.981224i
\(652\) 0 0
\(653\) −7850.09 + 5703.42i −0.470441 + 0.341795i −0.797613 0.603170i \(-0.793904\pi\)
0.327172 + 0.944965i \(0.393904\pi\)
\(654\) 0 0
\(655\) 10230.4 31486.1i 0.610285 1.87826i
\(656\) 0 0
\(657\) 838.284 + 609.049i 0.0497787 + 0.0361663i
\(658\) 0 0
\(659\) −26277.8 −1.55332 −0.776661 0.629919i \(-0.783088\pi\)
−0.776661 + 0.629919i \(0.783088\pi\)
\(660\) 0 0
\(661\) 17275.4 1.01654 0.508271 0.861197i \(-0.330285\pi\)
0.508271 + 0.861197i \(0.330285\pi\)
\(662\) 0 0
\(663\) 5680.46 + 4127.10i 0.332746 + 0.241754i
\(664\) 0 0
\(665\) 13487.7 41510.7i 0.786509 2.42063i
\(666\) 0 0
\(667\) −20486.5 + 14884.3i −1.18926 + 0.864051i
\(668\) 0 0
\(669\) 1591.14 + 4897.04i 0.0919540 + 0.283005i
\(670\) 0 0
\(671\) 660.078 + 18773.0i 0.0379762 + 1.08006i
\(672\) 0 0
\(673\) 1237.78 + 3809.50i 0.0708960 + 0.218195i 0.980226 0.197879i \(-0.0634055\pi\)
−0.909330 + 0.416075i \(0.863405\pi\)
\(674\) 0 0
\(675\) −2343.11 + 1702.37i −0.133609 + 0.0970727i
\(676\) 0 0
\(677\) −2317.43 + 7132.33i −0.131560 + 0.404901i −0.995039 0.0994843i \(-0.968281\pi\)
0.863479 + 0.504385i \(0.168281\pi\)
\(678\) 0 0
\(679\) −32973.8 23956.9i −1.86365 1.35402i
\(680\) 0 0
\(681\) 1269.18 0.0714173
\(682\) 0 0
\(683\) −3368.22 −0.188699 −0.0943496 0.995539i \(-0.530077\pi\)
−0.0943496 + 0.995539i \(0.530077\pi\)
\(684\) 0 0
\(685\) 18955.6 + 13772.0i 1.05731 + 0.768178i
\(686\) 0 0
\(687\) 8894.60 27374.8i 0.493959 1.52025i
\(688\) 0 0
\(689\) −3674.88 + 2669.95i −0.203195 + 0.147630i
\(690\) 0 0
\(691\) −4784.92 14726.5i −0.263425 0.810739i −0.992052 0.125829i \(-0.959841\pi\)
0.728627 0.684911i \(-0.240159\pi\)
\(692\) 0 0
\(693\) −5831.07 1670.52i −0.319631 0.0915696i
\(694\) 0 0
\(695\) 4222.40 + 12995.2i 0.230453 + 0.709261i
\(696\) 0 0
\(697\) 18146.0 13183.8i 0.986125 0.716462i
\(698\) 0 0
\(699\) −609.898 + 1877.07i −0.0330021 + 0.101570i
\(700\) 0 0
\(701\) −2355.83 1711.61i −0.126931 0.0922206i 0.522508 0.852634i \(-0.324996\pi\)
−0.649439 + 0.760414i \(0.724996\pi\)
\(702\) 0 0
\(703\) 19487.7 1.04551
\(704\) 0 0
\(705\) 583.187 0.0311547
\(706\) 0 0
\(707\) 28223.7 + 20505.7i 1.50136 + 1.09080i
\(708\) 0 0
\(709\) −2476.01 + 7620.37i −0.131154 + 0.403652i −0.994972 0.100153i \(-0.968067\pi\)
0.863818 + 0.503805i \(0.168067\pi\)
\(710\) 0 0
\(711\) 3712.04 2696.95i 0.195798 0.142255i
\(712\) 0 0
\(713\) 5179.36 + 15940.4i 0.272046 + 0.837270i
\(714\) 0 0
\(715\) 8620.91 3140.10i 0.450914 0.164242i
\(716\) 0 0
\(717\) −3711.70 11423.4i −0.193328 0.595002i
\(718\) 0 0
\(719\) 7830.73 5689.36i 0.406171 0.295101i −0.365879 0.930663i \(-0.619232\pi\)
0.772050 + 0.635562i \(0.219232\pi\)
\(720\) 0 0
\(721\) −15931.5 + 49032.1i −0.822912 + 2.53266i
\(722\) 0 0
\(723\) −9506.99 6907.23i −0.489030 0.355301i
\(724\) 0 0
\(725\) 3143.23 0.161016
\(726\) 0 0
\(727\) −12376.6 −0.631395 −0.315698 0.948860i \(-0.602239\pi\)
−0.315698 + 0.948860i \(0.602239\pi\)
\(728\) 0 0
\(729\) −12068.4 8768.20i −0.613138 0.445471i
\(730\) 0 0
\(731\) −5471.18 + 16838.6i −0.276825 + 0.851979i
\(732\) 0 0
\(733\) −5559.86 + 4039.48i −0.280161 + 0.203549i −0.718988 0.695023i \(-0.755394\pi\)
0.438826 + 0.898572i \(0.355394\pi\)
\(734\) 0 0
\(735\) 17055.0 + 52489.9i 0.855896 + 2.63418i
\(736\) 0 0
\(737\) −9016.96 + 3284.36i −0.450670 + 0.164153i
\(738\) 0 0
\(739\) 6178.91 + 19016.7i 0.307571 + 0.946605i 0.978705 + 0.205270i \(0.0658072\pi\)
−0.671135 + 0.741335i \(0.734193\pi\)
\(740\) 0 0
\(741\) 10000.6 7265.86i 0.495791 0.360213i
\(742\) 0 0
\(743\) −1064.71 + 3276.86i −0.0525715 + 0.161798i −0.973895 0.226998i \(-0.927109\pi\)
0.921324 + 0.388796i \(0.127109\pi\)
\(744\) 0 0
\(745\) 21737.4 + 15793.1i 1.06899 + 0.776666i
\(746\) 0 0
\(747\) −1169.79 −0.0572966
\(748\) 0 0
\(749\) −26179.4 −1.27713
\(750\) 0 0
\(751\) −21795.3 15835.2i −1.05902 0.769420i −0.0851097 0.996372i \(-0.527124\pi\)
−0.973906 + 0.226952i \(0.927124\pi\)
\(752\) 0 0
\(753\) 7968.03 24523.1i 0.385619 1.18681i
\(754\) 0 0
\(755\) −33335.0 + 24219.3i −1.60687 + 1.16746i
\(756\) 0 0
\(757\) 2368.39 + 7289.16i 0.113713 + 0.349972i 0.991676 0.128755i \(-0.0410982\pi\)
−0.877963 + 0.478728i \(0.841098\pi\)
\(758\) 0 0
\(759\) 37049.2 + 10614.1i 1.77180 + 0.507597i
\(760\) 0 0
\(761\) −9432.42 29030.0i −0.449310 1.38283i −0.877687 0.479234i \(-0.840915\pi\)
0.428377 0.903600i \(-0.359085\pi\)
\(762\) 0 0
\(763\) −11035.1 + 8017.45i −0.523586 + 0.380408i
\(764\) 0 0
\(765\) 1111.95 3422.22i 0.0525523 0.161739i
\(766\) 0 0
\(767\) 4354.03 + 3163.39i 0.204974 + 0.148922i
\(768\) 0 0
\(769\) 6866.20 0.321979 0.160989 0.986956i \(-0.448532\pi\)
0.160989 + 0.986956i \(0.448532\pi\)
\(770\) 0 0
\(771\) 13530.7 0.632030
\(772\) 0 0
\(773\) −184.203 133.831i −0.00857090 0.00622712i 0.583492 0.812119i \(-0.301686\pi\)
−0.592062 + 0.805892i \(0.701686\pi\)
\(774\) 0 0
\(775\) 642.899 1978.64i 0.0297982 0.0917094i
\(776\) 0 0
\(777\) −28456.5 + 20674.9i −1.31386 + 0.954577i
\(778\) 0 0
\(779\) −12202.5 37555.4i −0.561232 1.72729i
\(780\) 0 0
\(781\) 396.687 + 11282.0i 0.0181749 + 0.516903i
\(782\) 0 0
\(783\) 5221.34 + 16069.6i 0.238309 + 0.733438i
\(784\) 0 0
\(785\) −13037.2 + 9472.09i −0.592762 + 0.430667i
\(786\) 0 0
\(787\) 5416.02 16668.8i 0.245312 0.754991i −0.750273 0.661128i \(-0.770078\pi\)
0.995585 0.0938638i \(-0.0299218\pi\)
\(788\) 0 0
\(789\) 22670.1 + 16470.8i 1.02291 + 0.743190i
\(790\) 0 0
\(791\) −40496.4 −1.82034
\(792\) 0 0
\(793\) 10636.2 0.476297
\(794\) 0 0
\(795\) 12234.5 + 8888.92i 0.545804 + 0.396550i
\(796\) 0 0
\(797\) −11809.2 + 36344.9i −0.524846 + 1.61531i 0.239774 + 0.970829i \(0.422927\pi\)
−0.764620 + 0.644481i \(0.777073\pi\)
\(798\) 0 0
\(799\) 412.778 299.901i 0.0182766 0.0132787i
\(800\) 0 0
\(801\) −942.313 2900.14i −0.0415668 0.127929i
\(802\) 0 0
\(803\) 4301.71 6380.85i 0.189046 0.280417i
\(804\) 0 0
\(805\) −23810.1 73279.9i −1.04248 3.20842i
\(806\) 0 0
\(807\) 3783.62 2748.96i 0.165043 0.119911i
\(808\) 0 0
\(809\) −926.503 + 2851.48i −0.0402646 + 0.123922i −0.969168 0.246400i \(-0.920752\pi\)
0.928904 + 0.370321i \(0.120752\pi\)
\(810\) 0 0
\(811\) 13642.3 + 9911.68i 0.590684 + 0.429157i 0.842560 0.538603i \(-0.181048\pi\)
−0.251876 + 0.967759i \(0.581048\pi\)
\(812\) 0 0
\(813\) −7582.71 −0.327106
\(814\) 0 0
\(815\) −40731.4 −1.75062
\(816\) 0 0
\(817\) 25217.3 + 18321.5i 1.07986 + 0.784561i
\(818\) 0 0
\(819\) −1061.32 + 3266.40i −0.0452814 + 0.139362i
\(820\) 0 0
\(821\) 8878.41 6450.55i 0.377416 0.274209i −0.382863 0.923805i \(-0.625062\pi\)
0.760280 + 0.649596i \(0.225062\pi\)
\(822\) 0 0
\(823\) −8583.43 26417.1i −0.363548 1.11888i −0.950886 0.309543i \(-0.899824\pi\)
0.587338 0.809342i \(-0.300176\pi\)
\(824\) 0 0
\(825\) −2946.11 3768.98i −0.124328 0.159054i
\(826\) 0 0
\(827\) −5555.24 17097.3i −0.233585 0.718900i −0.997306 0.0733539i \(-0.976630\pi\)
0.763721 0.645546i \(-0.223370\pi\)
\(828\) 0 0
\(829\) 8425.01 6121.13i 0.352971 0.256448i −0.397144 0.917757i \(-0.629998\pi\)
0.750114 + 0.661308i \(0.229998\pi\)
\(830\) 0 0
\(831\) 13256.9 40800.7i 0.553403 1.70320i
\(832\) 0 0
\(833\) 39064.1 + 28381.7i 1.62484 + 1.18052i
\(834\) 0 0
\(835\) −19600.7 −0.812349
\(836\) 0 0
\(837\) 11183.7 0.461844
\(838\) 0 0
\(839\) 11419.3 + 8296.63i 0.469892 + 0.341396i 0.797399 0.603452i \(-0.206209\pi\)
−0.327507 + 0.944849i \(0.606209\pi\)
\(840\) 0 0
\(841\) −1869.99 + 5755.25i −0.0766737 + 0.235977i
\(842\) 0 0
\(843\) −27567.3 + 20028.8i −1.12630 + 0.818302i
\(844\) 0 0
\(845\) 6659.84 + 20496.9i 0.271131 + 0.834454i
\(846\) 0 0
\(847\) −10877.2 + 43715.3i −0.441256 + 1.77340i
\(848\) 0 0
\(849\) −3251.86 10008.2i −0.131453 0.404570i
\(850\) 0 0
\(851\) 27831.8 20221.0i 1.12111 0.814533i
\(852\) 0 0
\(853\) −1773.98 + 5459.74i −0.0712073 + 0.219154i −0.980327 0.197382i \(-0.936756\pi\)
0.909119 + 0.416536i \(0.136756\pi\)
\(854\) 0 0
\(855\) −5125.09 3723.60i −0.204999 0.148941i
\(856\) 0 0
\(857\) −37005.0 −1.47499 −0.737495 0.675353i \(-0.763991\pi\)
−0.737495 + 0.675353i \(0.763991\pi\)
\(858\) 0 0
\(859\) −7255.76 −0.288199 −0.144100 0.989563i \(-0.546029\pi\)
−0.144100 + 0.989563i \(0.546029\pi\)
\(860\) 0 0
\(861\) 57661.8 + 41893.7i 2.28235 + 1.65823i
\(862\) 0 0
\(863\) −6039.18 + 18586.7i −0.238211 + 0.733138i 0.758468 + 0.651710i \(0.225948\pi\)
−0.996679 + 0.0814283i \(0.974052\pi\)
\(864\) 0 0
\(865\) 17451.1 12679.0i 0.685959 0.498378i
\(866\) 0 0
\(867\) 2256.65 + 6945.25i 0.0883965 + 0.272057i
\(868\) 0 0
\(869\) −20986.0 26847.6i −0.819219 1.04803i
\(870\) 0 0
\(871\) 1679.12 + 5167.79i 0.0653211 + 0.201038i
\(872\) 0 0
\(873\) −4785.85 + 3477.12i −0.185540 + 0.134803i
\(874\) 0 0
\(875\) 12960.5 39888.2i 0.500736 1.54111i
\(876\) 0 0
\(877\) −29172.7 21195.2i −1.12325 0.816091i −0.138554 0.990355i \(-0.544245\pi\)
−0.984699 + 0.174264i \(0.944245\pi\)
\(878\) 0 0
\(879\) 21900.8 0.840384
\(880\) 0 0
\(881\) 43821.4 1.67580 0.837900 0.545823i \(-0.183783\pi\)
0.837900 + 0.545823i \(0.183783\pi\)
\(882\) 0 0
\(883\) 6408.32 + 4655.92i 0.244232 + 0.177445i 0.703167 0.711025i \(-0.251769\pi\)
−0.458934 + 0.888470i \(0.651769\pi\)
\(884\) 0 0
\(885\) 5536.83 17040.6i 0.210303 0.647247i
\(886\) 0 0
\(887\) −13299.1 + 9662.37i −0.503428 + 0.365762i −0.810325 0.585981i \(-0.800709\pi\)
0.306897 + 0.951743i \(0.400709\pi\)
\(888\) 0 0
\(889\) 5773.94 + 17770.3i 0.217831 + 0.670414i
\(890\) 0 0
\(891\) 17079.8 25334.9i 0.642193 0.952583i
\(892\) 0 0
\(893\) −277.577 854.294i −0.0104017 0.0320133i
\(894\) 0 0
\(895\) 11016.7 8004.07i 0.411448 0.298935i
\(896\) 0 0
\(897\) 6743.35 20753.9i 0.251008 0.772522i
\(898\) 0 0
\(899\) −9819.37 7134.19i −0.364287 0.264670i
\(900\) 0 0
\(901\) 13230.7 0.489209
\(902\) 0 0
\(903\) −56260.8 −2.07336
\(904\) 0 0
\(905\) −25523.7 18544.0i −0.937498 0.681132i
\(906\) 0 0
\(907\) −11391.7 + 35059.9i −0.417038 + 1.28351i 0.493377 + 0.869816i \(0.335762\pi\)
−0.910415 + 0.413696i \(0.864238\pi\)
\(908\) 0 0
\(909\) 4096.42 2976.22i 0.149472 0.108597i
\(910\) 0 0
\(911\) 3507.69 + 10795.6i 0.127569 + 0.392616i 0.994360 0.106055i \(-0.0338218\pi\)
−0.866792 + 0.498670i \(0.833822\pi\)
\(912\) 0 0
\(913\) 305.283 + 8682.43i 0.0110662 + 0.314728i
\(914\) 0 0
\(915\) −10942.5 33677.5i −0.395352 1.21677i
\(916\) 0 0
\(917\) 74460.8 54098.9i 2.68147 1.94820i
\(918\) 0 0
\(919\) −5108.20 + 15721.4i −0.183356 + 0.564311i −0.999916 0.0129488i \(-0.995878\pi\)
0.816560 + 0.577260i \(0.195878\pi\)
\(920\) 0 0
\(921\) 17311.5 + 12577.6i 0.619365 + 0.449995i
\(922\) 0 0
\(923\) 6392.05 0.227949
\(924\) 0 0
\(925\) −4270.23 −0.151788
\(926\) 0 0
\(927\) 6053.71 + 4398.28i 0.214488 + 0.155834i
\(928\) 0 0
\(929\) −5474.81 + 16849.7i −0.193350 + 0.595072i 0.806641 + 0.591041i \(0.201283\pi\)
−0.999992 + 0.00403046i \(0.998717\pi\)
\(930\) 0 0
\(931\) 68773.4 49966.8i 2.42101 1.75896i
\(932\) 0 0
\(933\) −11447.6 35232.0i −0.401690 1.23627i
\(934\) 0 0
\(935\) −25690.5 7359.97i −0.898578 0.257430i
\(936\) 0 0
\(937\) −2512.98 7734.15i −0.0876151 0.269652i 0.897644 0.440722i \(-0.145277\pi\)
−0.985259 + 0.171070i \(0.945277\pi\)
\(938\) 0 0
\(939\) −39804.9 + 28919.9i −1.38337 + 1.00508i
\(940\) 0 0
\(941\) 14663.6 45130.0i 0.507992 1.56344i −0.287691 0.957723i \(-0.592888\pi\)
0.795682 0.605714i \(-0.207112\pi\)
\(942\) 0 0
\(943\) −56396.0 40974.1i −1.94751 1.41495i
\(944\) 0 0
\(945\) −51412.5 −1.76979
\(946\) 0 0
\(947\) −6370.98 −0.218616 −0.109308 0.994008i \(-0.534863\pi\)
−0.109308 + 0.994008i \(0.534863\pi\)
\(948\) 0 0
\(949\) −3525.15 2561.17i −0.120581 0.0876071i
\(950\) 0 0
\(951\) 5862.81 18043.9i 0.199910 0.615260i
\(952\) 0 0
\(953\) −23929.8 + 17386.0i −0.813390 + 0.590963i −0.914812 0.403881i \(-0.867661\pi\)
0.101421 + 0.994844i \(0.467661\pi\)
\(954\) 0 0
\(955\) 4917.66 + 15135.0i 0.166630 + 0.512835i
\(956\) 0 0
\(957\) −26223.3 + 9551.62i −0.885767 + 0.322633i
\(958\) 0 0
\(959\) 20128.9 + 61950.2i 0.677784 + 2.08600i
\(960\) 0 0
\(961\) 17602.1 12788.7i 0.590853 0.429280i
\(962\) 0 0
\(963\) −1174.17 + 3613.73i −0.0392909 + 0.120925i
\(964\) 0 0
\(965\) 20024.5 + 14548.6i 0.667991 + 0.485324i
\(966\) 0 0
\(967\) 44254.9 1.47171 0.735854 0.677141i \(-0.236781\pi\)
0.735854 + 0.677141i \(0.236781\pi\)
\(968\) 0 0
\(969\) −36005.2 −1.19366
\(970\) 0 0
\(971\) 26389.2 + 19172.9i 0.872162 + 0.633663i 0.931166 0.364595i \(-0.118793\pi\)
−0.0590042 + 0.998258i \(0.518793\pi\)
\(972\) 0 0
\(973\) −11738.6 + 36127.8i −0.386766 + 1.19034i
\(974\) 0 0
\(975\) −2191.38 + 1592.13i −0.0719798 + 0.0522964i
\(976\) 0 0
\(977\) −9812.65 30200.2i −0.321325 0.988937i −0.973072 0.230501i \(-0.925964\pi\)
0.651747 0.758436i \(-0.274036\pi\)
\(978\) 0 0
\(979\) −21279.5 + 7750.88i −0.694683 + 0.253033i
\(980\) 0 0
\(981\) 611.772 + 1882.84i 0.0199107 + 0.0612788i
\(982\) 0 0
\(983\) 28463.8 20680.2i 0.923555 0.671002i −0.0208517 0.999783i \(-0.506638\pi\)
0.944406 + 0.328781i \(0.106638\pi\)
\(984\) 0 0
\(985\) −778.199 + 2395.05i −0.0251731 + 0.0774748i
\(986\) 0 0
\(987\) 1311.67 + 952.980i 0.0423007 + 0.0307332i
\(988\) 0 0
\(989\) 55025.7 1.76918
\(990\) 0 0
\(991\) −34640.2 −1.11038 −0.555188 0.831725i \(-0.687354\pi\)
−0.555188 + 0.831725i \(0.687354\pi\)
\(992\) 0 0
\(993\) −15450.9 11225.7i −0.493775 0.358749i
\(994\) 0 0
\(995\) 16518.3 50838.0i 0.526295 1.61977i
\(996\) 0 0
\(997\) −2686.27 + 1951.69i −0.0853309 + 0.0619965i −0.629633 0.776893i \(-0.716795\pi\)
0.544302 + 0.838889i \(0.316795\pi\)
\(998\) 0 0
\(999\) −7093.44 21831.4i −0.224651 0.691405i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 88.4.i.a.49.3 yes 16
4.3 odd 2 176.4.m.e.49.2 16
11.3 even 5 968.4.a.n.1.4 8
11.8 odd 10 968.4.a.o.1.4 8
11.9 even 5 inner 88.4.i.a.9.3 16
44.3 odd 10 1936.4.a.bw.1.5 8
44.19 even 10 1936.4.a.bv.1.5 8
44.31 odd 10 176.4.m.e.97.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.4.i.a.9.3 16 11.9 even 5 inner
88.4.i.a.49.3 yes 16 1.1 even 1 trivial
176.4.m.e.49.2 16 4.3 odd 2
176.4.m.e.97.2 16 44.31 odd 10
968.4.a.n.1.4 8 11.3 even 5
968.4.a.o.1.4 8 11.8 odd 10
1936.4.a.bv.1.5 8 44.19 even 10
1936.4.a.bw.1.5 8 44.3 odd 10