Properties

Label 88.4.i.a.9.2
Level $88$
Weight $4$
Character 88.9
Analytic conductor $5.192$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [88,4,Mod(9,88)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(88, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 6]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("88.9");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 88 = 2^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 88.i (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.19216808051\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 60 x^{14} - 83 x^{13} + 1685 x^{12} - 14618 x^{11} + 106543 x^{10} - 521269 x^{9} + \cdots + 2025 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 9.2
Root \(3.98665 + 2.89647i\) of defining polynomial
Character \(\chi\) \(=\) 88.9
Dual form 88.4.i.a.49.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.87500 + 1.36227i) q^{3} +(1.88546 + 5.80286i) q^{5} +(-3.69974 - 2.68802i) q^{7} +(-6.68360 + 20.5700i) q^{9} +(-32.6966 + 16.1844i) q^{11} +(-14.6799 + 45.1799i) q^{13} +(-11.4403 - 8.31187i) q^{15} +(19.6589 + 60.5038i) q^{17} +(-14.9266 + 10.8448i) q^{19} +10.5988 q^{21} -51.9123 q^{23} +(71.0089 - 51.5910i) q^{25} +(-34.8272 - 107.187i) q^{27} +(62.4357 + 45.3622i) q^{29} +(33.7328 - 103.819i) q^{31} +(39.2586 - 74.8873i) q^{33} +(8.62246 - 26.5372i) q^{35} +(113.250 + 82.2810i) q^{37} +(-34.0225 - 104.710i) q^{39} +(128.134 - 93.0948i) q^{41} -26.9236 q^{43} -131.967 q^{45} +(208.809 - 151.708i) q^{47} +(-99.5302 - 306.322i) q^{49} +(-119.283 - 86.6641i) q^{51} +(-45.7633 + 140.845i) q^{53} +(-155.564 - 159.218i) q^{55} +(13.2138 - 40.6680i) q^{57} +(587.040 + 426.510i) q^{59} +(149.089 + 458.849i) q^{61} +(80.0201 - 58.1380i) q^{63} -289.851 q^{65} -464.330 q^{67} +(97.3358 - 70.7186i) q^{69} +(281.867 + 867.498i) q^{71} +(-742.094 - 539.163i) q^{73} +(-62.8611 + 193.467i) q^{75} +(164.473 + 28.0108i) q^{77} +(-234.747 + 722.475i) q^{79} +(-261.125 - 189.718i) q^{81} +(215.908 + 664.495i) q^{83} +(-314.029 + 228.155i) q^{85} -178.863 q^{87} -564.403 q^{89} +(175.756 - 127.694i) q^{91} +(78.1801 + 240.613i) q^{93} +(-91.0743 - 66.1694i) q^{95} +(360.762 - 1110.31i) q^{97} +(-114.383 - 780.739i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - q^{3} - q^{5} - 13 q^{7} + 7 q^{9} + 83 q^{11} + 69 q^{13} + 93 q^{15} - 217 q^{17} + 126 q^{19} + 34 q^{21} - 92 q^{23} + 307 q^{25} + 158 q^{27} - 553 q^{29} + 205 q^{31} - 198 q^{33} + 7 q^{35}+ \cdots - 3265 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/88\mathbb{Z}\right)^\times\).

\(n\) \(23\) \(45\) \(57\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.87500 + 1.36227i −0.360844 + 0.262169i −0.753404 0.657558i \(-0.771590\pi\)
0.392560 + 0.919726i \(0.371590\pi\)
\(4\) 0 0
\(5\) 1.88546 + 5.80286i 0.168641 + 0.519023i 0.999286 0.0377786i \(-0.0120282\pi\)
−0.830645 + 0.556802i \(0.812028\pi\)
\(6\) 0 0
\(7\) −3.69974 2.68802i −0.199767 0.145139i 0.483405 0.875397i \(-0.339400\pi\)
−0.683172 + 0.730258i \(0.739400\pi\)
\(8\) 0 0
\(9\) −6.68360 + 20.5700i −0.247541 + 0.761852i
\(10\) 0 0
\(11\) −32.6966 + 16.1844i −0.896217 + 0.443617i
\(12\) 0 0
\(13\) −14.6799 + 45.1799i −0.313189 + 0.963897i 0.663304 + 0.748350i \(0.269153\pi\)
−0.976493 + 0.215547i \(0.930847\pi\)
\(14\) 0 0
\(15\) −11.4403 8.31187i −0.196925 0.143074i
\(16\) 0 0
\(17\) 19.6589 + 60.5038i 0.280469 + 0.863196i 0.987720 + 0.156233i \(0.0499352\pi\)
−0.707251 + 0.706963i \(0.750065\pi\)
\(18\) 0 0
\(19\) −14.9266 + 10.8448i −0.180231 + 0.130946i −0.674243 0.738510i \(-0.735530\pi\)
0.494012 + 0.869455i \(0.335530\pi\)
\(20\) 0 0
\(21\) 10.5988 0.110136
\(22\) 0 0
\(23\) −51.9123 −0.470629 −0.235315 0.971919i \(-0.575612\pi\)
−0.235315 + 0.971919i \(0.575612\pi\)
\(24\) 0 0
\(25\) 71.0089 51.5910i 0.568071 0.412728i
\(26\) 0 0
\(27\) −34.8272 107.187i −0.248240 0.764006i
\(28\) 0 0
\(29\) 62.4357 + 45.3622i 0.399794 + 0.290467i 0.769457 0.638699i \(-0.220527\pi\)
−0.369663 + 0.929166i \(0.620527\pi\)
\(30\) 0 0
\(31\) 33.7328 103.819i 0.195438 0.601497i −0.804533 0.593908i \(-0.797584\pi\)
0.999971 0.00758885i \(-0.00241563\pi\)
\(32\) 0 0
\(33\) 39.2586 74.8873i 0.207092 0.395037i
\(34\) 0 0
\(35\) 8.62246 26.5372i 0.0416418 0.128160i
\(36\) 0 0
\(37\) 113.250 + 82.2810i 0.503195 + 0.365592i 0.810236 0.586104i \(-0.199339\pi\)
−0.307041 + 0.951696i \(0.599339\pi\)
\(38\) 0 0
\(39\) −34.0225 104.710i −0.139691 0.429925i
\(40\) 0 0
\(41\) 128.134 93.0948i 0.488077 0.354609i −0.316367 0.948637i \(-0.602463\pi\)
0.804444 + 0.594028i \(0.202463\pi\)
\(42\) 0 0
\(43\) −26.9236 −0.0954838 −0.0477419 0.998860i \(-0.515203\pi\)
−0.0477419 + 0.998860i \(0.515203\pi\)
\(44\) 0 0
\(45\) −131.967 −0.437165
\(46\) 0 0
\(47\) 208.809 151.708i 0.648040 0.470828i −0.214563 0.976710i \(-0.568833\pi\)
0.862603 + 0.505882i \(0.168833\pi\)
\(48\) 0 0
\(49\) −99.5302 306.322i −0.290176 0.893068i
\(50\) 0 0
\(51\) −119.283 86.6641i −0.327509 0.237949i
\(52\) 0 0
\(53\) −45.7633 + 140.845i −0.118605 + 0.365029i −0.992682 0.120759i \(-0.961467\pi\)
0.874077 + 0.485788i \(0.161467\pi\)
\(54\) 0 0
\(55\) −155.564 159.218i −0.381386 0.390345i
\(56\) 0 0
\(57\) 13.2138 40.6680i 0.0307056 0.0945020i
\(58\) 0 0
\(59\) 587.040 + 426.510i 1.29536 + 0.941133i 0.999899 0.0142226i \(-0.00452736\pi\)
0.295459 + 0.955355i \(0.404527\pi\)
\(60\) 0 0
\(61\) 149.089 + 458.849i 0.312933 + 0.963108i 0.976597 + 0.215077i \(0.0690004\pi\)
−0.663664 + 0.748031i \(0.731000\pi\)
\(62\) 0 0
\(63\) 80.0201 58.1380i 0.160025 0.116265i
\(64\) 0 0
\(65\) −289.851 −0.553102
\(66\) 0 0
\(67\) −464.330 −0.846671 −0.423335 0.905973i \(-0.639141\pi\)
−0.423335 + 0.905973i \(0.639141\pi\)
\(68\) 0 0
\(69\) 97.3358 70.7186i 0.169824 0.123384i
\(70\) 0 0
\(71\) 281.867 + 867.498i 0.471148 + 1.45004i 0.851083 + 0.525031i \(0.175946\pi\)
−0.379935 + 0.925013i \(0.624054\pi\)
\(72\) 0 0
\(73\) −742.094 539.163i −1.18980 0.864442i −0.196559 0.980492i \(-0.562977\pi\)
−0.993243 + 0.116050i \(0.962977\pi\)
\(74\) 0 0
\(75\) −62.8611 + 193.467i −0.0967810 + 0.297861i
\(76\) 0 0
\(77\) 164.473 + 28.0108i 0.243421 + 0.0414562i
\(78\) 0 0
\(79\) −234.747 + 722.475i −0.334317 + 1.02892i 0.632740 + 0.774364i \(0.281930\pi\)
−0.967057 + 0.254558i \(0.918070\pi\)
\(80\) 0 0
\(81\) −261.125 189.718i −0.358196 0.260244i
\(82\) 0 0
\(83\) 215.908 + 664.495i 0.285529 + 0.878769i 0.986239 + 0.165323i \(0.0528666\pi\)
−0.700710 + 0.713446i \(0.747133\pi\)
\(84\) 0 0
\(85\) −314.029 + 228.155i −0.400720 + 0.291140i
\(86\) 0 0
\(87\) −178.863 −0.220415
\(88\) 0 0
\(89\) −564.403 −0.672209 −0.336104 0.941825i \(-0.609109\pi\)
−0.336104 + 0.941825i \(0.609109\pi\)
\(90\) 0 0
\(91\) 175.756 127.694i 0.202464 0.147099i
\(92\) 0 0
\(93\) 78.1801 + 240.613i 0.0871709 + 0.268284i
\(94\) 0 0
\(95\) −91.0743 66.1694i −0.0983582 0.0714614i
\(96\) 0 0
\(97\) 360.762 1110.31i 0.377627 1.16222i −0.564062 0.825732i \(-0.690762\pi\)
0.941689 0.336484i \(-0.109238\pi\)
\(98\) 0 0
\(99\) −114.383 780.739i −0.116120 0.792598i
\(100\) 0 0
\(101\) −458.862 + 1412.23i −0.452064 + 1.39131i 0.422484 + 0.906370i \(0.361158\pi\)
−0.874548 + 0.484939i \(0.838842\pi\)
\(102\) 0 0
\(103\) 791.019 + 574.709i 0.756712 + 0.549784i 0.897900 0.440199i \(-0.145092\pi\)
−0.141188 + 0.989983i \(0.545092\pi\)
\(104\) 0 0
\(105\) 19.9837 + 61.5034i 0.0185734 + 0.0571631i
\(106\) 0 0
\(107\) 988.744 718.364i 0.893322 0.649037i −0.0434200 0.999057i \(-0.513825\pi\)
0.936742 + 0.350020i \(0.113825\pi\)
\(108\) 0 0
\(109\) −250.590 −0.220203 −0.110102 0.993920i \(-0.535118\pi\)
−0.110102 + 0.993920i \(0.535118\pi\)
\(110\) 0 0
\(111\) −324.433 −0.277422
\(112\) 0 0
\(113\) 1740.66 1264.66i 1.44909 1.05283i 0.463051 0.886332i \(-0.346755\pi\)
0.986042 0.166496i \(-0.0532452\pi\)
\(114\) 0 0
\(115\) −97.8788 301.240i −0.0793673 0.244268i
\(116\) 0 0
\(117\) −831.237 603.929i −0.656820 0.477208i
\(118\) 0 0
\(119\) 89.9026 276.692i 0.0692551 0.213145i
\(120\) 0 0
\(121\) 807.129 1058.35i 0.606408 0.795154i
\(122\) 0 0
\(123\) −113.431 + 349.106i −0.0831526 + 0.255917i
\(124\) 0 0
\(125\) 1050.29 + 763.077i 0.751523 + 0.546014i
\(126\) 0 0
\(127\) −551.691 1697.93i −0.385470 1.18635i −0.936139 0.351630i \(-0.885628\pi\)
0.550670 0.834723i \(-0.314372\pi\)
\(128\) 0 0
\(129\) 50.4817 36.6771i 0.0344548 0.0250329i
\(130\) 0 0
\(131\) 127.974 0.0853522 0.0426761 0.999089i \(-0.486412\pi\)
0.0426761 + 0.999089i \(0.486412\pi\)
\(132\) 0 0
\(133\) 84.3754 0.0550096
\(134\) 0 0
\(135\) 556.326 404.194i 0.354673 0.257685i
\(136\) 0 0
\(137\) 132.647 + 408.245i 0.0827211 + 0.254589i 0.983860 0.178942i \(-0.0572674\pi\)
−0.901139 + 0.433531i \(0.857267\pi\)
\(138\) 0 0
\(139\) −1972.02 1432.76i −1.20334 0.874281i −0.208735 0.977972i \(-0.566935\pi\)
−0.994610 + 0.103692i \(0.966935\pi\)
\(140\) 0 0
\(141\) −184.849 + 568.907i −0.110405 + 0.339791i
\(142\) 0 0
\(143\) −251.231 1714.81i −0.146916 1.00280i
\(144\) 0 0
\(145\) −145.510 + 447.835i −0.0833377 + 0.256487i
\(146\) 0 0
\(147\) 603.913 + 438.768i 0.338843 + 0.246184i
\(148\) 0 0
\(149\) 861.346 + 2650.95i 0.473585 + 1.45755i 0.847856 + 0.530226i \(0.177893\pi\)
−0.374271 + 0.927319i \(0.622107\pi\)
\(150\) 0 0
\(151\) −1030.25 + 748.520i −0.555235 + 0.403402i −0.829712 0.558192i \(-0.811495\pi\)
0.274477 + 0.961594i \(0.411495\pi\)
\(152\) 0 0
\(153\) −1375.96 −0.727055
\(154\) 0 0
\(155\) 666.047 0.345150
\(156\) 0 0
\(157\) 2954.08 2146.26i 1.50166 1.09102i 0.531949 0.846777i \(-0.321460\pi\)
0.969714 0.244245i \(-0.0785401\pi\)
\(158\) 0 0
\(159\) −106.062 326.427i −0.0529013 0.162813i
\(160\) 0 0
\(161\) 192.062 + 139.541i 0.0940162 + 0.0683068i
\(162\) 0 0
\(163\) −521.808 + 1605.96i −0.250743 + 0.771708i 0.743895 + 0.668296i \(0.232976\pi\)
−0.994639 + 0.103412i \(0.967024\pi\)
\(164\) 0 0
\(165\) 508.581 + 86.6147i 0.239958 + 0.0408663i
\(166\) 0 0
\(167\) −606.706 + 1867.25i −0.281128 + 0.865222i 0.706405 + 0.707808i \(0.250316\pi\)
−0.987533 + 0.157414i \(0.949684\pi\)
\(168\) 0 0
\(169\) −48.3183 35.1053i −0.0219929 0.0159787i
\(170\) 0 0
\(171\) −123.314 379.522i −0.0551466 0.169724i
\(172\) 0 0
\(173\) −2008.03 + 1458.92i −0.882474 + 0.641155i −0.933905 0.357522i \(-0.883622\pi\)
0.0514311 + 0.998677i \(0.483622\pi\)
\(174\) 0 0
\(175\) −401.392 −0.173385
\(176\) 0 0
\(177\) −1681.72 −0.714158
\(178\) 0 0
\(179\) −360.289 + 261.765i −0.150443 + 0.109303i −0.660460 0.750861i \(-0.729639\pi\)
0.510018 + 0.860164i \(0.329639\pi\)
\(180\) 0 0
\(181\) 428.842 + 1319.84i 0.176108 + 0.542005i 0.999682 0.0252033i \(-0.00802332\pi\)
−0.823574 + 0.567209i \(0.808023\pi\)
\(182\) 0 0
\(183\) −904.618 657.243i −0.365417 0.265491i
\(184\) 0 0
\(185\) −263.936 + 812.312i −0.104892 + 0.322824i
\(186\) 0 0
\(187\) −1622.00 1660.10i −0.634290 0.649190i
\(188\) 0 0
\(189\) −159.269 + 490.180i −0.0612969 + 0.188653i
\(190\) 0 0
\(191\) 3494.94 + 2539.22i 1.32401 + 0.961946i 0.999873 + 0.0159345i \(0.00507234\pi\)
0.324132 + 0.946012i \(0.394928\pi\)
\(192\) 0 0
\(193\) 565.914 + 1741.70i 0.211064 + 0.649589i 0.999410 + 0.0343560i \(0.0109380\pi\)
−0.788345 + 0.615233i \(0.789062\pi\)
\(194\) 0 0
\(195\) 543.472 394.855i 0.199584 0.145006i
\(196\) 0 0
\(197\) −720.368 −0.260529 −0.130264 0.991479i \(-0.541583\pi\)
−0.130264 + 0.991479i \(0.541583\pi\)
\(198\) 0 0
\(199\) −1848.51 −0.658478 −0.329239 0.944247i \(-0.606792\pi\)
−0.329239 + 0.944247i \(0.606792\pi\)
\(200\) 0 0
\(201\) 870.620 632.543i 0.305516 0.221971i
\(202\) 0 0
\(203\) −109.061 335.657i −0.0377075 0.116052i
\(204\) 0 0
\(205\) 781.808 + 568.017i 0.266360 + 0.193522i
\(206\) 0 0
\(207\) 346.961 1067.84i 0.116500 0.358550i
\(208\) 0 0
\(209\) 312.531 596.165i 0.103436 0.197309i
\(210\) 0 0
\(211\) −1798.41 + 5534.93i −0.586766 + 1.80588i 0.00529453 + 0.999986i \(0.498315\pi\)
−0.592060 + 0.805894i \(0.701685\pi\)
\(212\) 0 0
\(213\) −1710.27 1242.58i −0.550167 0.399720i
\(214\) 0 0
\(215\) −50.7634 156.234i −0.0161025 0.0495583i
\(216\) 0 0
\(217\) −403.869 + 293.428i −0.126343 + 0.0917935i
\(218\) 0 0
\(219\) 2125.91 0.655963
\(220\) 0 0
\(221\) −3022.15 −0.919872
\(222\) 0 0
\(223\) −773.235 + 561.788i −0.232196 + 0.168700i −0.697799 0.716293i \(-0.745837\pi\)
0.465604 + 0.884993i \(0.345837\pi\)
\(224\) 0 0
\(225\) 586.632 + 1805.47i 0.173817 + 0.534953i
\(226\) 0 0
\(227\) −1667.56 1211.55i −0.487576 0.354245i 0.316675 0.948534i \(-0.397433\pi\)
−0.804251 + 0.594289i \(0.797433\pi\)
\(228\) 0 0
\(229\) 1264.77 3892.56i 0.364971 1.12326i −0.585029 0.811013i \(-0.698917\pi\)
0.949999 0.312252i \(-0.101083\pi\)
\(230\) 0 0
\(231\) −346.545 + 171.536i −0.0987055 + 0.0488581i
\(232\) 0 0
\(233\) 814.557 2506.95i 0.229028 0.704874i −0.768830 0.639453i \(-0.779161\pi\)
0.997858 0.0654213i \(-0.0208391\pi\)
\(234\) 0 0
\(235\) 1274.04 + 925.646i 0.353657 + 0.256947i
\(236\) 0 0
\(237\) −544.056 1674.43i −0.149115 0.458928i
\(238\) 0 0
\(239\) 5359.80 3894.12i 1.45061 1.05393i 0.464926 0.885349i \(-0.346081\pi\)
0.985687 0.168583i \(-0.0539193\pi\)
\(240\) 0 0
\(241\) 19.3078 0.00516069 0.00258034 0.999997i \(-0.499179\pi\)
0.00258034 + 0.999997i \(0.499179\pi\)
\(242\) 0 0
\(243\) 3791.04 1.00080
\(244\) 0 0
\(245\) 1589.89 1155.12i 0.414588 0.301216i
\(246\) 0 0
\(247\) −270.847 833.582i −0.0697716 0.214735i
\(248\) 0 0
\(249\) −1310.05 951.806i −0.333417 0.242242i
\(250\) 0 0
\(251\) 282.337 868.944i 0.0709998 0.218515i −0.909260 0.416229i \(-0.863352\pi\)
0.980260 + 0.197714i \(0.0633516\pi\)
\(252\) 0 0
\(253\) 1697.35 840.171i 0.421786 0.208779i
\(254\) 0 0
\(255\) 277.996 855.584i 0.0682698 0.210113i
\(256\) 0 0
\(257\) −2446.80 1777.71i −0.593880 0.431479i 0.249821 0.968292i \(-0.419628\pi\)
−0.843701 + 0.536813i \(0.819628\pi\)
\(258\) 0 0
\(259\) −197.823 608.836i −0.0474599 0.146067i
\(260\) 0 0
\(261\) −1350.40 + 981.121i −0.320259 + 0.232681i
\(262\) 0 0
\(263\) 302.593 0.0709456 0.0354728 0.999371i \(-0.488706\pi\)
0.0354728 + 0.999371i \(0.488706\pi\)
\(264\) 0 0
\(265\) −903.589 −0.209460
\(266\) 0 0
\(267\) 1058.26 768.868i 0.242563 0.176232i
\(268\) 0 0
\(269\) −1677.77 5163.63i −0.380279 1.17038i −0.939847 0.341595i \(-0.889033\pi\)
0.559568 0.828785i \(-0.310967\pi\)
\(270\) 0 0
\(271\) 3238.73 + 2353.08i 0.725974 + 0.527451i 0.888287 0.459288i \(-0.151896\pi\)
−0.162313 + 0.986739i \(0.551896\pi\)
\(272\) 0 0
\(273\) −155.589 + 478.854i −0.0344933 + 0.106160i
\(274\) 0 0
\(275\) −1486.78 + 2836.09i −0.326022 + 0.621900i
\(276\) 0 0
\(277\) 2269.16 6983.77i 0.492205 1.51485i −0.329062 0.944308i \(-0.606733\pi\)
0.821267 0.570544i \(-0.193267\pi\)
\(278\) 0 0
\(279\) 1910.10 + 1387.77i 0.409873 + 0.297790i
\(280\) 0 0
\(281\) 2157.75 + 6640.86i 0.458079 + 1.40982i 0.867482 + 0.497469i \(0.165737\pi\)
−0.409402 + 0.912354i \(0.634263\pi\)
\(282\) 0 0
\(283\) 3459.89 2513.76i 0.726746 0.528012i −0.161786 0.986826i \(-0.551726\pi\)
0.888532 + 0.458814i \(0.151726\pi\)
\(284\) 0 0
\(285\) 260.905 0.0542270
\(286\) 0 0
\(287\) −724.303 −0.148969
\(288\) 0 0
\(289\) 700.459 508.914i 0.142573 0.103585i
\(290\) 0 0
\(291\) 836.113 + 2573.29i 0.168432 + 0.518381i
\(292\) 0 0
\(293\) −4488.77 3261.28i −0.895006 0.650260i 0.0421722 0.999110i \(-0.486572\pi\)
−0.937178 + 0.348850i \(0.886572\pi\)
\(294\) 0 0
\(295\) −1368.13 + 4210.68i −0.270020 + 0.831035i
\(296\) 0 0
\(297\) 2873.49 + 2940.99i 0.561403 + 0.574591i
\(298\) 0 0
\(299\) 762.065 2345.40i 0.147396 0.453638i
\(300\) 0 0
\(301\) 99.6101 + 72.3710i 0.0190745 + 0.0138585i
\(302\) 0 0
\(303\) −1063.47 3273.03i −0.201633 0.620563i
\(304\) 0 0
\(305\) −2381.53 + 1730.29i −0.447102 + 0.324839i
\(306\) 0 0
\(307\) −7074.54 −1.31520 −0.657598 0.753369i \(-0.728428\pi\)
−0.657598 + 0.753369i \(0.728428\pi\)
\(308\) 0 0
\(309\) −2266.07 −0.417192
\(310\) 0 0
\(311\) −8602.11 + 6249.80i −1.56843 + 1.13953i −0.639786 + 0.768553i \(0.720977\pi\)
−0.928642 + 0.370976i \(0.879023\pi\)
\(312\) 0 0
\(313\) 788.126 + 2425.60i 0.142324 + 0.438029i 0.996657 0.0816969i \(-0.0260339\pi\)
−0.854333 + 0.519726i \(0.826034\pi\)
\(314\) 0 0
\(315\) 488.242 + 354.728i 0.0873311 + 0.0634498i
\(316\) 0 0
\(317\) 1211.90 3729.84i 0.214722 0.660847i −0.784451 0.620191i \(-0.787055\pi\)
0.999173 0.0406561i \(-0.0129448\pi\)
\(318\) 0 0
\(319\) −2775.59 472.702i −0.487158 0.0829663i
\(320\) 0 0
\(321\) −875.291 + 2693.87i −0.152193 + 0.468402i
\(322\) 0 0
\(323\) −949.591 689.919i −0.163581 0.118849i
\(324\) 0 0
\(325\) 1288.48 + 3965.53i 0.219914 + 0.676824i
\(326\) 0 0
\(327\) 469.857 341.371i 0.0794592 0.0577305i
\(328\) 0 0
\(329\) −1180.33 −0.197793
\(330\) 0 0
\(331\) 7694.76 1.27777 0.638886 0.769302i \(-0.279396\pi\)
0.638886 + 0.769302i \(0.279396\pi\)
\(332\) 0 0
\(333\) −2449.44 + 1779.62i −0.403089 + 0.292861i
\(334\) 0 0
\(335\) −875.477 2694.44i −0.142783 0.439442i
\(336\) 0 0
\(337\) 8937.80 + 6493.69i 1.44473 + 1.04966i 0.987028 + 0.160548i \(0.0513261\pi\)
0.457698 + 0.889107i \(0.348674\pi\)
\(338\) 0 0
\(339\) −1540.93 + 4742.49i −0.246878 + 0.759814i
\(340\) 0 0
\(341\) 577.301 + 3940.46i 0.0916792 + 0.625771i
\(342\) 0 0
\(343\) −939.883 + 2892.66i −0.147956 + 0.455362i
\(344\) 0 0
\(345\) 593.893 + 431.488i 0.0926786 + 0.0673349i
\(346\) 0 0
\(347\) −3745.17 11526.5i −0.579399 1.78321i −0.620687 0.784058i \(-0.713146\pi\)
0.0412888 0.999147i \(-0.486854\pi\)
\(348\) 0 0
\(349\) −4899.75 + 3559.87i −0.751511 + 0.546005i −0.896295 0.443458i \(-0.853751\pi\)
0.144784 + 0.989463i \(0.453751\pi\)
\(350\) 0 0
\(351\) 5353.96 0.814169
\(352\) 0 0
\(353\) −1840.84 −0.277558 −0.138779 0.990323i \(-0.544318\pi\)
−0.138779 + 0.990323i \(0.544318\pi\)
\(354\) 0 0
\(355\) −4502.52 + 3271.27i −0.673152 + 0.489074i
\(356\) 0 0
\(357\) 208.361 + 641.269i 0.0308897 + 0.0950688i
\(358\) 0 0
\(359\) 2784.63 + 2023.15i 0.409379 + 0.297431i 0.773350 0.633979i \(-0.218579\pi\)
−0.363971 + 0.931410i \(0.618579\pi\)
\(360\) 0 0
\(361\) −2014.35 + 6199.55i −0.293680 + 0.903856i
\(362\) 0 0
\(363\) −71.6124 + 3083.93i −0.0103545 + 0.445908i
\(364\) 0 0
\(365\) 1729.50 5322.84i 0.248016 0.763316i
\(366\) 0 0
\(367\) −3954.19 2872.89i −0.562418 0.408620i 0.269925 0.962881i \(-0.413001\pi\)
−0.832343 + 0.554261i \(0.813001\pi\)
\(368\) 0 0
\(369\) 1058.56 + 3257.93i 0.149341 + 0.459623i
\(370\) 0 0
\(371\) 547.906 398.077i 0.0766735 0.0557066i
\(372\) 0 0
\(373\) 9784.78 1.35828 0.679138 0.734011i \(-0.262354\pi\)
0.679138 + 0.734011i \(0.262354\pi\)
\(374\) 0 0
\(375\) −3008.81 −0.414331
\(376\) 0 0
\(377\) −2966.01 + 2154.93i −0.405192 + 0.294389i
\(378\) 0 0
\(379\) −2552.32 7855.25i −0.345921 1.06464i −0.961089 0.276239i \(-0.910912\pi\)
0.615168 0.788396i \(-0.289088\pi\)
\(380\) 0 0
\(381\) 3347.46 + 2432.07i 0.450119 + 0.327031i
\(382\) 0 0
\(383\) 2239.86 6893.58i 0.298829 0.919701i −0.683079 0.730344i \(-0.739360\pi\)
0.981908 0.189357i \(-0.0606403\pi\)
\(384\) 0 0
\(385\) 147.565 + 1007.22i 0.0195340 + 0.133332i
\(386\) 0 0
\(387\) 179.946 553.818i 0.0236361 0.0727446i
\(388\) 0 0
\(389\) −8903.37 6468.68i −1.16046 0.843123i −0.170623 0.985336i \(-0.554578\pi\)
−0.989836 + 0.142213i \(0.954578\pi\)
\(390\) 0 0
\(391\) −1020.54 3140.89i −0.131997 0.406245i
\(392\) 0 0
\(393\) −239.952 + 174.335i −0.0307989 + 0.0223767i
\(394\) 0 0
\(395\) −4635.03 −0.590414
\(396\) 0 0
\(397\) 7715.18 0.975349 0.487675 0.873025i \(-0.337845\pi\)
0.487675 + 0.873025i \(0.337845\pi\)
\(398\) 0 0
\(399\) −158.204 + 114.942i −0.0198499 + 0.0144218i
\(400\) 0 0
\(401\) 762.359 + 2346.30i 0.0949386 + 0.292191i 0.987238 0.159254i \(-0.0509088\pi\)
−0.892299 + 0.451445i \(0.850909\pi\)
\(402\) 0 0
\(403\) 4195.33 + 3048.09i 0.518572 + 0.376764i
\(404\) 0 0
\(405\) 608.567 1872.98i 0.0746665 0.229800i
\(406\) 0 0
\(407\) −5034.56 857.419i −0.613155 0.104424i
\(408\) 0 0
\(409\) 2525.13 7771.56i 0.305281 0.939557i −0.674292 0.738465i \(-0.735551\pi\)
0.979572 0.201092i \(-0.0644491\pi\)
\(410\) 0 0
\(411\) −804.853 584.760i −0.0965949 0.0701803i
\(412\) 0 0
\(413\) −1025.43 3155.95i −0.122175 0.376015i
\(414\) 0 0
\(415\) −3448.89 + 2505.76i −0.407950 + 0.296393i
\(416\) 0 0
\(417\) 5649.35 0.663429
\(418\) 0 0
\(419\) 3563.75 0.415514 0.207757 0.978180i \(-0.433384\pi\)
0.207757 + 0.978180i \(0.433384\pi\)
\(420\) 0 0
\(421\) 1822.46 1324.09i 0.210976 0.153283i −0.477279 0.878752i \(-0.658377\pi\)
0.688255 + 0.725469i \(0.258377\pi\)
\(422\) 0 0
\(423\) 1725.05 + 5309.15i 0.198285 + 0.610260i
\(424\) 0 0
\(425\) 4517.41 + 3282.09i 0.515592 + 0.374599i
\(426\) 0 0
\(427\) 681.803 2098.37i 0.0772711 0.237816i
\(428\) 0 0
\(429\) 2807.09 + 2873.04i 0.315916 + 0.323337i
\(430\) 0 0
\(431\) 3282.25 10101.7i 0.366822 1.12896i −0.582010 0.813181i \(-0.697734\pi\)
0.948832 0.315781i \(-0.102266\pi\)
\(432\) 0 0
\(433\) −14174.5 10298.4i −1.57318 1.14298i −0.924033 0.382313i \(-0.875128\pi\)
−0.649143 0.760666i \(-0.724872\pi\)
\(434\) 0 0
\(435\) −337.239 1037.92i −0.0371710 0.114401i
\(436\) 0 0
\(437\) 774.874 562.979i 0.0848220 0.0616268i
\(438\) 0 0
\(439\) 13581.6 1.47657 0.738283 0.674491i \(-0.235637\pi\)
0.738283 + 0.674491i \(0.235637\pi\)
\(440\) 0 0
\(441\) 6966.28 0.752216
\(442\) 0 0
\(443\) 406.616 295.424i 0.0436093 0.0316840i −0.565767 0.824565i \(-0.691420\pi\)
0.609376 + 0.792881i \(0.291420\pi\)
\(444\) 0 0
\(445\) −1064.16 3275.15i −0.113362 0.348892i
\(446\) 0 0
\(447\) −5226.33 3797.15i −0.553013 0.401788i
\(448\) 0 0
\(449\) 780.866 2403.26i 0.0820742 0.252599i −0.901596 0.432579i \(-0.857604\pi\)
0.983670 + 0.179981i \(0.0576036\pi\)
\(450\) 0 0
\(451\) −2682.85 + 5117.65i −0.280112 + 0.534326i
\(452\) 0 0
\(453\) 912.035 2806.95i 0.0945941 0.291131i
\(454\) 0 0
\(455\) 1072.37 + 779.125i 0.110491 + 0.0802767i
\(456\) 0 0
\(457\) −2123.00 6533.92i −0.217308 0.668805i −0.998982 0.0451173i \(-0.985634\pi\)
0.781674 0.623687i \(-0.214366\pi\)
\(458\) 0 0
\(459\) 5800.56 4214.35i 0.589863 0.428560i
\(460\) 0 0
\(461\) −6760.39 −0.683000 −0.341500 0.939882i \(-0.610935\pi\)
−0.341500 + 0.939882i \(0.610935\pi\)
\(462\) 0 0
\(463\) 12796.6 1.28447 0.642236 0.766507i \(-0.278007\pi\)
0.642236 + 0.766507i \(0.278007\pi\)
\(464\) 0 0
\(465\) −1248.84 + 907.336i −0.124545 + 0.0904875i
\(466\) 0 0
\(467\) −263.829 811.982i −0.0261425 0.0804583i 0.937134 0.348970i \(-0.113468\pi\)
−0.963277 + 0.268511i \(0.913468\pi\)
\(468\) 0 0
\(469\) 1717.90 + 1248.13i 0.169137 + 0.122885i
\(470\) 0 0
\(471\) −2615.11 + 8048.49i −0.255835 + 0.787378i
\(472\) 0 0
\(473\) 880.308 435.742i 0.0855742 0.0423582i
\(474\) 0 0
\(475\) −500.427 + 1540.15i −0.0483392 + 0.148773i
\(476\) 0 0
\(477\) −2591.32 1882.70i −0.248739 0.180719i
\(478\) 0 0
\(479\) −1343.30 4134.24i −0.128135 0.394360i 0.866324 0.499482i \(-0.166476\pi\)
−0.994459 + 0.105123i \(0.966476\pi\)
\(480\) 0 0
\(481\) −5379.95 + 3908.76i −0.509989 + 0.370528i
\(482\) 0 0
\(483\) −550.209 −0.0518331
\(484\) 0 0
\(485\) 7123.18 0.666901
\(486\) 0 0
\(487\) −9994.13 + 7261.16i −0.929933 + 0.675636i −0.945976 0.324235i \(-0.894893\pi\)
0.0160433 + 0.999871i \(0.494893\pi\)
\(488\) 0 0
\(489\) −1209.36 3722.02i −0.111839 0.344204i
\(490\) 0 0
\(491\) 7536.87 + 5475.86i 0.692738 + 0.503303i 0.877559 0.479469i \(-0.159171\pi\)
−0.184821 + 0.982772i \(0.559171\pi\)
\(492\) 0 0
\(493\) −1517.17 + 4669.37i −0.138600 + 0.426568i
\(494\) 0 0
\(495\) 4314.85 2135.80i 0.391794 0.193934i
\(496\) 0 0
\(497\) 1289.01 3967.18i 0.116338 0.358053i
\(498\) 0 0
\(499\) 2367.31 + 1719.95i 0.212375 + 0.154300i 0.688888 0.724868i \(-0.258099\pi\)
−0.476512 + 0.879168i \(0.658099\pi\)
\(500\) 0 0
\(501\) −1406.12 4327.59i −0.125391 0.385913i
\(502\) 0 0
\(503\) −9176.67 + 6667.24i −0.813454 + 0.591009i −0.914830 0.403839i \(-0.867676\pi\)
0.101376 + 0.994848i \(0.467676\pi\)
\(504\) 0 0
\(505\) −9060.15 −0.798359
\(506\) 0 0
\(507\) 138.420 0.0121251
\(508\) 0 0
\(509\) −11610.9 + 8435.81i −1.01109 + 0.734599i −0.964437 0.264312i \(-0.914855\pi\)
−0.0466516 + 0.998911i \(0.514855\pi\)
\(510\) 0 0
\(511\) 1296.27 + 3989.52i 0.112219 + 0.345374i
\(512\) 0 0
\(513\) 1682.27 + 1222.24i 0.144784 + 0.105192i
\(514\) 0 0
\(515\) −1843.52 + 5673.76i −0.157738 + 0.485468i
\(516\) 0 0
\(517\) −4372.01 + 8339.78i −0.371916 + 0.709445i
\(518\) 0 0
\(519\) 1777.62 5470.96i 0.150345 0.462714i
\(520\) 0 0
\(521\) −2122.27 1541.92i −0.178461 0.129660i 0.494969 0.868911i \(-0.335180\pi\)
−0.673430 + 0.739251i \(0.735180\pi\)
\(522\) 0 0
\(523\) 986.726 + 3036.83i 0.0824981 + 0.253903i 0.983794 0.179300i \(-0.0573833\pi\)
−0.901296 + 0.433203i \(0.857383\pi\)
\(524\) 0 0
\(525\) 752.611 546.804i 0.0625650 0.0454561i
\(526\) 0 0
\(527\) 6944.58 0.574024
\(528\) 0 0
\(529\) −9472.11 −0.778508
\(530\) 0 0
\(531\) −12696.9 + 9224.80i −1.03766 + 0.753903i
\(532\) 0 0
\(533\) 2325.03 + 7155.70i 0.188946 + 0.581516i
\(534\) 0 0
\(535\) 6032.81 + 4383.09i 0.487516 + 0.354201i
\(536\) 0 0
\(537\) 318.948 981.620i 0.0256306 0.0788828i
\(538\) 0 0
\(539\) 8211.95 + 8404.85i 0.656240 + 0.671656i
\(540\) 0 0
\(541\) −2489.81 + 7662.84i −0.197865 + 0.608967i 0.802066 + 0.597236i \(0.203734\pi\)
−0.999931 + 0.0117314i \(0.996266\pi\)
\(542\) 0 0
\(543\) −2602.06 1890.51i −0.205645 0.149409i
\(544\) 0 0
\(545\) −472.478 1454.14i −0.0371353 0.114291i
\(546\) 0 0
\(547\) −1458.12 + 1059.39i −0.113976 + 0.0828084i −0.643313 0.765603i \(-0.722441\pi\)
0.529337 + 0.848412i \(0.322441\pi\)
\(548\) 0 0
\(549\) −10435.0 −0.811209
\(550\) 0 0
\(551\) −1423.90 −0.110091
\(552\) 0 0
\(553\) 2810.53 2041.97i 0.216122 0.157022i
\(554\) 0 0
\(555\) −611.707 1882.64i −0.0467847 0.143989i
\(556\) 0 0
\(557\) −694.192 504.360i −0.0528077 0.0383670i 0.561068 0.827770i \(-0.310391\pi\)
−0.613876 + 0.789403i \(0.710391\pi\)
\(558\) 0 0
\(559\) 395.234 1216.40i 0.0299045 0.0920366i
\(560\) 0 0
\(561\) 5302.75 + 903.093i 0.399077 + 0.0679655i
\(562\) 0 0
\(563\) −3427.69 + 10549.4i −0.256590 + 0.789702i 0.736923 + 0.675977i \(0.236278\pi\)
−0.993512 + 0.113725i \(0.963722\pi\)
\(564\) 0 0
\(565\) 10620.6 + 7716.33i 0.790819 + 0.574563i
\(566\) 0 0
\(567\) 456.127 + 1403.81i 0.0337840 + 0.103976i
\(568\) 0 0
\(569\) 11071.9 8044.22i 0.815745 0.592674i −0.0997452 0.995013i \(-0.531803\pi\)
0.915491 + 0.402339i \(0.131803\pi\)
\(570\) 0 0
\(571\) 1193.39 0.0874637 0.0437319 0.999043i \(-0.486075\pi\)
0.0437319 + 0.999043i \(0.486075\pi\)
\(572\) 0 0
\(573\) −10012.1 −0.729952
\(574\) 0 0
\(575\) −3686.24 + 2678.21i −0.267351 + 0.194242i
\(576\) 0 0
\(577\) −3796.06 11683.1i −0.273886 0.842934i −0.989512 0.144451i \(-0.953859\pi\)
0.715626 0.698484i \(-0.246141\pi\)
\(578\) 0 0
\(579\) −3433.76 2494.77i −0.246463 0.179066i
\(580\) 0 0
\(581\) 987.373 3038.82i 0.0705045 0.216991i
\(582\) 0 0
\(583\) −783.192 5345.80i −0.0556372 0.379761i
\(584\) 0 0
\(585\) 1937.25 5962.24i 0.136915 0.421382i
\(586\) 0 0
\(587\) −13764.1 10000.2i −0.967809 0.703155i −0.0128580 0.999917i \(-0.504093\pi\)
−0.954951 + 0.296763i \(0.904093\pi\)
\(588\) 0 0
\(589\) 622.378 + 1915.48i 0.0435393 + 0.134000i
\(590\) 0 0
\(591\) 1350.69 981.335i 0.0940103 0.0683024i
\(592\) 0 0
\(593\) 898.618 0.0622291 0.0311145 0.999516i \(-0.490094\pi\)
0.0311145 + 0.999516i \(0.490094\pi\)
\(594\) 0 0
\(595\) 1775.11 0.122307
\(596\) 0 0
\(597\) 3465.95 2518.16i 0.237608 0.172632i
\(598\) 0 0
\(599\) 6515.12 + 20051.5i 0.444409 + 1.36775i 0.883131 + 0.469126i \(0.155431\pi\)
−0.438722 + 0.898623i \(0.644569\pi\)
\(600\) 0 0
\(601\) −7616.77 5533.91i −0.516963 0.375595i 0.298496 0.954411i \(-0.403515\pi\)
−0.815458 + 0.578816i \(0.803515\pi\)
\(602\) 0 0
\(603\) 3103.40 9551.28i 0.209586 0.645038i
\(604\) 0 0
\(605\) 7663.26 + 2688.18i 0.514969 + 0.180645i
\(606\) 0 0
\(607\) 7229.88 22251.3i 0.483446 1.48789i −0.350772 0.936461i \(-0.614081\pi\)
0.834219 0.551434i \(-0.185919\pi\)
\(608\) 0 0
\(609\) 661.745 + 480.786i 0.0440316 + 0.0319909i
\(610\) 0 0
\(611\) 3788.89 + 11661.0i 0.250871 + 0.772102i
\(612\) 0 0
\(613\) −9261.58 + 6728.94i −0.610231 + 0.443359i −0.849496 0.527595i \(-0.823094\pi\)
0.239264 + 0.970954i \(0.423094\pi\)
\(614\) 0 0
\(615\) −2239.68 −0.146850
\(616\) 0 0
\(617\) 18827.4 1.22847 0.614233 0.789125i \(-0.289465\pi\)
0.614233 + 0.789125i \(0.289465\pi\)
\(618\) 0 0
\(619\) 18126.3 13169.5i 1.17699 0.855134i 0.185162 0.982708i \(-0.440719\pi\)
0.991829 + 0.127574i \(0.0407191\pi\)
\(620\) 0 0
\(621\) 1807.96 + 5564.33i 0.116829 + 0.359563i
\(622\) 0 0
\(623\) 2088.14 + 1517.12i 0.134285 + 0.0975639i
\(624\) 0 0
\(625\) 942.620 2901.09i 0.0603277 0.185669i
\(626\) 0 0
\(627\) 226.141 + 1543.56i 0.0144039 + 0.0983157i
\(628\) 0 0
\(629\) −2751.95 + 8469.62i −0.174447 + 0.536893i
\(630\) 0 0
\(631\) −2027.51 1473.07i −0.127914 0.0929352i 0.521988 0.852953i \(-0.325190\pi\)
−0.649903 + 0.760017i \(0.725190\pi\)
\(632\) 0 0
\(633\) −4168.05 12827.9i −0.261714 0.805473i
\(634\) 0 0
\(635\) 8812.65 6402.77i 0.550739 0.400135i
\(636\) 0 0
\(637\) 15300.7 0.951706
\(638\) 0 0
\(639\) −19728.3 −1.22135
\(640\) 0 0
\(641\) 1323.93 961.890i 0.0815788 0.0592704i −0.546248 0.837623i \(-0.683945\pi\)
0.627827 + 0.778353i \(0.283945\pi\)
\(642\) 0 0
\(643\) −9372.66 28846.1i −0.574839 1.76917i −0.636725 0.771091i \(-0.719712\pi\)
0.0618860 0.998083i \(-0.480288\pi\)
\(644\) 0 0
\(645\) 308.014 + 223.785i 0.0188031 + 0.0136613i
\(646\) 0 0
\(647\) −371.986 + 1144.85i −0.0226032 + 0.0695655i −0.961722 0.274028i \(-0.911644\pi\)
0.939119 + 0.343593i \(0.111644\pi\)
\(648\) 0 0
\(649\) −26097.0 4444.49i −1.57842 0.268816i
\(650\) 0 0
\(651\) 357.527 1100.36i 0.0215247 0.0662463i
\(652\) 0 0
\(653\) 15509.5 + 11268.3i 0.929456 + 0.675289i 0.945860 0.324576i \(-0.105222\pi\)
−0.0164038 + 0.999865i \(0.505222\pi\)
\(654\) 0 0
\(655\) 241.290 + 742.615i 0.0143939 + 0.0442998i
\(656\) 0 0
\(657\) 16050.5 11661.3i 0.953102 0.692469i
\(658\) 0 0
\(659\) −2265.97 −0.133945 −0.0669723 0.997755i \(-0.521334\pi\)
−0.0669723 + 0.997755i \(0.521334\pi\)
\(660\) 0 0
\(661\) 9959.70 0.586063 0.293031 0.956103i \(-0.405336\pi\)
0.293031 + 0.956103i \(0.405336\pi\)
\(662\) 0 0
\(663\) 5666.54 4116.98i 0.331931 0.241162i
\(664\) 0 0
\(665\) 159.087 + 489.619i 0.00927687 + 0.0285513i
\(666\) 0 0
\(667\) −3241.19 2354.86i −0.188155 0.136702i
\(668\) 0 0
\(669\) 684.511 2106.71i 0.0395586 0.121749i
\(670\) 0 0
\(671\) −12300.9 12589.9i −0.707706 0.724331i
\(672\) 0 0
\(673\) −1928.35 + 5934.85i −0.110449 + 0.339928i −0.990971 0.134078i \(-0.957193\pi\)
0.880521 + 0.474007i \(0.157193\pi\)
\(674\) 0 0
\(675\) −8002.93 5814.47i −0.456345 0.331554i
\(676\) 0 0
\(677\) 4908.61 + 15107.2i 0.278661 + 0.857629i 0.988228 + 0.152991i \(0.0488906\pi\)
−0.709567 + 0.704638i \(0.751109\pi\)
\(678\) 0 0
\(679\) −4319.26 + 3138.12i −0.244121 + 0.177364i
\(680\) 0 0
\(681\) 4777.14 0.268811
\(682\) 0 0
\(683\) −8537.29 −0.478288 −0.239144 0.970984i \(-0.576867\pi\)
−0.239144 + 0.970984i \(0.576867\pi\)
\(684\) 0 0
\(685\) −2118.89 + 1539.46i −0.118188 + 0.0858684i
\(686\) 0 0
\(687\) 2931.27 + 9021.51i 0.162787 + 0.501008i
\(688\) 0 0
\(689\) −5691.57 4135.17i −0.314705 0.228646i
\(690\) 0 0
\(691\) 4377.61 13472.9i 0.241002 0.741727i −0.755267 0.655417i \(-0.772493\pi\)
0.996268 0.0863091i \(-0.0275073\pi\)
\(692\) 0 0
\(693\) −1675.45 + 3195.99i −0.0918400 + 0.175189i
\(694\) 0 0
\(695\) 4595.92 14144.8i 0.250839 0.772003i
\(696\) 0 0
\(697\) 8151.56 + 5922.46i 0.442988 + 0.321849i
\(698\) 0 0
\(699\) 1887.84 + 5810.18i 0.102153 + 0.314394i
\(700\) 0 0
\(701\) 14064.1 10218.1i 0.757764 0.550548i −0.140459 0.990086i \(-0.544858\pi\)
0.898224 + 0.439538i \(0.144858\pi\)
\(702\) 0 0
\(703\) −2582.76 −0.138564
\(704\) 0 0
\(705\) −3649.81 −0.194979
\(706\) 0 0
\(707\) 5493.77 3991.46i 0.292241 0.212326i
\(708\) 0 0
\(709\) −1610.19 4955.66i −0.0852920 0.262502i 0.899310 0.437311i \(-0.144069\pi\)
−0.984602 + 0.174809i \(0.944069\pi\)
\(710\) 0 0
\(711\) −13292.4 9657.48i −0.701129 0.509400i
\(712\) 0 0
\(713\) −1751.15 + 5389.47i −0.0919789 + 0.283082i
\(714\) 0 0
\(715\) 9477.13 4691.07i 0.495699 0.245365i
\(716\) 0 0
\(717\) −4744.80 + 14603.0i −0.247138 + 0.760611i
\(718\) 0 0
\(719\) 20925.3 + 15203.1i 1.08537 + 0.788567i 0.978611 0.205718i \(-0.0659529\pi\)
0.106758 + 0.994285i \(0.465953\pi\)
\(720\) 0 0
\(721\) −1381.73 4252.54i −0.0713710 0.219657i
\(722\) 0 0
\(723\) −36.2022 + 26.3024i −0.00186220 + 0.00135297i
\(724\) 0 0
\(725\) 6773.78 0.346996
\(726\) 0 0
\(727\) −29046.8 −1.48182 −0.740911 0.671603i \(-0.765606\pi\)
−0.740911 + 0.671603i \(0.765606\pi\)
\(728\) 0 0
\(729\) −57.8457 + 42.0273i −0.00293887 + 0.00213521i
\(730\) 0 0
\(731\) −529.287 1628.98i −0.0267803 0.0824213i
\(732\) 0 0
\(733\) 12582.6 + 9141.78i 0.634036 + 0.460654i 0.857796 0.513990i \(-0.171833\pi\)
−0.223760 + 0.974644i \(0.571833\pi\)
\(734\) 0 0
\(735\) −1407.46 + 4331.70i −0.0706324 + 0.217384i
\(736\) 0 0
\(737\) 15182.0 7514.91i 0.758800 0.375598i
\(738\) 0 0
\(739\) −11799.8 + 36315.9i −0.587363 + 1.80772i 0.00220606 + 0.999998i \(0.499298\pi\)
−0.589569 + 0.807718i \(0.700702\pi\)
\(740\) 0 0
\(741\) 1643.40 + 1194.00i 0.0814735 + 0.0591940i
\(742\) 0 0
\(743\) 5535.39 + 17036.2i 0.273316 + 0.841181i 0.989660 + 0.143433i \(0.0458142\pi\)
−0.716344 + 0.697747i \(0.754186\pi\)
\(744\) 0 0
\(745\) −13759.0 + 9996.53i −0.676634 + 0.491604i
\(746\) 0 0
\(747\) −15111.7 −0.740172
\(748\) 0 0
\(749\) −5589.07 −0.272657
\(750\) 0 0
\(751\) 32671.5 23737.2i 1.58748 1.15337i 0.680060 0.733156i \(-0.261954\pi\)
0.907423 0.420218i \(-0.138046\pi\)
\(752\) 0 0
\(753\) 654.353 + 2013.89i 0.0316679 + 0.0974638i
\(754\) 0 0
\(755\) −6286.05 4567.09i −0.303010 0.220150i
\(756\) 0 0
\(757\) −8622.85 + 26538.4i −0.414006 + 1.27418i 0.499131 + 0.866527i \(0.333653\pi\)
−0.913137 + 0.407653i \(0.866347\pi\)
\(758\) 0 0
\(759\) −2038.00 + 3887.58i −0.0974636 + 0.185916i
\(760\) 0 0
\(761\) −6276.93 + 19318.4i −0.299000 + 0.920226i 0.682849 + 0.730560i \(0.260741\pi\)
−0.981849 + 0.189667i \(0.939259\pi\)
\(762\) 0 0
\(763\) 927.117 + 673.590i 0.0439894 + 0.0319602i
\(764\) 0 0
\(765\) −2594.32 7984.48i −0.122611 0.377359i
\(766\) 0 0
\(767\) −27887.3 + 20261.3i −1.31285 + 0.953839i
\(768\) 0 0
\(769\) −19314.1 −0.905701 −0.452850 0.891587i \(-0.649593\pi\)
−0.452850 + 0.891587i \(0.649593\pi\)
\(770\) 0 0
\(771\) 7009.47 0.327419
\(772\) 0 0
\(773\) −3935.29 + 2859.16i −0.183108 + 0.133036i −0.675563 0.737302i \(-0.736100\pi\)
0.492455 + 0.870338i \(0.336100\pi\)
\(774\) 0 0
\(775\) −2960.79 9112.36i −0.137232 0.422356i
\(776\) 0 0
\(777\) 1200.32 + 872.082i 0.0554198 + 0.0402648i
\(778\) 0 0
\(779\) −903.008 + 2779.17i −0.0415323 + 0.127823i
\(780\) 0 0
\(781\) −23256.0 23802.3i −1.06551 1.09054i
\(782\) 0 0
\(783\) 2687.78 8272.14i 0.122674 0.377551i
\(784\) 0 0
\(785\) 18024.3 + 13095.4i 0.819507 + 0.595407i
\(786\) 0 0
\(787\) 5052.14 + 15548.9i 0.228830 + 0.704267i 0.997880 + 0.0650785i \(0.0207298\pi\)
−0.769050 + 0.639189i \(0.779270\pi\)
\(788\) 0 0
\(789\) −567.363 + 412.213i −0.0256003 + 0.0185997i
\(790\) 0 0
\(791\) −9839.42 −0.442288
\(792\) 0 0
\(793\) −22919.4 −1.02634
\(794\) 0 0
\(795\) 1694.23 1230.93i 0.0755826 0.0549140i
\(796\) 0 0
\(797\) 1544.91 + 4754.75i 0.0686619 + 0.211320i 0.979500 0.201444i \(-0.0645635\pi\)
−0.910838 + 0.412764i \(0.864563\pi\)
\(798\) 0 0
\(799\) 13283.9 + 9651.30i 0.588172 + 0.427332i
\(800\) 0 0
\(801\) 3772.24 11609.8i 0.166399 0.512124i
\(802\) 0 0
\(803\) 32990.0 + 5618.41i 1.44980 + 0.246911i
\(804\) 0 0
\(805\) −447.612 + 1377.61i −0.0195978 + 0.0603159i
\(806\) 0 0
\(807\) 10180.1 + 7396.25i 0.444059 + 0.322628i
\(808\) 0 0
\(809\) −1001.12 3081.13i −0.0435074 0.133902i 0.926943 0.375201i \(-0.122426\pi\)
−0.970451 + 0.241299i \(0.922426\pi\)
\(810\) 0 0
\(811\) −13745.1 + 9986.39i −0.595136 + 0.432392i −0.844149 0.536109i \(-0.819894\pi\)
0.249013 + 0.968500i \(0.419894\pi\)
\(812\) 0 0
\(813\) −9278.15 −0.400245
\(814\) 0 0
\(815\) −10303.0 −0.442820
\(816\) 0 0
\(817\) 401.877 291.981i 0.0172092 0.0125032i
\(818\) 0 0
\(819\) 1451.99 + 4468.76i 0.0619494 + 0.190661i
\(820\) 0 0
\(821\) −28185.9 20478.2i −1.19816 0.870517i −0.204061 0.978958i \(-0.565414\pi\)
−0.994103 + 0.108441i \(0.965414\pi\)
\(822\) 0 0
\(823\) −855.025 + 2631.50i −0.0362142 + 0.111456i −0.967530 0.252758i \(-0.918662\pi\)
0.931315 + 0.364214i \(0.118662\pi\)
\(824\) 0 0
\(825\) −1075.80 7343.06i −0.0453996 0.309882i
\(826\) 0 0
\(827\) −10220.6 + 31455.7i −0.429751 + 1.32264i 0.468620 + 0.883400i \(0.344751\pi\)
−0.898371 + 0.439237i \(0.855249\pi\)
\(828\) 0 0
\(829\) 5208.77 + 3784.39i 0.218225 + 0.158549i 0.691527 0.722351i \(-0.256938\pi\)
−0.473303 + 0.880900i \(0.656938\pi\)
\(830\) 0 0
\(831\) 5259.08 + 16185.8i 0.219537 + 0.675667i
\(832\) 0 0
\(833\) 16577.0 12043.9i 0.689508 0.500957i
\(834\) 0 0
\(835\) −11979.3 −0.496480
\(836\) 0 0
\(837\) −12302.8 −0.508062
\(838\) 0 0
\(839\) 22453.9 16313.7i 0.923953 0.671291i −0.0205520 0.999789i \(-0.506542\pi\)
0.944505 + 0.328498i \(0.106542\pi\)
\(840\) 0 0
\(841\) −5696.12 17530.9i −0.233553 0.718802i
\(842\) 0 0
\(843\) −13092.4 9512.19i −0.534907 0.388633i
\(844\) 0 0
\(845\) 112.609 346.574i 0.00458445 0.0141095i
\(846\) 0 0
\(847\) −5831.03 + 1746.04i −0.236548 + 0.0708319i
\(848\) 0 0
\(849\) −3062.89 + 9426.60i −0.123814 + 0.381060i
\(850\) 0 0
\(851\) −5879.08 4271.40i −0.236818 0.172058i
\(852\) 0 0
\(853\) −3222.19 9916.87i −0.129338 0.398062i 0.865328 0.501206i \(-0.167110\pi\)
−0.994667 + 0.103143i \(0.967110\pi\)
\(854\) 0 0
\(855\) 1969.81 1431.15i 0.0787907 0.0572448i
\(856\) 0 0
\(857\) 26763.2 1.06676 0.533379 0.845876i \(-0.320922\pi\)
0.533379 + 0.845876i \(0.320922\pi\)
\(858\) 0 0
\(859\) 29313.2 1.16432 0.582162 0.813073i \(-0.302207\pi\)
0.582162 + 0.813073i \(0.302207\pi\)
\(860\) 0 0
\(861\) 1358.07 986.695i 0.0537548 0.0390551i
\(862\) 0 0
\(863\) 14478.5 + 44560.4i 0.571095 + 1.75765i 0.649106 + 0.760698i \(0.275143\pi\)
−0.0780101 + 0.996953i \(0.524857\pi\)
\(864\) 0 0
\(865\) −12252.0 8901.59i −0.481596 0.349900i
\(866\) 0 0
\(867\) −620.086 + 1908.43i −0.0242898 + 0.0747562i
\(868\) 0 0
\(869\) −4017.44 27421.7i −0.156827 1.07045i
\(870\) 0 0
\(871\) 6816.30 20978.4i 0.265168 0.816104i
\(872\) 0 0
\(873\) 20427.9 + 14841.7i 0.791959 + 0.575392i
\(874\) 0 0
\(875\) −1834.62 5646.37i −0.0708816 0.218151i
\(876\) 0 0
\(877\) 29738.4 21606.2i 1.14503 0.831914i 0.157219 0.987564i \(-0.449747\pi\)
0.987812 + 0.155649i \(0.0497470\pi\)
\(878\) 0 0
\(879\) 12859.2 0.493436
\(880\) 0 0
\(881\) 8902.03 0.340428 0.170214 0.985407i \(-0.445554\pi\)
0.170214 + 0.985407i \(0.445554\pi\)
\(882\) 0 0
\(883\) 37666.0 27366.0i 1.43552 1.04296i 0.446562 0.894753i \(-0.352648\pi\)
0.988956 0.148212i \(-0.0473519\pi\)
\(884\) 0 0
\(885\) −3170.83 9758.80i −0.120436 0.370665i
\(886\) 0 0
\(887\) −13879.4 10084.0i −0.525393 0.381721i 0.293239 0.956039i \(-0.405267\pi\)
−0.818632 + 0.574319i \(0.805267\pi\)
\(888\) 0 0
\(889\) −2522.95 + 7764.84i −0.0951823 + 0.292941i
\(890\) 0 0
\(891\) 11608.4 + 1976.98i 0.436470 + 0.0743336i
\(892\) 0 0
\(893\) −1471.55 + 4528.97i −0.0551440 + 0.169716i
\(894\) 0 0
\(895\) −2198.30 1597.16i −0.0821016 0.0596503i
\(896\) 0 0
\(897\) 1766.19 + 5435.76i 0.0657427 + 0.202335i
\(898\) 0 0
\(899\) 6815.58 4951.81i 0.252850 0.183706i
\(900\) 0 0
\(901\) −9421.32 −0.348357
\(902\) 0 0
\(903\) −285.358 −0.0105162
\(904\) 0 0
\(905\) −6850.28 + 4977.02i −0.251614 + 0.182809i
\(906\) 0 0
\(907\) −6020.17 18528.2i −0.220393 0.678300i −0.998727 0.0504492i \(-0.983935\pi\)
0.778334 0.627851i \(-0.216065\pi\)
\(908\) 0 0
\(909\) −25982.8 18877.6i −0.948068 0.688812i
\(910\) 0 0
\(911\) 16441.2 50600.9i 0.597939 1.84027i 0.0584238 0.998292i \(-0.481393\pi\)
0.539515 0.841976i \(-0.318607\pi\)
\(912\) 0 0
\(913\) −17813.9 18232.4i −0.645733 0.660902i
\(914\) 0 0
\(915\) 2108.27 6488.58i 0.0761718 0.234433i
\(916\) 0 0
\(917\) −473.470 343.996i −0.0170506 0.0123880i
\(918\) 0 0
\(919\) 3800.15 + 11695.7i 0.136404 + 0.419809i 0.995806 0.0914922i \(-0.0291637\pi\)
−0.859402 + 0.511301i \(0.829164\pi\)
\(920\) 0 0
\(921\) 13264.8 9637.43i 0.474581 0.344803i
\(922\) 0 0
\(923\) −43331.3 −1.54525
\(924\) 0 0
\(925\) 12286.7 0.436741
\(926\) 0 0
\(927\) −17108.6 + 12430.1i −0.606171 + 0.440409i
\(928\) 0 0
\(929\) 11760.7 + 36195.8i 0.415347 + 1.27831i 0.911940 + 0.410323i \(0.134584\pi\)
−0.496594 + 0.867983i \(0.665416\pi\)
\(930\) 0 0
\(931\) 4807.65 + 3492.96i 0.169242 + 0.122962i
\(932\) 0 0
\(933\) 7615.07 23436.8i 0.267209 0.822386i
\(934\) 0 0
\(935\) 6575.10 12542.3i 0.229977 0.438691i
\(936\) 0 0
\(937\) −12909.9 + 39732.6i −0.450105 + 1.38528i 0.426683 + 0.904401i \(0.359682\pi\)
−0.876787 + 0.480878i \(0.840318\pi\)
\(938\) 0 0
\(939\) −4782.06 3474.37i −0.166195 0.120747i
\(940\) 0 0
\(941\) −9980.78 30717.7i −0.345764 1.06415i −0.961173 0.275945i \(-0.911009\pi\)
0.615409 0.788208i \(-0.288991\pi\)
\(942\) 0 0
\(943\) −6651.74 + 4832.77i −0.229703 + 0.166889i
\(944\) 0 0
\(945\) −3144.74 −0.108252
\(946\) 0 0
\(947\) 1027.50 0.0352579 0.0176290 0.999845i \(-0.494388\pi\)
0.0176290 + 0.999845i \(0.494388\pi\)
\(948\) 0 0
\(949\) 35253.2 25612.9i 1.20587 0.876113i
\(950\) 0 0
\(951\) 2808.73 + 8644.38i 0.0957721 + 0.294756i
\(952\) 0 0
\(953\) −29825.9 21669.8i −1.01380 0.736571i −0.0488000 0.998809i \(-0.515540\pi\)
−0.965003 + 0.262237i \(0.915540\pi\)
\(954\) 0 0
\(955\) −8145.17 + 25068.3i −0.275991 + 0.849413i
\(956\) 0 0
\(957\) 5848.19 2894.79i 0.197539 0.0977798i
\(958\) 0 0
\(959\) 606.611 1866.96i 0.0204260 0.0628647i
\(960\) 0 0
\(961\) 14461.0 + 10506.5i 0.485415 + 0.352674i
\(962\) 0 0
\(963\) 8168.39 + 25139.7i 0.273336 + 0.841242i
\(964\) 0 0
\(965\) −9039.86 + 6567.84i −0.301558 + 0.219095i
\(966\) 0 0
\(967\) 58557.8 1.94735 0.973677 0.227931i \(-0.0731960\pi\)
0.973677 + 0.227931i \(0.0731960\pi\)
\(968\) 0 0
\(969\) 2720.34 0.0901857
\(970\) 0 0
\(971\) 14372.1 10442.0i 0.474999 0.345107i −0.324387 0.945924i \(-0.605158\pi\)
0.799386 + 0.600817i \(0.205158\pi\)
\(972\) 0 0
\(973\) 3444.69 + 10601.7i 0.113496 + 0.349305i
\(974\) 0 0
\(975\) −7818.01 5680.12i −0.256797 0.186574i
\(976\) 0 0
\(977\) −5685.90 + 17499.4i −0.186191 + 0.573036i −0.999967 0.00814260i \(-0.997408\pi\)
0.813776 + 0.581178i \(0.197408\pi\)
\(978\) 0 0
\(979\) 18454.0 9134.53i 0.602444 0.298203i
\(980\) 0 0
\(981\) 1674.84 5154.64i 0.0545093 0.167762i
\(982\) 0 0
\(983\) −10004.6 7268.76i −0.324615 0.235847i 0.413527 0.910492i \(-0.364297\pi\)
−0.738142 + 0.674645i \(0.764297\pi\)
\(984\) 0 0
\(985\) −1358.23 4180.20i −0.0439358 0.135220i
\(986\) 0 0
\(987\) 2213.12 1607.93i 0.0713723 0.0518550i
\(988\) 0 0
\(989\) 1397.66 0.0449375
\(990\) 0 0
\(991\) −54570.4 −1.74923 −0.874615 0.484818i \(-0.838886\pi\)
−0.874615 + 0.484818i \(0.838886\pi\)
\(992\) 0 0
\(993\) −14427.7 + 10482.3i −0.461077 + 0.334992i
\(994\) 0 0
\(995\) −3485.29 10726.6i −0.111046 0.341766i
\(996\) 0 0
\(997\) 33039.6 + 24004.7i 1.04952 + 0.762523i 0.972122 0.234477i \(-0.0753376\pi\)
0.0774017 + 0.997000i \(0.475338\pi\)
\(998\) 0 0
\(999\) 4875.28 15004.6i 0.154401 0.475199i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 88.4.i.a.9.2 16
4.3 odd 2 176.4.m.e.97.3 16
11.4 even 5 968.4.a.n.1.6 8
11.5 even 5 inner 88.4.i.a.49.2 yes 16
11.7 odd 10 968.4.a.o.1.6 8
44.7 even 10 1936.4.a.bv.1.3 8
44.15 odd 10 1936.4.a.bw.1.3 8
44.27 odd 10 176.4.m.e.49.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.4.i.a.9.2 16 1.1 even 1 trivial
88.4.i.a.49.2 yes 16 11.5 even 5 inner
176.4.m.e.49.3 16 44.27 odd 10
176.4.m.e.97.3 16 4.3 odd 2
968.4.a.n.1.6 8 11.4 even 5
968.4.a.o.1.6 8 11.7 odd 10
1936.4.a.bv.1.3 8 44.7 even 10
1936.4.a.bw.1.3 8 44.15 odd 10