Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [88,6,Mod(43,88)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(88, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1, 1]))
N = Newforms(chi, 6, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("88.43");
S:= CuspForms(chi, 6);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 88 = 2^{3} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 88.g (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(14.1137761435\) |
Analytic rank: | \(0\) |
Dimension: | \(56\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
43.1 | −5.62982 | − | 0.552410i | 15.8790 | 31.3897 | + | 6.21994i | − | 74.0890i | −89.3961 | − | 8.77175i | −107.629 | −173.282 | − | 52.3571i | 9.14385 | −40.9275 | + | 417.108i | |||||||
43.2 | −5.62982 | + | 0.552410i | 15.8790 | 31.3897 | − | 6.21994i | 74.0890i | −89.3961 | + | 8.77175i | −107.629 | −173.282 | + | 52.3571i | 9.14385 | −40.9275 | − | 417.108i | ||||||||
43.3 | −5.60568 | − | 0.759211i | −4.76318 | 30.8472 | + | 8.51179i | − | 77.8059i | 26.7008 | + | 3.61626i | 220.263 | −166.457 | − | 71.1339i | −220.312 | −59.0712 | + | 436.155i | |||||||
43.4 | −5.60568 | + | 0.759211i | −4.76318 | 30.8472 | − | 8.51179i | 77.8059i | 26.7008 | − | 3.61626i | 220.263 | −166.457 | + | 71.1339i | −220.312 | −59.0712 | − | 436.155i | ||||||||
43.5 | −5.50295 | − | 1.31056i | −16.3781 | 28.5649 | + | 14.4239i | − | 21.0020i | 90.1278 | + | 21.4644i | −70.9880 | −138.288 | − | 116.810i | 25.2417 | −27.5243 | + | 115.573i | |||||||
43.6 | −5.50295 | + | 1.31056i | −16.3781 | 28.5649 | − | 14.4239i | 21.0020i | 90.1278 | − | 21.4644i | −70.9880 | −138.288 | + | 116.810i | 25.2417 | −27.5243 | − | 115.573i | ||||||||
43.7 | −5.15446 | − | 2.33057i | −28.6305 | 21.1369 | + | 24.0257i | 76.6651i | 147.575 | + | 66.7254i | −1.31858 | −52.9557 | − | 173.100i | 576.707 | 178.673 | − | 395.167i | ||||||||
43.8 | −5.15446 | + | 2.33057i | −28.6305 | 21.1369 | − | 24.0257i | − | 76.6651i | 147.575 | − | 66.7254i | −1.31858 | −52.9557 | + | 173.100i | 576.707 | 178.673 | + | 395.167i | |||||||
43.9 | −5.14270 | − | 2.35640i | 24.2747 | 20.8948 | + | 24.2365i | 5.84531i | −124.838 | − | 57.2009i | 82.7069 | −50.3445 | − | 173.878i | 346.261 | 13.7739 | − | 30.0607i | ||||||||
43.10 | −5.14270 | + | 2.35640i | 24.2747 | 20.8948 | − | 24.2365i | − | 5.84531i | −124.838 | + | 57.2009i | 82.7069 | −50.3445 | + | 173.878i | 346.261 | 13.7739 | + | 30.0607i | |||||||
43.11 | −4.88483 | − | 2.85279i | 1.60981 | 15.7232 | + | 27.8708i | 41.3820i | −7.86363 | − | 4.59244i | −175.453 | 2.70444 | − | 180.999i | −240.409 | 118.054 | − | 202.144i | ||||||||
43.12 | −4.88483 | + | 2.85279i | 1.60981 | 15.7232 | − | 27.8708i | − | 41.3820i | −7.86363 | + | 4.59244i | −175.453 | 2.70444 | + | 180.999i | −240.409 | 118.054 | + | 202.144i | |||||||
43.13 | −4.07708 | − | 3.92140i | 8.04581 | 1.24517 | + | 31.9758i | 59.2406i | −32.8034 | − | 31.5509i | 154.480 | 120.313 | − | 135.251i | −178.265 | 232.306 | − | 241.529i | ||||||||
43.14 | −4.07708 | + | 3.92140i | 8.04581 | 1.24517 | − | 31.9758i | − | 59.2406i | −32.8034 | + | 31.5509i | 154.480 | 120.313 | + | 135.251i | −178.265 | 232.306 | + | 241.529i | |||||||
43.15 | −4.02296 | − | 3.97691i | −6.67736 | 0.368403 | + | 31.9979i | − | 46.7458i | 26.8627 | + | 26.5552i | −19.9373 | 125.771 | − | 130.191i | −198.413 | −185.904 | + | 188.056i | |||||||
43.16 | −4.02296 | + | 3.97691i | −6.67736 | 0.368403 | − | 31.9979i | 46.7458i | 26.8627 | − | 26.5552i | −19.9373 | 125.771 | + | 130.191i | −198.413 | −185.904 | − | 188.056i | ||||||||
43.17 | −3.20033 | − | 4.66453i | −24.1739 | −11.5157 | + | 29.8561i | − | 41.4331i | 77.3645 | + | 112.760i | 127.804 | 176.119 | − | 41.8341i | 341.376 | −193.266 | + | 132.600i | |||||||
43.18 | −3.20033 | + | 4.66453i | −24.1739 | −11.5157 | − | 29.8561i | 41.4331i | 77.3645 | − | 112.760i | 127.804 | 176.119 | + | 41.8341i | 341.376 | −193.266 | − | 132.600i | ||||||||
43.19 | −2.96677 | − | 4.81646i | 17.9061 | −14.3965 | + | 28.5787i | − | 101.069i | −53.1231 | − | 86.2437i | −119.327 | 180.359 | − | 15.4460i | 77.6267 | −486.792 | + | 299.847i | |||||||
43.20 | −2.96677 | + | 4.81646i | 17.9061 | −14.3965 | − | 28.5787i | 101.069i | −53.1231 | + | 86.2437i | −119.327 | 180.359 | + | 15.4460i | 77.6267 | −486.792 | − | 299.847i | ||||||||
See all 56 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.d | odd | 2 | 1 | inner |
11.b | odd | 2 | 1 | inner |
88.g | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 88.6.g.b | ✓ | 56 |
4.b | odd | 2 | 1 | 352.6.g.b | 56 | ||
8.b | even | 2 | 1 | 352.6.g.b | 56 | ||
8.d | odd | 2 | 1 | inner | 88.6.g.b | ✓ | 56 |
11.b | odd | 2 | 1 | inner | 88.6.g.b | ✓ | 56 |
44.c | even | 2 | 1 | 352.6.g.b | 56 | ||
88.b | odd | 2 | 1 | 352.6.g.b | 56 | ||
88.g | even | 2 | 1 | inner | 88.6.g.b | ✓ | 56 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
88.6.g.b | ✓ | 56 | 1.a | even | 1 | 1 | trivial |
88.6.g.b | ✓ | 56 | 8.d | odd | 2 | 1 | inner |
88.6.g.b | ✓ | 56 | 11.b | odd | 2 | 1 | inner |
88.6.g.b | ✓ | 56 | 88.g | even | 2 | 1 | inner |
352.6.g.b | 56 | 4.b | odd | 2 | 1 | ||
352.6.g.b | 56 | 8.b | even | 2 | 1 | ||
352.6.g.b | 56 | 44.c | even | 2 | 1 | ||
352.6.g.b | 56 | 88.b | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{14} + 2 T_{3}^{13} - 2305 T_{3}^{12} - 4368 T_{3}^{11} + 2011302 T_{3}^{10} + \cdots - 34\!\cdots\!72 \) acting on \(S_{6}^{\mathrm{new}}(88, [\chi])\).