Properties

Label 880.2.bd.b.593.1
Level $880$
Weight $2$
Character 880.593
Analytic conductor $7.027$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [880,2,Mod(417,880)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(880, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("880.417");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 880.bd (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.02683537787\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 110)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 593.1
Root \(-0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 880.593
Dual form 880.2.bd.b.417.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.70711 - 1.70711i) q^{3} +(-0.707107 - 2.12132i) q^{5} +(2.12132 + 2.12132i) q^{7} +2.82843i q^{9} +(1.41421 + 3.00000i) q^{11} +(-3.00000 + 3.00000i) q^{13} +(-2.41421 + 4.82843i) q^{15} +(5.12132 + 5.12132i) q^{17} -3.00000 q^{19} -7.24264i q^{21} +(0.171573 + 0.171573i) q^{23} +(-4.00000 + 3.00000i) q^{25} +(-0.292893 + 0.292893i) q^{27} +1.24264 q^{29} +7.24264 q^{31} +(2.70711 - 7.53553i) q^{33} +(3.00000 - 6.00000i) q^{35} +(0.121320 - 0.121320i) q^{37} +10.2426 q^{39} -1.75736i q^{41} +(1.24264 - 1.24264i) q^{43} +(6.00000 - 2.00000i) q^{45} +(-4.41421 + 4.41421i) q^{47} +2.00000i q^{49} -17.4853i q^{51} +(9.53553 + 9.53553i) q^{53} +(5.36396 - 5.12132i) q^{55} +(5.12132 + 5.12132i) q^{57} +1.41421i q^{59} -7.24264i q^{61} +(-6.00000 + 6.00000i) q^{63} +(8.48528 + 4.24264i) q^{65} +(4.00000 - 4.00000i) q^{67} -0.585786i q^{69} +1.24264 q^{71} +(-6.00000 + 6.00000i) q^{73} +(11.9497 + 1.70711i) q^{75} +(-3.36396 + 9.36396i) q^{77} +10.2426 q^{79} +9.48528 q^{81} +(-7.24264 + 7.24264i) q^{83} +(7.24264 - 14.4853i) q^{85} +(-2.12132 - 2.12132i) q^{87} -5.48528i q^{89} -12.7279 q^{91} +(-12.3640 - 12.3640i) q^{93} +(2.12132 + 6.36396i) q^{95} +(-2.24264 + 2.24264i) q^{97} +(-8.48528 + 4.00000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} - 12 q^{13} - 4 q^{15} + 12 q^{17} - 12 q^{19} + 12 q^{23} - 16 q^{25} - 4 q^{27} - 12 q^{29} + 12 q^{31} + 8 q^{33} + 12 q^{35} - 8 q^{37} + 24 q^{39} - 12 q^{43} + 24 q^{45} - 12 q^{47}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.70711 1.70711i −0.985599 0.985599i 0.0142992 0.999898i \(-0.495448\pi\)
−0.999898 + 0.0142992i \(0.995448\pi\)
\(4\) 0 0
\(5\) −0.707107 2.12132i −0.316228 0.948683i
\(6\) 0 0
\(7\) 2.12132 + 2.12132i 0.801784 + 0.801784i 0.983374 0.181591i \(-0.0581245\pi\)
−0.181591 + 0.983374i \(0.558125\pi\)
\(8\) 0 0
\(9\) 2.82843i 0.942809i
\(10\) 0 0
\(11\) 1.41421 + 3.00000i 0.426401 + 0.904534i
\(12\) 0 0
\(13\) −3.00000 + 3.00000i −0.832050 + 0.832050i −0.987797 0.155747i \(-0.950222\pi\)
0.155747 + 0.987797i \(0.450222\pi\)
\(14\) 0 0
\(15\) −2.41421 + 4.82843i −0.623347 + 1.24669i
\(16\) 0 0
\(17\) 5.12132 + 5.12132i 1.24210 + 1.24210i 0.959127 + 0.282975i \(0.0913215\pi\)
0.282975 + 0.959127i \(0.408678\pi\)
\(18\) 0 0
\(19\) −3.00000 −0.688247 −0.344124 0.938924i \(-0.611824\pi\)
−0.344124 + 0.938924i \(0.611824\pi\)
\(20\) 0 0
\(21\) 7.24264i 1.58047i
\(22\) 0 0
\(23\) 0.171573 + 0.171573i 0.0357754 + 0.0357754i 0.724768 0.688993i \(-0.241947\pi\)
−0.688993 + 0.724768i \(0.741947\pi\)
\(24\) 0 0
\(25\) −4.00000 + 3.00000i −0.800000 + 0.600000i
\(26\) 0 0
\(27\) −0.292893 + 0.292893i −0.0563673 + 0.0563673i
\(28\) 0 0
\(29\) 1.24264 0.230753 0.115376 0.993322i \(-0.463193\pi\)
0.115376 + 0.993322i \(0.463193\pi\)
\(30\) 0 0
\(31\) 7.24264 1.30082 0.650408 0.759585i \(-0.274598\pi\)
0.650408 + 0.759585i \(0.274598\pi\)
\(32\) 0 0
\(33\) 2.70711 7.53553i 0.471247 1.31177i
\(34\) 0 0
\(35\) 3.00000 6.00000i 0.507093 1.01419i
\(36\) 0 0
\(37\) 0.121320 0.121320i 0.0199449 0.0199449i −0.697064 0.717009i \(-0.745511\pi\)
0.717009 + 0.697064i \(0.245511\pi\)
\(38\) 0 0
\(39\) 10.2426 1.64014
\(40\) 0 0
\(41\) 1.75736i 0.274453i −0.990540 0.137227i \(-0.956181\pi\)
0.990540 0.137227i \(-0.0438189\pi\)
\(42\) 0 0
\(43\) 1.24264 1.24264i 0.189501 0.189501i −0.605979 0.795480i \(-0.707219\pi\)
0.795480 + 0.605979i \(0.207219\pi\)
\(44\) 0 0
\(45\) 6.00000 2.00000i 0.894427 0.298142i
\(46\) 0 0
\(47\) −4.41421 + 4.41421i −0.643879 + 0.643879i −0.951507 0.307628i \(-0.900465\pi\)
0.307628 + 0.951507i \(0.400465\pi\)
\(48\) 0 0
\(49\) 2.00000i 0.285714i
\(50\) 0 0
\(51\) 17.4853i 2.44843i
\(52\) 0 0
\(53\) 9.53553 + 9.53553i 1.30981 + 1.30981i 0.921552 + 0.388254i \(0.126922\pi\)
0.388254 + 0.921552i \(0.373078\pi\)
\(54\) 0 0
\(55\) 5.36396 5.12132i 0.723276 0.690559i
\(56\) 0 0
\(57\) 5.12132 + 5.12132i 0.678335 + 0.678335i
\(58\) 0 0
\(59\) 1.41421i 0.184115i 0.995754 + 0.0920575i \(0.0293443\pi\)
−0.995754 + 0.0920575i \(0.970656\pi\)
\(60\) 0 0
\(61\) 7.24264i 0.927325i −0.886012 0.463663i \(-0.846535\pi\)
0.886012 0.463663i \(-0.153465\pi\)
\(62\) 0 0
\(63\) −6.00000 + 6.00000i −0.755929 + 0.755929i
\(64\) 0 0
\(65\) 8.48528 + 4.24264i 1.05247 + 0.526235i
\(66\) 0 0
\(67\) 4.00000 4.00000i 0.488678 0.488678i −0.419211 0.907889i \(-0.637693\pi\)
0.907889 + 0.419211i \(0.137693\pi\)
\(68\) 0 0
\(69\) 0.585786i 0.0705204i
\(70\) 0 0
\(71\) 1.24264 0.147474 0.0737372 0.997278i \(-0.476507\pi\)
0.0737372 + 0.997278i \(0.476507\pi\)
\(72\) 0 0
\(73\) −6.00000 + 6.00000i −0.702247 + 0.702247i −0.964892 0.262646i \(-0.915405\pi\)
0.262646 + 0.964892i \(0.415405\pi\)
\(74\) 0 0
\(75\) 11.9497 + 1.70711i 1.37984 + 0.197120i
\(76\) 0 0
\(77\) −3.36396 + 9.36396i −0.383359 + 1.06712i
\(78\) 0 0
\(79\) 10.2426 1.15239 0.576194 0.817313i \(-0.304537\pi\)
0.576194 + 0.817313i \(0.304537\pi\)
\(80\) 0 0
\(81\) 9.48528 1.05392
\(82\) 0 0
\(83\) −7.24264 + 7.24264i −0.794983 + 0.794983i −0.982300 0.187317i \(-0.940021\pi\)
0.187317 + 0.982300i \(0.440021\pi\)
\(84\) 0 0
\(85\) 7.24264 14.4853i 0.785575 1.57115i
\(86\) 0 0
\(87\) −2.12132 2.12132i −0.227429 0.227429i
\(88\) 0 0
\(89\) 5.48528i 0.581439i −0.956808 0.290719i \(-0.906105\pi\)
0.956808 0.290719i \(-0.0938946\pi\)
\(90\) 0 0
\(91\) −12.7279 −1.33425
\(92\) 0 0
\(93\) −12.3640 12.3640i −1.28208 1.28208i
\(94\) 0 0
\(95\) 2.12132 + 6.36396i 0.217643 + 0.652929i
\(96\) 0 0
\(97\) −2.24264 + 2.24264i −0.227706 + 0.227706i −0.811734 0.584028i \(-0.801476\pi\)
0.584028 + 0.811734i \(0.301476\pi\)
\(98\) 0 0
\(99\) −8.48528 + 4.00000i −0.852803 + 0.402015i
\(100\) 0 0
\(101\) 2.48528i 0.247295i −0.992326 0.123647i \(-0.960541\pi\)
0.992326 0.123647i \(-0.0394592\pi\)
\(102\) 0 0
\(103\) −6.24264 6.24264i −0.615106 0.615106i 0.329166 0.944272i \(-0.393232\pi\)
−0.944272 + 0.329166i \(0.893232\pi\)
\(104\) 0 0
\(105\) −15.3640 + 5.12132i −1.49937 + 0.499790i
\(106\) 0 0
\(107\) 10.2426 + 10.2426i 0.990193 + 0.990193i 0.999952 0.00975893i \(-0.00310641\pi\)
−0.00975893 + 0.999952i \(0.503106\pi\)
\(108\) 0 0
\(109\) −2.48528 −0.238047 −0.119023 0.992891i \(-0.537976\pi\)
−0.119023 + 0.992891i \(0.537976\pi\)
\(110\) 0 0
\(111\) −0.414214 −0.0393154
\(112\) 0 0
\(113\) −4.41421 4.41421i −0.415254 0.415254i 0.468310 0.883564i \(-0.344863\pi\)
−0.883564 + 0.468310i \(0.844863\pi\)
\(114\) 0 0
\(115\) 0.242641 0.485281i 0.0226264 0.0452527i
\(116\) 0 0
\(117\) −8.48528 8.48528i −0.784465 0.784465i
\(118\) 0 0
\(119\) 21.7279i 1.99180i
\(120\) 0 0
\(121\) −7.00000 + 8.48528i −0.636364 + 0.771389i
\(122\) 0 0
\(123\) −3.00000 + 3.00000i −0.270501 + 0.270501i
\(124\) 0 0
\(125\) 9.19239 + 6.36396i 0.822192 + 0.569210i
\(126\) 0 0
\(127\) −4.24264 4.24264i −0.376473 0.376473i 0.493355 0.869828i \(-0.335770\pi\)
−0.869828 + 0.493355i \(0.835770\pi\)
\(128\) 0 0
\(129\) −4.24264 −0.373544
\(130\) 0 0
\(131\) 13.9706i 1.22061i 0.792165 + 0.610307i \(0.208954\pi\)
−0.792165 + 0.610307i \(0.791046\pi\)
\(132\) 0 0
\(133\) −6.36396 6.36396i −0.551825 0.551825i
\(134\) 0 0
\(135\) 0.828427 + 0.414214i 0.0712997 + 0.0356498i
\(136\) 0 0
\(137\) −11.6569 + 11.6569i −0.995912 + 0.995912i −0.999992 0.00407941i \(-0.998701\pi\)
0.00407941 + 0.999992i \(0.498701\pi\)
\(138\) 0 0
\(139\) −14.4853 −1.22863 −0.614313 0.789063i \(-0.710567\pi\)
−0.614313 + 0.789063i \(0.710567\pi\)
\(140\) 0 0
\(141\) 15.0711 1.26921
\(142\) 0 0
\(143\) −13.2426 4.75736i −1.10741 0.397830i
\(144\) 0 0
\(145\) −0.878680 2.63604i −0.0729704 0.218911i
\(146\) 0 0
\(147\) 3.41421 3.41421i 0.281600 0.281600i
\(148\) 0 0
\(149\) 19.2426 1.57642 0.788209 0.615407i \(-0.211008\pi\)
0.788209 + 0.615407i \(0.211008\pi\)
\(150\) 0 0
\(151\) 12.0000i 0.976546i −0.872691 0.488273i \(-0.837627\pi\)
0.872691 0.488273i \(-0.162373\pi\)
\(152\) 0 0
\(153\) −14.4853 + 14.4853i −1.17107 + 1.17107i
\(154\) 0 0
\(155\) −5.12132 15.3640i −0.411354 1.23406i
\(156\) 0 0
\(157\) 16.3640 16.3640i 1.30599 1.30599i 0.381700 0.924286i \(-0.375339\pi\)
0.924286 0.381700i \(-0.124661\pi\)
\(158\) 0 0
\(159\) 32.5563i 2.58189i
\(160\) 0 0
\(161\) 0.727922i 0.0573683i
\(162\) 0 0
\(163\) 13.8492 + 13.8492i 1.08476 + 1.08476i 0.996059 + 0.0886978i \(0.0282705\pi\)
0.0886978 + 0.996059i \(0.471729\pi\)
\(164\) 0 0
\(165\) −17.8995 0.414214i −1.39347 0.0322465i
\(166\) 0 0
\(167\) −6.36396 6.36396i −0.492458 0.492458i 0.416622 0.909080i \(-0.363214\pi\)
−0.909080 + 0.416622i \(0.863214\pi\)
\(168\) 0 0
\(169\) 5.00000i 0.384615i
\(170\) 0 0
\(171\) 8.48528i 0.648886i
\(172\) 0 0
\(173\) −16.2426 + 16.2426i −1.23491 + 1.23491i −0.272848 + 0.962057i \(0.587966\pi\)
−0.962057 + 0.272848i \(0.912034\pi\)
\(174\) 0 0
\(175\) −14.8492 2.12132i −1.12250 0.160357i
\(176\) 0 0
\(177\) 2.41421 2.41421i 0.181463 0.181463i
\(178\) 0 0
\(179\) 13.7574i 1.02827i −0.857708 0.514137i \(-0.828112\pi\)
0.857708 0.514137i \(-0.171888\pi\)
\(180\) 0 0
\(181\) 12.0000 0.891953 0.445976 0.895045i \(-0.352856\pi\)
0.445976 + 0.895045i \(0.352856\pi\)
\(182\) 0 0
\(183\) −12.3640 + 12.3640i −0.913970 + 0.913970i
\(184\) 0 0
\(185\) −0.343146 0.171573i −0.0252286 0.0126143i
\(186\) 0 0
\(187\) −8.12132 + 22.6066i −0.593890 + 1.65316i
\(188\) 0 0
\(189\) −1.24264 −0.0903888
\(190\) 0 0
\(191\) −2.82843 −0.204658 −0.102329 0.994751i \(-0.532629\pi\)
−0.102329 + 0.994751i \(0.532629\pi\)
\(192\) 0 0
\(193\) −0.878680 + 0.878680i −0.0632487 + 0.0632487i −0.738024 0.674775i \(-0.764241\pi\)
0.674775 + 0.738024i \(0.264241\pi\)
\(194\) 0 0
\(195\) −7.24264 21.7279i −0.518656 1.55597i
\(196\) 0 0
\(197\) 1.24264 + 1.24264i 0.0885345 + 0.0885345i 0.749987 0.661453i \(-0.230060\pi\)
−0.661453 + 0.749987i \(0.730060\pi\)
\(198\) 0 0
\(199\) 4.75736i 0.337240i 0.985681 + 0.168620i \(0.0539311\pi\)
−0.985681 + 0.168620i \(0.946069\pi\)
\(200\) 0 0
\(201\) −13.6569 −0.963280
\(202\) 0 0
\(203\) 2.63604 + 2.63604i 0.185014 + 0.185014i
\(204\) 0 0
\(205\) −3.72792 + 1.24264i −0.260369 + 0.0867898i
\(206\) 0 0
\(207\) −0.485281 + 0.485281i −0.0337294 + 0.0337294i
\(208\) 0 0
\(209\) −4.24264 9.00000i −0.293470 0.622543i
\(210\) 0 0
\(211\) 17.4853i 1.20374i 0.798595 + 0.601868i \(0.205577\pi\)
−0.798595 + 0.601868i \(0.794423\pi\)
\(212\) 0 0
\(213\) −2.12132 2.12132i −0.145350 0.145350i
\(214\) 0 0
\(215\) −3.51472 1.75736i −0.239702 0.119851i
\(216\) 0 0
\(217\) 15.3640 + 15.3640i 1.04297 + 1.04297i
\(218\) 0 0
\(219\) 20.4853 1.38427
\(220\) 0 0
\(221\) −30.7279 −2.06698
\(222\) 0 0
\(223\) 3.75736 + 3.75736i 0.251611 + 0.251611i 0.821631 0.570020i \(-0.193064\pi\)
−0.570020 + 0.821631i \(0.693064\pi\)
\(224\) 0 0
\(225\) −8.48528 11.3137i −0.565685 0.754247i
\(226\) 0 0
\(227\) 15.0000 + 15.0000i 0.995585 + 0.995585i 0.999990 0.00440533i \(-0.00140226\pi\)
−0.00440533 + 0.999990i \(0.501402\pi\)
\(228\) 0 0
\(229\) 15.2132i 1.00532i 0.864485 + 0.502658i \(0.167645\pi\)
−0.864485 + 0.502658i \(0.832355\pi\)
\(230\) 0 0
\(231\) 21.7279 10.2426i 1.42959 0.673916i
\(232\) 0 0
\(233\) −1.60660 + 1.60660i −0.105252 + 0.105252i −0.757772 0.652520i \(-0.773712\pi\)
0.652520 + 0.757772i \(0.273712\pi\)
\(234\) 0 0
\(235\) 12.4853 + 6.24264i 0.814450 + 0.407225i
\(236\) 0 0
\(237\) −17.4853 17.4853i −1.13579 1.13579i
\(238\) 0 0
\(239\) −0.727922 −0.0470854 −0.0235427 0.999723i \(-0.507495\pi\)
−0.0235427 + 0.999723i \(0.507495\pi\)
\(240\) 0 0
\(241\) 6.72792i 0.433384i −0.976240 0.216692i \(-0.930473\pi\)
0.976240 0.216692i \(-0.0695267\pi\)
\(242\) 0 0
\(243\) −15.3137 15.3137i −0.982375 0.982375i
\(244\) 0 0
\(245\) 4.24264 1.41421i 0.271052 0.0903508i
\(246\) 0 0
\(247\) 9.00000 9.00000i 0.572656 0.572656i
\(248\) 0 0
\(249\) 24.7279 1.56707
\(250\) 0 0
\(251\) −3.51472 −0.221847 −0.110924 0.993829i \(-0.535381\pi\)
−0.110924 + 0.993829i \(0.535381\pi\)
\(252\) 0 0
\(253\) −0.272078 + 0.757359i −0.0171054 + 0.0476148i
\(254\) 0 0
\(255\) −37.0919 + 12.3640i −2.32278 + 0.774261i
\(256\) 0 0
\(257\) −1.92893 + 1.92893i −0.120323 + 0.120323i −0.764705 0.644381i \(-0.777115\pi\)
0.644381 + 0.764705i \(0.277115\pi\)
\(258\) 0 0
\(259\) 0.514719 0.0319831
\(260\) 0 0
\(261\) 3.51472i 0.217556i
\(262\) 0 0
\(263\) 6.36396 6.36396i 0.392419 0.392419i −0.483130 0.875549i \(-0.660500\pi\)
0.875549 + 0.483130i \(0.160500\pi\)
\(264\) 0 0
\(265\) 13.4853 26.9706i 0.828394 1.65679i
\(266\) 0 0
\(267\) −9.36396 + 9.36396i −0.573065 + 0.573065i
\(268\) 0 0
\(269\) 19.7990i 1.20717i −0.797300 0.603583i \(-0.793739\pi\)
0.797300 0.603583i \(-0.206261\pi\)
\(270\) 0 0
\(271\) 6.72792i 0.408692i −0.978899 0.204346i \(-0.934493\pi\)
0.978899 0.204346i \(-0.0655068\pi\)
\(272\) 0 0
\(273\) 21.7279 + 21.7279i 1.31503 + 1.31503i
\(274\) 0 0
\(275\) −14.6569 7.75736i −0.883842 0.467786i
\(276\) 0 0
\(277\) −10.2426 10.2426i −0.615421 0.615421i 0.328933 0.944353i \(-0.393311\pi\)
−0.944353 + 0.328933i \(0.893311\pi\)
\(278\) 0 0
\(279\) 20.4853i 1.22642i
\(280\) 0 0
\(281\) 22.9706i 1.37031i 0.728398 + 0.685154i \(0.240265\pi\)
−0.728398 + 0.685154i \(0.759735\pi\)
\(282\) 0 0
\(283\) 13.2426 13.2426i 0.787193 0.787193i −0.193840 0.981033i \(-0.562094\pi\)
0.981033 + 0.193840i \(0.0620942\pi\)
\(284\) 0 0
\(285\) 7.24264 14.4853i 0.429017 0.858034i
\(286\) 0 0
\(287\) 3.72792 3.72792i 0.220052 0.220052i
\(288\) 0 0
\(289\) 35.4558i 2.08564i
\(290\) 0 0
\(291\) 7.65685 0.448853
\(292\) 0 0
\(293\) 15.7279 15.7279i 0.918835 0.918835i −0.0781097 0.996945i \(-0.524888\pi\)
0.996945 + 0.0781097i \(0.0248885\pi\)
\(294\) 0 0
\(295\) 3.00000 1.00000i 0.174667 0.0582223i
\(296\) 0 0
\(297\) −1.29289 0.464466i −0.0750213 0.0269511i
\(298\) 0 0
\(299\) −1.02944 −0.0595339
\(300\) 0 0
\(301\) 5.27208 0.303878
\(302\) 0 0
\(303\) −4.24264 + 4.24264i −0.243733 + 0.243733i
\(304\) 0 0
\(305\) −15.3640 + 5.12132i −0.879738 + 0.293246i
\(306\) 0 0
\(307\) −11.4853 11.4853i −0.655500 0.655500i 0.298812 0.954312i \(-0.403410\pi\)
−0.954312 + 0.298812i \(0.903410\pi\)
\(308\) 0 0
\(309\) 21.3137i 1.21249i
\(310\) 0 0
\(311\) 9.72792 0.551620 0.275810 0.961212i \(-0.411054\pi\)
0.275810 + 0.961212i \(0.411054\pi\)
\(312\) 0 0
\(313\) 3.75736 + 3.75736i 0.212379 + 0.212379i 0.805277 0.592899i \(-0.202017\pi\)
−0.592899 + 0.805277i \(0.702017\pi\)
\(314\) 0 0
\(315\) 16.9706 + 8.48528i 0.956183 + 0.478091i
\(316\) 0 0
\(317\) −9.53553 + 9.53553i −0.535569 + 0.535569i −0.922224 0.386655i \(-0.873630\pi\)
0.386655 + 0.922224i \(0.373630\pi\)
\(318\) 0 0
\(319\) 1.75736 + 3.72792i 0.0983932 + 0.208724i
\(320\) 0 0
\(321\) 34.9706i 1.95187i
\(322\) 0 0
\(323\) −15.3640 15.3640i −0.854874 0.854874i
\(324\) 0 0
\(325\) 3.00000 21.0000i 0.166410 1.16487i
\(326\) 0 0
\(327\) 4.24264 + 4.24264i 0.234619 + 0.234619i
\(328\) 0 0
\(329\) −18.7279 −1.03250
\(330\) 0 0
\(331\) −24.7279 −1.35917 −0.679585 0.733597i \(-0.737840\pi\)
−0.679585 + 0.733597i \(0.737840\pi\)
\(332\) 0 0
\(333\) 0.343146 + 0.343146i 0.0188043 + 0.0188043i
\(334\) 0 0
\(335\) −11.3137 5.65685i −0.618134 0.309067i
\(336\) 0 0
\(337\) 12.8787 + 12.8787i 0.701546 + 0.701546i 0.964742 0.263196i \(-0.0847766\pi\)
−0.263196 + 0.964742i \(0.584777\pi\)
\(338\) 0 0
\(339\) 15.0711i 0.818548i
\(340\) 0 0
\(341\) 10.2426 + 21.7279i 0.554670 + 1.17663i
\(342\) 0 0
\(343\) 10.6066 10.6066i 0.572703 0.572703i
\(344\) 0 0
\(345\) −1.24264 + 0.414214i −0.0669015 + 0.0223005i
\(346\) 0 0
\(347\) 6.72792 + 6.72792i 0.361174 + 0.361174i 0.864245 0.503071i \(-0.167797\pi\)
−0.503071 + 0.864245i \(0.667797\pi\)
\(348\) 0 0
\(349\) −10.9706 −0.587241 −0.293620 0.955922i \(-0.594860\pi\)
−0.293620 + 0.955922i \(0.594860\pi\)
\(350\) 0 0
\(351\) 1.75736i 0.0938009i
\(352\) 0 0
\(353\) −14.8284 14.8284i −0.789238 0.789238i 0.192132 0.981369i \(-0.438460\pi\)
−0.981369 + 0.192132i \(0.938460\pi\)
\(354\) 0 0
\(355\) −0.878680 2.63604i −0.0466355 0.139906i
\(356\) 0 0
\(357\) 37.0919 37.0919i 1.96311 1.96311i
\(358\) 0 0
\(359\) 34.9706 1.84568 0.922838 0.385189i \(-0.125864\pi\)
0.922838 + 0.385189i \(0.125864\pi\)
\(360\) 0 0
\(361\) −10.0000 −0.526316
\(362\) 0 0
\(363\) 26.4350 2.53553i 1.38748 0.133081i
\(364\) 0 0
\(365\) 16.9706 + 8.48528i 0.888280 + 0.444140i
\(366\) 0 0
\(367\) 2.00000 2.00000i 0.104399 0.104399i −0.652978 0.757377i \(-0.726481\pi\)
0.757377 + 0.652978i \(0.226481\pi\)
\(368\) 0 0
\(369\) 4.97056 0.258757
\(370\) 0 0
\(371\) 40.4558i 2.10036i
\(372\) 0 0
\(373\) 1.24264 1.24264i 0.0643415 0.0643415i −0.674204 0.738545i \(-0.735513\pi\)
0.738545 + 0.674204i \(0.235513\pi\)
\(374\) 0 0
\(375\) −4.82843 26.5563i −0.249339 1.37136i
\(376\) 0 0
\(377\) −3.72792 + 3.72792i −0.191998 + 0.191998i
\(378\) 0 0
\(379\) 4.97056i 0.255321i −0.991818 0.127660i \(-0.959253\pi\)
0.991818 0.127660i \(-0.0407467\pi\)
\(380\) 0 0
\(381\) 14.4853i 0.742103i
\(382\) 0 0
\(383\) 1.41421 + 1.41421i 0.0722629 + 0.0722629i 0.742315 0.670052i \(-0.233728\pi\)
−0.670052 + 0.742315i \(0.733728\pi\)
\(384\) 0 0
\(385\) 22.2426 + 0.514719i 1.13359 + 0.0262325i
\(386\) 0 0
\(387\) 3.51472 + 3.51472i 0.178663 + 0.178663i
\(388\) 0 0
\(389\) 2.82843i 0.143407i −0.997426 0.0717035i \(-0.977156\pi\)
0.997426 0.0717035i \(-0.0228435\pi\)
\(390\) 0 0
\(391\) 1.75736i 0.0888735i
\(392\) 0 0
\(393\) 23.8492 23.8492i 1.20304 1.20304i
\(394\) 0 0
\(395\) −7.24264 21.7279i −0.364417 1.09325i
\(396\) 0 0
\(397\) −1.51472 + 1.51472i −0.0760215 + 0.0760215i −0.744095 0.668074i \(-0.767119\pi\)
0.668074 + 0.744095i \(0.267119\pi\)
\(398\) 0 0
\(399\) 21.7279i 1.08776i
\(400\) 0 0
\(401\) 2.31371 0.115541 0.0577705 0.998330i \(-0.481601\pi\)
0.0577705 + 0.998330i \(0.481601\pi\)
\(402\) 0 0
\(403\) −21.7279 + 21.7279i −1.08234 + 1.08234i
\(404\) 0 0
\(405\) −6.70711 20.1213i −0.333279 0.999836i
\(406\) 0 0
\(407\) 0.535534 + 0.192388i 0.0265454 + 0.00953633i
\(408\) 0 0
\(409\) 22.9706 1.13582 0.567911 0.823090i \(-0.307752\pi\)
0.567911 + 0.823090i \(0.307752\pi\)
\(410\) 0 0
\(411\) 39.7990 1.96314
\(412\) 0 0
\(413\) −3.00000 + 3.00000i −0.147620 + 0.147620i
\(414\) 0 0
\(415\) 20.4853 + 10.2426i 1.00558 + 0.502791i
\(416\) 0 0
\(417\) 24.7279 + 24.7279i 1.21093 + 1.21093i
\(418\) 0 0
\(419\) 6.00000i 0.293119i 0.989202 + 0.146560i \(0.0468200\pi\)
−0.989202 + 0.146560i \(0.953180\pi\)
\(420\) 0 0
\(421\) −9.51472 −0.463719 −0.231860 0.972749i \(-0.574481\pi\)
−0.231860 + 0.972749i \(0.574481\pi\)
\(422\) 0 0
\(423\) −12.4853 12.4853i −0.607055 0.607055i
\(424\) 0 0
\(425\) −35.8492 5.12132i −1.73894 0.248421i
\(426\) 0 0
\(427\) 15.3640 15.3640i 0.743514 0.743514i
\(428\) 0 0
\(429\) 14.4853 + 30.7279i 0.699356 + 1.48356i
\(430\) 0 0
\(431\) 3.51472i 0.169298i −0.996411 0.0846490i \(-0.973023\pi\)
0.996411 0.0846490i \(-0.0269769\pi\)
\(432\) 0 0
\(433\) −21.9706 21.9706i −1.05584 1.05584i −0.998346 0.0574919i \(-0.981690\pi\)
−0.0574919 0.998346i \(-0.518310\pi\)
\(434\) 0 0
\(435\) −3.00000 + 6.00000i −0.143839 + 0.287678i
\(436\) 0 0
\(437\) −0.514719 0.514719i −0.0246223 0.0246223i
\(438\) 0 0
\(439\) 0.727922 0.0347418 0.0173709 0.999849i \(-0.494470\pi\)
0.0173709 + 0.999849i \(0.494470\pi\)
\(440\) 0 0
\(441\) −5.65685 −0.269374
\(442\) 0 0
\(443\) 19.0711 + 19.0711i 0.906094 + 0.906094i 0.995954 0.0898606i \(-0.0286421\pi\)
−0.0898606 + 0.995954i \(0.528642\pi\)
\(444\) 0 0
\(445\) −11.6360 + 3.87868i −0.551601 + 0.183867i
\(446\) 0 0
\(447\) −32.8492 32.8492i −1.55372 1.55372i
\(448\) 0 0
\(449\) 20.4853i 0.966760i 0.875411 + 0.483380i \(0.160591\pi\)
−0.875411 + 0.483380i \(0.839409\pi\)
\(450\) 0 0
\(451\) 5.27208 2.48528i 0.248252 0.117027i
\(452\) 0 0
\(453\) −20.4853 + 20.4853i −0.962482 + 0.962482i
\(454\) 0 0
\(455\) 9.00000 + 27.0000i 0.421927 + 1.26578i
\(456\) 0 0
\(457\) −7.60660 7.60660i −0.355822 0.355822i 0.506448 0.862270i \(-0.330958\pi\)
−0.862270 + 0.506448i \(0.830958\pi\)
\(458\) 0 0
\(459\) −3.00000 −0.140028
\(460\) 0 0
\(461\) 1.24264i 0.0578755i 0.999581 + 0.0289378i \(0.00921247\pi\)
−0.999581 + 0.0289378i \(0.990788\pi\)
\(462\) 0 0
\(463\) 15.9706 + 15.9706i 0.742215 + 0.742215i 0.973004 0.230789i \(-0.0741307\pi\)
−0.230789 + 0.973004i \(0.574131\pi\)
\(464\) 0 0
\(465\) −17.4853 + 34.9706i −0.810861 + 1.62172i
\(466\) 0 0
\(467\) −16.7782 + 16.7782i −0.776401 + 0.776401i −0.979217 0.202816i \(-0.934991\pi\)
0.202816 + 0.979217i \(0.434991\pi\)
\(468\) 0 0
\(469\) 16.9706 0.783628
\(470\) 0 0
\(471\) −55.8701 −2.57436
\(472\) 0 0
\(473\) 5.48528 + 1.97056i 0.252214 + 0.0906066i
\(474\) 0 0
\(475\) 12.0000 9.00000i 0.550598 0.412948i
\(476\) 0 0
\(477\) −26.9706 + 26.9706i −1.23490 + 1.23490i
\(478\) 0 0
\(479\) −36.7279 −1.67814 −0.839071 0.544022i \(-0.816901\pi\)
−0.839071 + 0.544022i \(0.816901\pi\)
\(480\) 0 0
\(481\) 0.727922i 0.0331904i
\(482\) 0 0
\(483\) 1.24264 1.24264i 0.0565421 0.0565421i
\(484\) 0 0
\(485\) 6.34315 + 3.17157i 0.288027 + 0.144014i
\(486\) 0 0
\(487\) 11.9706 11.9706i 0.542438 0.542438i −0.381805 0.924243i \(-0.624697\pi\)
0.924243 + 0.381805i \(0.124697\pi\)
\(488\) 0 0
\(489\) 47.2843i 2.13827i
\(490\) 0 0
\(491\) 5.48528i 0.247547i −0.992310 0.123774i \(-0.960500\pi\)
0.992310 0.123774i \(-0.0394997\pi\)
\(492\) 0 0
\(493\) 6.36396 + 6.36396i 0.286618 + 0.286618i
\(494\) 0 0
\(495\) 14.4853 + 15.1716i 0.651065 + 0.681911i
\(496\) 0 0
\(497\) 2.63604 + 2.63604i 0.118243 + 0.118243i
\(498\) 0 0
\(499\) 34.9706i 1.56550i −0.622338 0.782749i \(-0.713817\pi\)
0.622338 0.782749i \(-0.286183\pi\)
\(500\) 0 0
\(501\) 21.7279i 0.970732i
\(502\) 0 0
\(503\) 0.727922 0.727922i 0.0324564 0.0324564i −0.690692 0.723149i \(-0.742694\pi\)
0.723149 + 0.690692i \(0.242694\pi\)
\(504\) 0 0
\(505\) −5.27208 + 1.75736i −0.234604 + 0.0782015i
\(506\) 0 0
\(507\) −8.53553 + 8.53553i −0.379076 + 0.379076i
\(508\) 0 0
\(509\) 32.1421i 1.42468i −0.701837 0.712338i \(-0.747637\pi\)
0.701837 0.712338i \(-0.252363\pi\)
\(510\) 0 0
\(511\) −25.4558 −1.12610
\(512\) 0 0
\(513\) 0.878680 0.878680i 0.0387947 0.0387947i
\(514\) 0 0
\(515\) −8.82843 + 17.6569i −0.389027 + 0.778054i
\(516\) 0 0
\(517\) −19.4853 7.00000i −0.856962 0.307860i
\(518\) 0 0
\(519\) 55.4558 2.43424
\(520\) 0 0
\(521\) 41.6569 1.82502 0.912510 0.409054i \(-0.134141\pi\)
0.912510 + 0.409054i \(0.134141\pi\)
\(522\) 0 0
\(523\) 18.7279 18.7279i 0.818915 0.818915i −0.167036 0.985951i \(-0.553420\pi\)
0.985951 + 0.167036i \(0.0534196\pi\)
\(524\) 0 0
\(525\) 21.7279 + 28.9706i 0.948284 + 1.26438i
\(526\) 0 0
\(527\) 37.0919 + 37.0919i 1.61575 + 1.61575i
\(528\) 0 0
\(529\) 22.9411i 0.997440i
\(530\) 0 0
\(531\) −4.00000 −0.173585
\(532\) 0 0
\(533\) 5.27208 + 5.27208i 0.228359 + 0.228359i
\(534\) 0 0
\(535\) 14.4853 28.9706i 0.626253 1.25251i
\(536\) 0 0
\(537\) −23.4853 + 23.4853i −1.01346 + 1.01346i
\(538\) 0 0
\(539\) −6.00000 + 2.82843i −0.258438 + 0.121829i
\(540\) 0 0
\(541\) 10.7574i 0.462495i 0.972895 + 0.231248i \(0.0742807\pi\)
−0.972895 + 0.231248i \(0.925719\pi\)
\(542\) 0 0
\(543\) −20.4853 20.4853i −0.879108 0.879108i
\(544\) 0 0
\(545\) 1.75736 + 5.27208i 0.0752770 + 0.225831i
\(546\) 0 0
\(547\) −30.7279 30.7279i −1.31383 1.31383i −0.918568 0.395263i \(-0.870653\pi\)
−0.395263 0.918568i \(-0.629347\pi\)
\(548\) 0 0
\(549\) 20.4853 0.874291
\(550\) 0 0
\(551\) −3.72792 −0.158815
\(552\) 0 0
\(553\) 21.7279 + 21.7279i 0.923965 + 0.923965i
\(554\) 0 0
\(555\) 0.292893 + 0.878680i 0.0124326 + 0.0372979i
\(556\) 0 0
\(557\) −6.51472 6.51472i −0.276037 0.276037i 0.555487 0.831525i \(-0.312532\pi\)
−0.831525 + 0.555487i \(0.812532\pi\)
\(558\) 0 0
\(559\) 7.45584i 0.315349i
\(560\) 0 0
\(561\) 52.4558 24.7279i 2.21469 1.04401i
\(562\) 0 0
\(563\) −5.48528 + 5.48528i −0.231177 + 0.231177i −0.813184 0.582007i \(-0.802268\pi\)
0.582007 + 0.813184i \(0.302268\pi\)
\(564\) 0 0
\(565\) −6.24264 + 12.4853i −0.262630 + 0.525260i
\(566\) 0 0
\(567\) 20.1213 + 20.1213i 0.845016 + 0.845016i
\(568\) 0 0
\(569\) 2.48528 0.104188 0.0520942 0.998642i \(-0.483410\pi\)
0.0520942 + 0.998642i \(0.483410\pi\)
\(570\) 0 0
\(571\) 29.4853i 1.23392i 0.786994 + 0.616960i \(0.211636\pi\)
−0.786994 + 0.616960i \(0.788364\pi\)
\(572\) 0 0
\(573\) 4.82843 + 4.82843i 0.201710 + 0.201710i
\(574\) 0 0
\(575\) −1.20101 0.171573i −0.0500856 0.00715508i
\(576\) 0 0
\(577\) −19.7279 + 19.7279i −0.821284 + 0.821284i −0.986292 0.165008i \(-0.947235\pi\)
0.165008 + 0.986292i \(0.447235\pi\)
\(578\) 0 0
\(579\) 3.00000 0.124676
\(580\) 0 0
\(581\) −30.7279 −1.27481
\(582\) 0 0
\(583\) −15.1213 + 42.0919i −0.626261 + 1.74327i
\(584\) 0 0
\(585\) −12.0000 + 24.0000i −0.496139 + 0.992278i
\(586\) 0 0
\(587\) 20.6777 20.6777i 0.853459 0.853459i −0.137099 0.990557i \(-0.543778\pi\)
0.990557 + 0.137099i \(0.0437777\pi\)
\(588\) 0 0
\(589\) −21.7279 −0.895283
\(590\) 0 0
\(591\) 4.24264i 0.174519i
\(592\) 0 0
\(593\) 13.7574 13.7574i 0.564947 0.564947i −0.365762 0.930709i \(-0.619191\pi\)
0.930709 + 0.365762i \(0.119191\pi\)
\(594\) 0 0
\(595\) 46.0919 15.3640i 1.88958 0.629861i
\(596\) 0 0
\(597\) 8.12132 8.12132i 0.332384 0.332384i
\(598\) 0 0
\(599\) 3.72792i 0.152319i −0.997096 0.0761594i \(-0.975734\pi\)
0.997096 0.0761594i \(-0.0242658\pi\)
\(600\) 0 0
\(601\) 27.9411i 1.13974i −0.821734 0.569871i \(-0.806993\pi\)
0.821734 0.569871i \(-0.193007\pi\)
\(602\) 0 0
\(603\) 11.3137 + 11.3137i 0.460730 + 0.460730i
\(604\) 0 0
\(605\) 22.9497 + 8.84924i 0.933040 + 0.359773i
\(606\) 0 0
\(607\) −15.8787 15.8787i −0.644496 0.644496i 0.307162 0.951657i \(-0.400621\pi\)
−0.951657 + 0.307162i \(0.900621\pi\)
\(608\) 0 0
\(609\) 9.00000i 0.364698i
\(610\) 0 0
\(611\) 26.4853i 1.07148i
\(612\) 0 0
\(613\) 18.0000 18.0000i 0.727013 0.727013i −0.243011 0.970024i \(-0.578135\pi\)
0.970024 + 0.243011i \(0.0781350\pi\)
\(614\) 0 0
\(615\) 8.48528 + 4.24264i 0.342160 + 0.171080i
\(616\) 0 0
\(617\) 31.0711 31.0711i 1.25087 1.25087i 0.295545 0.955329i \(-0.404499\pi\)
0.955329 0.295545i \(-0.0955014\pi\)
\(618\) 0 0
\(619\) 10.0000i 0.401934i −0.979598 0.200967i \(-0.935592\pi\)
0.979598 0.200967i \(-0.0644084\pi\)
\(620\) 0 0
\(621\) −0.100505 −0.00403313
\(622\) 0 0
\(623\) 11.6360 11.6360i 0.466188 0.466188i
\(624\) 0 0
\(625\) 7.00000 24.0000i 0.280000 0.960000i
\(626\) 0 0
\(627\) −8.12132 + 22.6066i −0.324334 + 0.902821i
\(628\) 0 0
\(629\) 1.24264 0.0495473
\(630\) 0 0
\(631\) −1.72792 −0.0687875 −0.0343937 0.999408i \(-0.510950\pi\)
−0.0343937 + 0.999408i \(0.510950\pi\)
\(632\) 0 0
\(633\) 29.8492 29.8492i 1.18640 1.18640i
\(634\) 0 0
\(635\) −6.00000 + 12.0000i −0.238103 + 0.476205i
\(636\) 0 0
\(637\) −6.00000 6.00000i −0.237729 0.237729i
\(638\) 0 0
\(639\) 3.51472i 0.139040i
\(640\) 0 0
\(641\) −6.17157 −0.243762 −0.121881 0.992545i \(-0.538893\pi\)
−0.121881 + 0.992545i \(0.538893\pi\)
\(642\) 0 0
\(643\) −32.5772 32.5772i −1.28472 1.28472i −0.937952 0.346766i \(-0.887280\pi\)
−0.346766 0.937952i \(-0.612720\pi\)
\(644\) 0 0
\(645\) 3.00000 + 9.00000i 0.118125 + 0.354375i
\(646\) 0 0
\(647\) −28.1127 + 28.1127i −1.10522 + 1.10522i −0.111455 + 0.993770i \(0.535551\pi\)
−0.993770 + 0.111455i \(0.964449\pi\)
\(648\) 0 0
\(649\) −4.24264 + 2.00000i −0.166538 + 0.0785069i
\(650\) 0 0
\(651\) 52.4558i 2.05591i
\(652\) 0 0
\(653\) −9.53553 9.53553i −0.373154 0.373154i 0.495470 0.868625i \(-0.334996\pi\)
−0.868625 + 0.495470i \(0.834996\pi\)
\(654\) 0 0
\(655\) 29.6360 9.87868i 1.15798 0.385992i
\(656\) 0 0
\(657\) −16.9706 16.9706i −0.662085 0.662085i
\(658\) 0 0
\(659\) −28.4558 −1.10848 −0.554241 0.832356i \(-0.686991\pi\)
−0.554241 + 0.832356i \(0.686991\pi\)
\(660\) 0 0
\(661\) −16.7279 −0.650641 −0.325320 0.945604i \(-0.605472\pi\)
−0.325320 + 0.945604i \(0.605472\pi\)
\(662\) 0 0
\(663\) 52.4558 + 52.4558i 2.03722 + 2.03722i
\(664\) 0 0
\(665\) −9.00000 + 18.0000i −0.349005 + 0.698010i
\(666\) 0 0
\(667\) 0.213203 + 0.213203i 0.00825527 + 0.00825527i
\(668\) 0 0
\(669\) 12.8284i 0.495976i
\(670\) 0 0
\(671\) 21.7279 10.2426i 0.838797 0.395413i
\(672\) 0 0
\(673\) −2.63604 + 2.63604i −0.101612 + 0.101612i −0.756085 0.654473i \(-0.772890\pi\)
0.654473 + 0.756085i \(0.272890\pi\)
\(674\) 0 0
\(675\) 0.292893 2.05025i 0.0112735 0.0789143i
\(676\) 0 0
\(677\) 33.2132 + 33.2132i 1.27649 + 1.27649i 0.942620 + 0.333867i \(0.108354\pi\)
0.333867 + 0.942620i \(0.391646\pi\)
\(678\) 0 0
\(679\) −9.51472 −0.365141
\(680\) 0 0
\(681\) 51.2132i 1.96249i
\(682\) 0 0
\(683\) −12.1924 12.1924i −0.466529 0.466529i 0.434259 0.900788i \(-0.357010\pi\)
−0.900788 + 0.434259i \(0.857010\pi\)
\(684\) 0 0
\(685\) 32.9706 + 16.4853i 1.25974 + 0.629870i
\(686\) 0 0
\(687\) 25.9706 25.9706i 0.990839 0.990839i
\(688\) 0 0
\(689\) −57.2132 −2.17965
\(690\) 0 0
\(691\) −13.2721 −0.504894 −0.252447 0.967611i \(-0.581235\pi\)
−0.252447 + 0.967611i \(0.581235\pi\)
\(692\) 0 0
\(693\) −26.4853 9.51472i −1.00609 0.361434i
\(694\) 0 0
\(695\) 10.2426 + 30.7279i 0.388526 + 1.16558i
\(696\) 0 0
\(697\) 9.00000 9.00000i 0.340899 0.340899i
\(698\) 0 0
\(699\) 5.48528 0.207472
\(700\) 0 0
\(701\) 27.7279i 1.04727i −0.851943 0.523635i \(-0.824576\pi\)
0.851943 0.523635i \(-0.175424\pi\)
\(702\) 0 0
\(703\) −0.363961 + 0.363961i −0.0137271 + 0.0137271i
\(704\) 0 0
\(705\) −10.6569 31.9706i −0.401360 1.20408i
\(706\) 0 0
\(707\) 5.27208 5.27208i 0.198277 0.198277i
\(708\) 0 0
\(709\) 10.0000i 0.375558i −0.982211 0.187779i \(-0.939871\pi\)
0.982211 0.187779i \(-0.0601289\pi\)
\(710\) 0 0
\(711\) 28.9706i 1.08648i
\(712\) 0 0
\(713\) 1.24264 + 1.24264i 0.0465373 + 0.0465373i
\(714\) 0 0
\(715\) −0.727922 + 31.4558i −0.0272227 + 1.17638i
\(716\) 0 0
\(717\) 1.24264 + 1.24264i 0.0464073 + 0.0464073i
\(718\) 0 0
\(719\) 20.6985i 0.771923i −0.922515 0.385962i \(-0.873870\pi\)
0.922515 0.385962i \(-0.126130\pi\)
\(720\) 0 0
\(721\) 26.4853i 0.986363i
\(722\) 0 0
\(723\) −11.4853 + 11.4853i −0.427142 + 0.427142i
\(724\) 0 0
\(725\) −4.97056 + 3.72792i −0.184602 + 0.138452i
\(726\) 0 0
\(727\) 6.97056 6.97056i 0.258524 0.258524i −0.565930 0.824454i \(-0.691483\pi\)
0.824454 + 0.565930i \(0.191483\pi\)
\(728\) 0 0
\(729\) 23.8284i 0.882534i
\(730\) 0 0
\(731\) 12.7279 0.470759
\(732\) 0 0
\(733\) −25.9706 + 25.9706i −0.959245 + 0.959245i −0.999201 0.0399568i \(-0.987278\pi\)
0.0399568 + 0.999201i \(0.487278\pi\)
\(734\) 0 0
\(735\) −9.65685 4.82843i −0.356198 0.178099i
\(736\) 0 0
\(737\) 17.6569 + 6.34315i 0.650399 + 0.233653i
\(738\) 0 0
\(739\) −33.9411 −1.24854 −0.624272 0.781207i \(-0.714604\pi\)
−0.624272 + 0.781207i \(0.714604\pi\)
\(740\) 0 0
\(741\) −30.7279 −1.12882
\(742\) 0 0
\(743\) 8.12132 8.12132i 0.297942 0.297942i −0.542265 0.840207i \(-0.682433\pi\)
0.840207 + 0.542265i \(0.182433\pi\)
\(744\) 0 0
\(745\) −13.6066 40.8198i −0.498507 1.49552i
\(746\) 0 0
\(747\) −20.4853 20.4853i −0.749517 0.749517i
\(748\) 0 0
\(749\) 43.4558i 1.58784i
\(750\) 0 0
\(751\) 43.1838 1.57580 0.787899 0.615804i \(-0.211169\pi\)
0.787899 + 0.615804i \(0.211169\pi\)
\(752\) 0 0
\(753\) 6.00000 + 6.00000i 0.218652 + 0.218652i
\(754\) 0 0
\(755\) −25.4558 + 8.48528i −0.926433 + 0.308811i
\(756\) 0 0
\(757\) 13.2132 13.2132i 0.480242 0.480242i −0.424967 0.905209i \(-0.639714\pi\)
0.905209 + 0.424967i \(0.139714\pi\)
\(758\) 0 0
\(759\) 1.75736 0.828427i 0.0637881 0.0300700i
\(760\) 0 0
\(761\) 18.7279i 0.678887i 0.940627 + 0.339443i \(0.110239\pi\)
−0.940627 + 0.339443i \(0.889761\pi\)
\(762\) 0 0
\(763\) −5.27208 5.27208i −0.190862 0.190862i
\(764\) 0 0
\(765\) 40.9706 + 20.4853i 1.48129 + 0.740647i
\(766\) 0 0
\(767\) −4.24264 4.24264i −0.153193 0.153193i
\(768\) 0 0
\(769\) −43.4558 −1.56706 −0.783529 0.621355i \(-0.786582\pi\)
−0.783529 + 0.621355i \(0.786582\pi\)
\(770\) 0 0
\(771\) 6.58579 0.237181
\(772\) 0 0
\(773\) 16.2635 + 16.2635i 0.584956 + 0.584956i 0.936261 0.351305i \(-0.114262\pi\)
−0.351305 + 0.936261i \(0.614262\pi\)
\(774\) 0 0
\(775\) −28.9706 + 21.7279i −1.04065 + 0.780490i
\(776\) 0 0
\(777\) −0.878680 0.878680i −0.0315225 0.0315225i
\(778\) 0 0
\(779\) 5.27208i 0.188892i
\(780\) 0 0
\(781\) 1.75736 + 3.72792i 0.0628833 + 0.133396i
\(782\) 0 0
\(783\) −0.363961 + 0.363961i −0.0130069 + 0.0130069i
\(784\) 0 0
\(785\) −46.2843 23.1421i −1.65196 0.825978i
\(786\) 0 0
\(787\) −5.48528 5.48528i −0.195529 0.195529i 0.602551 0.798080i \(-0.294151\pi\)
−0.798080 + 0.602551i \(0.794151\pi\)
\(788\) 0 0
\(789\) −21.7279 −0.773535
\(790\) 0 0
\(791\) 18.7279i 0.665888i
\(792\) 0 0
\(793\) 21.7279 + 21.7279i 0.771581 + 0.771581i
\(794\) 0 0
\(795\) −69.0624 + 23.0208i −2.44939 + 0.816464i
\(796\) 0 0
\(797\) 8.14214 8.14214i 0.288409 0.288409i −0.548042 0.836451i \(-0.684627\pi\)
0.836451 + 0.548042i \(0.184627\pi\)
\(798\) 0 0
\(799\) −45.2132 −1.59953
\(800\) 0 0
\(801\) 15.5147 0.548186
\(802\) 0 0
\(803\) −26.4853 9.51472i −0.934645 0.335767i
\(804\) 0 0
\(805\) 1.54416 0.514719i 0.0544243 0.0181414i
\(806\) 0 0
\(807\) −33.7990 + 33.7990i −1.18978 + 1.18978i
\(808\) 0 0
\(809\) −37.4558 −1.31688 −0.658439 0.752634i \(-0.728783\pi\)
−0.658439 + 0.752634i \(0.728783\pi\)
\(810\) 0 0
\(811\) 4.45584i 0.156466i −0.996935 0.0782329i \(-0.975072\pi\)
0.996935 0.0782329i \(-0.0249278\pi\)
\(812\) 0 0
\(813\) −11.4853 + 11.4853i −0.402806 + 0.402806i
\(814\) 0 0
\(815\) 19.5858 39.1716i 0.686060 1.37212i
\(816\) 0 0
\(817\) −3.72792 + 3.72792i −0.130423 + 0.130423i
\(818\) 0 0
\(819\) 36.0000i 1.25794i
\(820\) 0 0
\(821\) 49.4558i 1.72602i 0.505186 + 0.863010i \(0.331424\pi\)
−0.505186 + 0.863010i \(0.668576\pi\)
\(822\) 0 0
\(823\) −28.6985 28.6985i −1.00037 1.00037i −1.00000 0.000366361i \(-0.999883\pi\)
−0.000366361 1.00000i \(-0.500117\pi\)
\(824\) 0 0
\(825\) 11.7782 + 38.2635i 0.410063 + 1.33216i
\(826\) 0 0
\(827\) −3.00000 3.00000i −0.104320 0.104320i 0.653020 0.757340i \(-0.273502\pi\)
−0.757340 + 0.653020i \(0.773502\pi\)
\(828\) 0 0
\(829\) 45.4558i 1.57875i −0.613913 0.789373i \(-0.710406\pi\)
0.613913 0.789373i \(-0.289594\pi\)
\(830\) 0 0
\(831\) 34.9706i 1.21312i
\(832\) 0 0
\(833\) −10.2426 + 10.2426i −0.354886 + 0.354886i
\(834\) 0 0
\(835\) −9.00000 + 18.0000i −0.311458 + 0.622916i
\(836\) 0 0
\(837\) −2.12132 + 2.12132i −0.0733236 + 0.0733236i
\(838\) 0 0
\(839\) 33.1716i 1.14521i −0.819831 0.572605i \(-0.805933\pi\)
0.819831 0.572605i \(-0.194067\pi\)
\(840\) 0 0
\(841\) −27.4558 −0.946753
\(842\) 0 0
\(843\) 39.2132 39.2132i 1.35057 1.35057i
\(844\) 0 0
\(845\) −10.6066 + 3.53553i −0.364878 + 0.121626i
\(846\) 0 0
\(847\) −32.8492 + 3.15076i −1.12871 + 0.108261i
\(848\) 0 0
\(849\) −45.2132 −1.55171
\(850\) 0 0
\(851\) 0.0416306 0.00142708
\(852\) 0 0
\(853\) −31.9706 + 31.9706i −1.09465 + 1.09465i −0.0996263 + 0.995025i \(0.531765\pi\)
−0.995025 + 0.0996263i \(0.968235\pi\)
\(854\) 0 0
\(855\) −18.0000 + 6.00000i −0.615587 + 0.205196i
\(856\) 0 0
\(857\) 4.39340 + 4.39340i 0.150076 + 0.150076i 0.778152 0.628076i \(-0.216157\pi\)
−0.628076 + 0.778152i \(0.716157\pi\)
\(858\) 0 0
\(859\) 32.0000i 1.09183i 0.837842 + 0.545913i \(0.183817\pi\)
−0.837842 + 0.545913i \(0.816183\pi\)
\(860\) 0 0
\(861\) −12.7279 −0.433766
\(862\) 0 0
\(863\) 0.899495 + 0.899495i 0.0306192 + 0.0306192i 0.722251 0.691631i \(-0.243108\pi\)
−0.691631 + 0.722251i \(0.743108\pi\)
\(864\) 0 0
\(865\) 45.9411 + 22.9706i 1.56205 + 0.781023i
\(866\) 0 0
\(867\) 60.5269 60.5269i 2.05560 2.05560i
\(868\) 0 0
\(869\) 14.4853 + 30.7279i 0.491380 + 1.04237i
\(870\) 0 0
\(871\) 24.0000i 0.813209i
\(872\) 0 0
\(873\) −6.34315 6.34315i −0.214683 0.214683i
\(874\) 0 0
\(875\) 6.00000 + 33.0000i 0.202837 + 1.11560i
\(876\) 0 0
\(877\) −5.27208 5.27208i −0.178025 0.178025i 0.612469 0.790495i \(-0.290176\pi\)
−0.790495 + 0.612469i \(0.790176\pi\)
\(878\) 0 0
\(879\) −53.6985 −1.81120
\(880\) 0 0
\(881\) 8.48528 0.285876 0.142938 0.989732i \(-0.454345\pi\)
0.142938 + 0.989732i \(0.454345\pi\)
\(882\) 0 0
\(883\) 8.39340 + 8.39340i 0.282460 + 0.282460i 0.834089 0.551629i \(-0.185994\pi\)
−0.551629 + 0.834089i \(0.685994\pi\)
\(884\) 0 0
\(885\) −6.82843 3.41421i −0.229535 0.114768i
\(886\) 0 0
\(887\) 13.7574 + 13.7574i 0.461927 + 0.461927i 0.899287 0.437360i \(-0.144086\pi\)
−0.437360 + 0.899287i \(0.644086\pi\)
\(888\) 0 0
\(889\) 18.0000i 0.603701i
\(890\) 0 0
\(891\) 13.4142 + 28.4558i 0.449393 + 0.953307i
\(892\) 0 0
\(893\) 13.2426 13.2426i 0.443148 0.443148i
\(894\) 0 0
\(895\) −29.1838 + 9.72792i −0.975506 + 0.325169i
\(896\) 0 0
\(897\) 1.75736 + 1.75736i 0.0586765 + 0.0586765i
\(898\) 0 0
\(899\) 9.00000 0.300167
\(900\) 0 0
\(901\) 97.6690i 3.25383i
\(902\) 0 0
\(903\) −9.00000 9.00000i −0.299501 0.299501i
\(904\) 0 0
\(905\) −8.48528 25.4558i −0.282060 0.846181i
\(906\) 0 0
\(907\) 11.3640 11.3640i 0.377334 0.377334i −0.492805 0.870140i \(-0.664029\pi\)
0.870140 + 0.492805i \(0.164029\pi\)
\(908\) 0 0
\(909\) 7.02944 0.233152
\(910\) 0 0
\(911\) −26.3553 −0.873191 −0.436596 0.899658i \(-0.643816\pi\)
−0.436596 + 0.899658i \(0.643816\pi\)
\(912\) 0 0
\(913\) −31.9706 11.4853i −1.05807 0.380107i
\(914\) 0 0
\(915\) 34.9706 + 17.4853i 1.15609 + 0.578046i
\(916\) 0 0
\(917\) −29.6360 + 29.6360i −0.978668 + 0.978668i
\(918\) 0 0
\(919\) −13.7574 −0.453813 −0.226907 0.973916i \(-0.572861\pi\)
−0.226907 + 0.973916i \(0.572861\pi\)
\(920\) 0 0
\(921\) 39.2132i 1.29212i
\(922\) 0 0
\(923\) −3.72792 + 3.72792i −0.122706 + 0.122706i
\(924\) 0 0
\(925\) −0.121320 + 0.849242i −0.00398899 + 0.0279229i
\(926\) 0 0
\(927\) 17.6569 17.6569i 0.579927 0.579927i
\(928\) 0 0
\(929\) 42.1716i 1.38360i −0.722087 0.691802i \(-0.756817\pi\)
0.722087 0.691802i \(-0.243183\pi\)
\(930\) 0 0
\(931\) 6.00000i 0.196642i
\(932\) 0 0
\(933\) −16.6066 16.6066i −0.543676 0.543676i
\(934\) 0 0
\(935\) 53.6985 + 1.24264i 1.75613 + 0.0406387i
\(936\) 0 0
\(937\) −24.7279 24.7279i −0.807826 0.807826i 0.176478 0.984304i \(-0.443529\pi\)
−0.984304 + 0.176478i \(0.943529\pi\)
\(938\) 0 0
\(939\) 12.8284i 0.418640i
\(940\) 0 0
\(941\) 43.6690i 1.42357i −0.702397 0.711785i \(-0.747887\pi\)
0.702397 0.711785i \(-0.252113\pi\)
\(942\) 0 0
\(943\) 0.301515 0.301515i 0.00981869 0.00981869i
\(944\) 0 0
\(945\) 0.878680 + 2.63604i 0.0285835 + 0.0857504i
\(946\) 0 0
\(947\) −22.4350 + 22.4350i −0.729040 + 0.729040i −0.970429 0.241388i \(-0.922397\pi\)
0.241388 + 0.970429i \(0.422397\pi\)
\(948\) 0 0
\(949\) 36.0000i 1.16861i
\(950\) 0 0
\(951\) 32.5563 1.05571
\(952\) 0 0
\(953\) 29.1213 29.1213i 0.943332 0.943332i −0.0551462 0.998478i \(-0.517562\pi\)
0.998478 + 0.0551462i \(0.0175625\pi\)
\(954\) 0 0
\(955\) 2.00000 + 6.00000i 0.0647185 + 0.194155i
\(956\) 0 0
\(957\) 3.36396 9.36396i 0.108741 0.302694i
\(958\) 0 0
\(959\) −49.4558 −1.59701
\(960\) 0 0
\(961\) 21.4558 0.692124
\(962\) 0 0
\(963\) −28.9706 + 28.9706i −0.933563 + 0.933563i
\(964\) 0 0
\(965\) 2.48528 + 1.24264i 0.0800040 + 0.0400020i
\(966\) 0 0
\(967\) −8.12132 8.12132i −0.261164 0.261164i 0.564363 0.825527i \(-0.309122\pi\)
−0.825527 + 0.564363i \(0.809122\pi\)
\(968\) 0 0
\(969\) 52.4558i 1.68512i
\(970\) 0 0
\(971\) −13.1127 −0.420807 −0.210403 0.977615i \(-0.567478\pi\)
−0.210403 + 0.977615i \(0.567478\pi\)
\(972\) 0 0
\(973\) −30.7279 30.7279i −0.985092 0.985092i
\(974\) 0 0
\(975\) −40.9706 + 30.7279i −1.31211 + 0.984081i
\(976\) 0 0
\(977\) −3.55635 + 3.55635i −0.113778 + 0.113778i −0.761703 0.647926i \(-0.775637\pi\)
0.647926 + 0.761703i \(0.275637\pi\)
\(978\) 0 0
\(979\) 16.4558 7.75736i 0.525931 0.247926i
\(980\) 0 0
\(981\) 7.02944i 0.224433i
\(982\) 0 0
\(983\) −9.17157 9.17157i −0.292528 0.292528i 0.545550 0.838078i \(-0.316321\pi\)
−0.838078 + 0.545550i \(0.816321\pi\)
\(984\) 0 0
\(985\) 1.75736 3.51472i 0.0559941 0.111988i
\(986\) 0 0
\(987\) 31.9706 + 31.9706i 1.01763 + 1.01763i
\(988\) 0 0
\(989\) 0.426407 0.0135589
\(990\) 0 0
\(991\) 25.4558 0.808632 0.404316 0.914619i \(-0.367510\pi\)
0.404316 + 0.914619i \(0.367510\pi\)
\(992\) 0 0
\(993\) 42.2132 + 42.2132i 1.33960 + 1.33960i
\(994\) 0 0
\(995\) 10.0919 3.36396i 0.319934 0.106645i
\(996\) 0 0
\(997\) −41.4853 41.4853i −1.31385 1.31385i −0.918552 0.395300i \(-0.870641\pi\)
−0.395300 0.918552i \(-0.629359\pi\)
\(998\) 0 0
\(999\) 0.0710678i 0.00224849i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 880.2.bd.b.593.1 4
4.3 odd 2 110.2.f.c.43.2 yes 4
5.2 odd 4 880.2.bd.c.417.1 4
11.10 odd 2 880.2.bd.c.593.1 4
12.11 even 2 990.2.m.d.703.1 4
20.3 even 4 550.2.f.a.307.2 4
20.7 even 4 110.2.f.b.87.1 yes 4
20.19 odd 2 550.2.f.b.43.1 4
44.43 even 2 110.2.f.b.43.1 4
55.32 even 4 inner 880.2.bd.b.417.1 4
60.47 odd 4 990.2.m.c.307.2 4
132.131 odd 2 990.2.m.c.703.2 4
220.43 odd 4 550.2.f.b.307.1 4
220.87 odd 4 110.2.f.c.87.2 yes 4
220.219 even 2 550.2.f.a.43.2 4
660.527 even 4 990.2.m.d.307.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.2.f.b.43.1 4 44.43 even 2
110.2.f.b.87.1 yes 4 20.7 even 4
110.2.f.c.43.2 yes 4 4.3 odd 2
110.2.f.c.87.2 yes 4 220.87 odd 4
550.2.f.a.43.2 4 220.219 even 2
550.2.f.a.307.2 4 20.3 even 4
550.2.f.b.43.1 4 20.19 odd 2
550.2.f.b.307.1 4 220.43 odd 4
880.2.bd.b.417.1 4 55.32 even 4 inner
880.2.bd.b.593.1 4 1.1 even 1 trivial
880.2.bd.c.417.1 4 5.2 odd 4
880.2.bd.c.593.1 4 11.10 odd 2
990.2.m.c.307.2 4 60.47 odd 4
990.2.m.c.703.2 4 132.131 odd 2
990.2.m.d.307.1 4 660.527 even 4
990.2.m.d.703.1 4 12.11 even 2