Properties

Label 880.2.bo.j.641.3
Level $880$
Weight $2$
Character 880.641
Analytic conductor $7.027$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [880,2,Mod(81,880)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(880, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("880.81");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 880.bo (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.02683537787\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2 x^{11} + 15 x^{10} - 22 x^{9} + 89 x^{8} - 118 x^{7} + 205 x^{6} - 68 x^{5} + 1061 x^{4} + \cdots + 400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 440)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 641.3
Root \(-0.866917 - 2.66810i\) of defining polynomial
Character \(\chi\) \(=\) 880.641
Dual form 880.2.bo.j.81.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.535784 + 1.64897i) q^{3} +(0.809017 + 0.587785i) q^{5} +(0.386966 - 1.19096i) q^{7} +(-0.00499969 + 0.00363249i) q^{9} +(-2.45751 + 2.22725i) q^{11} +(2.02882 - 1.47403i) q^{13} +(-0.535784 + 1.64897i) q^{15} +(2.91579 + 2.11845i) q^{17} +(2.18093 + 6.71222i) q^{19} +2.17119 q^{21} +2.20737 q^{23} +(0.309017 + 0.951057i) q^{25} +(4.19943 + 3.05107i) q^{27} +(0.834223 - 2.56747i) q^{29} +(-2.29231 + 1.66546i) q^{31} +(-4.98937 - 2.85905i) q^{33} +(1.01309 - 0.736053i) q^{35} +(-2.49468 + 7.67782i) q^{37} +(3.51765 + 2.55572i) q^{39} +(-3.19109 - 9.82117i) q^{41} -6.88581 q^{43} -0.00617996 q^{45} +(-0.493365 - 1.51842i) q^{47} +(4.39448 + 3.19278i) q^{49} +(-1.93103 + 5.94309i) q^{51} +(-1.43514 + 1.04269i) q^{53} +(-3.29731 + 0.357394i) q^{55} +(-9.89977 + 7.19261i) q^{57} +(1.35006 - 4.15504i) q^{59} +(6.74173 + 4.89816i) q^{61} +(0.00239143 + 0.00736007i) q^{63} +2.50777 q^{65} -5.43293 q^{67} +(1.18267 + 3.63989i) q^{69} +(-3.75112 - 2.72535i) q^{71} +(-0.628770 + 1.93515i) q^{73} +(-1.40270 + 1.01912i) q^{75} +(1.70159 + 3.78866i) q^{77} +(13.5612 - 9.85278i) q^{79} +(-2.78687 + 8.57710i) q^{81} +(-4.55121 - 3.30665i) q^{83} +(1.11373 + 3.42772i) q^{85} +4.68066 q^{87} -4.72832 q^{89} +(-0.970419 - 2.98664i) q^{91} +(-3.97449 - 2.88764i) q^{93} +(-2.18093 + 6.71222i) q^{95} +(-15.4476 + 11.2233i) q^{97} +(0.00419634 - 0.0200624i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + q^{3} + 3 q^{5} + 8 q^{7} + 10 q^{9} + 4 q^{11} - 7 q^{13} - q^{15} + 7 q^{17} - 3 q^{19} + 4 q^{21} - 36 q^{23} - 3 q^{25} - 8 q^{27} + 13 q^{29} - 2 q^{31} - 19 q^{33} + 2 q^{35} - 22 q^{37}+ \cdots + 79 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.535784 + 1.64897i 0.309335 + 0.952036i 0.978024 + 0.208493i \(0.0668559\pi\)
−0.668689 + 0.743542i \(0.733144\pi\)
\(4\) 0 0
\(5\) 0.809017 + 0.587785i 0.361803 + 0.262866i
\(6\) 0 0
\(7\) 0.386966 1.19096i 0.146259 0.450140i −0.850912 0.525309i \(-0.823950\pi\)
0.997171 + 0.0751693i \(0.0239497\pi\)
\(8\) 0 0
\(9\) −0.00499969 + 0.00363249i −0.00166656 + 0.00121083i
\(10\) 0 0
\(11\) −2.45751 + 2.22725i −0.740967 + 0.671541i
\(12\) 0 0
\(13\) 2.02882 1.47403i 0.562695 0.408822i −0.269749 0.962931i \(-0.586941\pi\)
0.832444 + 0.554109i \(0.186941\pi\)
\(14\) 0 0
\(15\) −0.535784 + 1.64897i −0.138339 + 0.425763i
\(16\) 0 0
\(17\) 2.91579 + 2.11845i 0.707183 + 0.513799i 0.882264 0.470756i \(-0.156019\pi\)
−0.175081 + 0.984554i \(0.556019\pi\)
\(18\) 0 0
\(19\) 2.18093 + 6.71222i 0.500340 + 1.53989i 0.808465 + 0.588544i \(0.200299\pi\)
−0.308125 + 0.951346i \(0.599701\pi\)
\(20\) 0 0
\(21\) 2.17119 0.473792
\(22\) 0 0
\(23\) 2.20737 0.460268 0.230134 0.973159i \(-0.426084\pi\)
0.230134 + 0.973159i \(0.426084\pi\)
\(24\) 0 0
\(25\) 0.309017 + 0.951057i 0.0618034 + 0.190211i
\(26\) 0 0
\(27\) 4.19943 + 3.05107i 0.808182 + 0.587178i
\(28\) 0 0
\(29\) 0.834223 2.56747i 0.154911 0.476768i −0.843241 0.537536i \(-0.819355\pi\)
0.998152 + 0.0607684i \(0.0193551\pi\)
\(30\) 0 0
\(31\) −2.29231 + 1.66546i −0.411712 + 0.299126i −0.774294 0.632826i \(-0.781895\pi\)
0.362583 + 0.931952i \(0.381895\pi\)
\(32\) 0 0
\(33\) −4.98937 2.85905i −0.868538 0.497696i
\(34\) 0 0
\(35\) 1.01309 0.736053i 0.171243 0.124416i
\(36\) 0 0
\(37\) −2.49468 + 7.67782i −0.410122 + 1.26223i 0.506420 + 0.862287i \(0.330969\pi\)
−0.916542 + 0.399939i \(0.869031\pi\)
\(38\) 0 0
\(39\) 3.51765 + 2.55572i 0.563274 + 0.409243i
\(40\) 0 0
\(41\) −3.19109 9.82117i −0.498365 1.53381i −0.811647 0.584148i \(-0.801429\pi\)
0.313282 0.949660i \(-0.398571\pi\)
\(42\) 0 0
\(43\) −6.88581 −1.05008 −0.525038 0.851079i \(-0.675949\pi\)
−0.525038 + 0.851079i \(0.675949\pi\)
\(44\) 0 0
\(45\) −0.00617996 −0.000921254
\(46\) 0 0
\(47\) −0.493365 1.51842i −0.0719647 0.221485i 0.908605 0.417657i \(-0.137149\pi\)
−0.980569 + 0.196173i \(0.937149\pi\)
\(48\) 0 0
\(49\) 4.39448 + 3.19278i 0.627783 + 0.456111i
\(50\) 0 0
\(51\) −1.93103 + 5.94309i −0.270398 + 0.832199i
\(52\) 0 0
\(53\) −1.43514 + 1.04269i −0.197132 + 0.143225i −0.681972 0.731378i \(-0.738878\pi\)
0.484841 + 0.874602i \(0.338878\pi\)
\(54\) 0 0
\(55\) −3.29731 + 0.357394i −0.444610 + 0.0481910i
\(56\) 0 0
\(57\) −9.89977 + 7.19261i −1.31126 + 0.952684i
\(58\) 0 0
\(59\) 1.35006 4.15504i 0.175762 0.540941i −0.823905 0.566728i \(-0.808209\pi\)
0.999667 + 0.0257871i \(0.00820919\pi\)
\(60\) 0 0
\(61\) 6.74173 + 4.89816i 0.863191 + 0.627145i 0.928751 0.370704i \(-0.120884\pi\)
−0.0655605 + 0.997849i \(0.520884\pi\)
\(62\) 0 0
\(63\) 0.00239143 + 0.00736007i 0.000301292 + 0.000927282i
\(64\) 0 0
\(65\) 2.50777 0.311050
\(66\) 0 0
\(67\) −5.43293 −0.663738 −0.331869 0.943326i \(-0.607679\pi\)
−0.331869 + 0.943326i \(0.607679\pi\)
\(68\) 0 0
\(69\) 1.18267 + 3.63989i 0.142377 + 0.438191i
\(70\) 0 0
\(71\) −3.75112 2.72535i −0.445176 0.323439i 0.342512 0.939513i \(-0.388722\pi\)
−0.787688 + 0.616074i \(0.788722\pi\)
\(72\) 0 0
\(73\) −0.628770 + 1.93515i −0.0735919 + 0.226493i −0.981086 0.193572i \(-0.937993\pi\)
0.907494 + 0.420065i \(0.137993\pi\)
\(74\) 0 0
\(75\) −1.40270 + 1.01912i −0.161970 + 0.117678i
\(76\) 0 0
\(77\) 1.70159 + 3.78866i 0.193914 + 0.431758i
\(78\) 0 0
\(79\) 13.5612 9.85278i 1.52575 1.10852i 0.567210 0.823573i \(-0.308023\pi\)
0.958542 0.284951i \(-0.0919772\pi\)
\(80\) 0 0
\(81\) −2.78687 + 8.57710i −0.309652 + 0.953012i
\(82\) 0 0
\(83\) −4.55121 3.30665i −0.499561 0.362952i 0.309288 0.950968i \(-0.399909\pi\)
−0.808849 + 0.588016i \(0.799909\pi\)
\(84\) 0 0
\(85\) 1.11373 + 3.42772i 0.120801 + 0.371788i
\(86\) 0 0
\(87\) 4.68066 0.501820
\(88\) 0 0
\(89\) −4.72832 −0.501200 −0.250600 0.968091i \(-0.580628\pi\)
−0.250600 + 0.968091i \(0.580628\pi\)
\(90\) 0 0
\(91\) −0.970419 2.98664i −0.101728 0.313085i
\(92\) 0 0
\(93\) −3.97449 2.88764i −0.412135 0.299434i
\(94\) 0 0
\(95\) −2.18093 + 6.71222i −0.223759 + 0.688660i
\(96\) 0 0
\(97\) −15.4476 + 11.2233i −1.56847 + 1.13956i −0.639858 + 0.768493i \(0.721007\pi\)
−0.928608 + 0.371063i \(0.878993\pi\)
\(98\) 0 0
\(99\) 0.00419634 0.0200624i 0.000421748 0.00201635i
\(100\) 0 0
\(101\) 11.5085 8.36138i 1.14513 0.831989i 0.157308 0.987550i \(-0.449719\pi\)
0.987826 + 0.155561i \(0.0497185\pi\)
\(102\) 0 0
\(103\) 4.90766 15.1042i 0.483566 1.48826i −0.350481 0.936570i \(-0.613982\pi\)
0.834047 0.551693i \(-0.186018\pi\)
\(104\) 0 0
\(105\) 1.75653 + 1.27619i 0.171420 + 0.124544i
\(106\) 0 0
\(107\) 1.25132 + 3.85116i 0.120969 + 0.372306i 0.993145 0.116887i \(-0.0372915\pi\)
−0.872176 + 0.489193i \(0.837292\pi\)
\(108\) 0 0
\(109\) 5.89844 0.564968 0.282484 0.959272i \(-0.408842\pi\)
0.282484 + 0.959272i \(0.408842\pi\)
\(110\) 0 0
\(111\) −13.9971 −1.32855
\(112\) 0 0
\(113\) 1.05499 + 3.24692i 0.0992448 + 0.305444i 0.988337 0.152285i \(-0.0486630\pi\)
−0.889092 + 0.457729i \(0.848663\pi\)
\(114\) 0 0
\(115\) 1.78580 + 1.29746i 0.166526 + 0.120989i
\(116\) 0 0
\(117\) −0.00478911 + 0.0147394i −0.000442753 + 0.00136265i
\(118\) 0 0
\(119\) 3.65129 2.65282i 0.334713 0.243183i
\(120\) 0 0
\(121\) 1.07872 10.9470i 0.0980656 0.995180i
\(122\) 0 0
\(123\) 14.4851 10.5241i 1.30608 0.948922i
\(124\) 0 0
\(125\) −0.309017 + 0.951057i −0.0276393 + 0.0850651i
\(126\) 0 0
\(127\) 5.00949 + 3.63961i 0.444521 + 0.322963i 0.787429 0.616406i \(-0.211412\pi\)
−0.342908 + 0.939369i \(0.611412\pi\)
\(128\) 0 0
\(129\) −3.68931 11.3545i −0.324826 0.999710i
\(130\) 0 0
\(131\) 7.39924 0.646475 0.323237 0.946318i \(-0.395229\pi\)
0.323237 + 0.946318i \(0.395229\pi\)
\(132\) 0 0
\(133\) 8.83792 0.766345
\(134\) 0 0
\(135\) 1.60404 + 4.93673i 0.138054 + 0.424886i
\(136\) 0 0
\(137\) −14.9530 10.8640i −1.27752 0.928175i −0.278048 0.960567i \(-0.589687\pi\)
−0.999475 + 0.0323920i \(0.989687\pi\)
\(138\) 0 0
\(139\) 5.51361 16.9691i 0.467658 1.43930i −0.387950 0.921680i \(-0.626817\pi\)
0.855608 0.517624i \(-0.173183\pi\)
\(140\) 0 0
\(141\) 2.23950 1.62709i 0.188600 0.137026i
\(142\) 0 0
\(143\) −1.70283 + 8.14114i −0.142398 + 0.680796i
\(144\) 0 0
\(145\) 2.18402 1.58679i 0.181373 0.131775i
\(146\) 0 0
\(147\) −2.91031 + 8.95702i −0.240039 + 0.738763i
\(148\) 0 0
\(149\) 5.98599 + 4.34908i 0.490392 + 0.356290i 0.805335 0.592820i \(-0.201985\pi\)
−0.314943 + 0.949111i \(0.601985\pi\)
\(150\) 0 0
\(151\) −1.36436 4.19906i −0.111030 0.341714i 0.880069 0.474847i \(-0.157496\pi\)
−0.991098 + 0.133132i \(0.957496\pi\)
\(152\) 0 0
\(153\) −0.0222733 −0.00180069
\(154\) 0 0
\(155\) −2.83345 −0.227589
\(156\) 0 0
\(157\) −0.720185 2.21650i −0.0574770 0.176896i 0.918196 0.396126i \(-0.129646\pi\)
−0.975673 + 0.219230i \(0.929646\pi\)
\(158\) 0 0
\(159\) −2.48830 1.80785i −0.197335 0.143372i
\(160\) 0 0
\(161\) 0.854175 2.62888i 0.0673184 0.207185i
\(162\) 0 0
\(163\) 1.21850 0.885295i 0.0954406 0.0693416i −0.539042 0.842279i \(-0.681213\pi\)
0.634482 + 0.772938i \(0.281213\pi\)
\(164\) 0 0
\(165\) −2.35598 5.24570i −0.183413 0.408377i
\(166\) 0 0
\(167\) 7.92620 5.75872i 0.613347 0.445623i −0.237244 0.971450i \(-0.576244\pi\)
0.850591 + 0.525827i \(0.176244\pi\)
\(168\) 0 0
\(169\) −2.07385 + 6.38265i −0.159527 + 0.490973i
\(170\) 0 0
\(171\) −0.0352861 0.0256368i −0.00269839 0.00196050i
\(172\) 0 0
\(173\) −6.20927 19.1102i −0.472082 1.45292i −0.849853 0.527020i \(-0.823309\pi\)
0.377771 0.925899i \(-0.376691\pi\)
\(174\) 0 0
\(175\) 1.25225 0.0946610
\(176\) 0 0
\(177\) 7.57490 0.569364
\(178\) 0 0
\(179\) −5.00760 15.4118i −0.374285 1.15193i −0.943960 0.330061i \(-0.892931\pi\)
0.569674 0.821871i \(-0.307069\pi\)
\(180\) 0 0
\(181\) 7.62800 + 5.54207i 0.566985 + 0.411939i 0.834009 0.551751i \(-0.186040\pi\)
−0.267024 + 0.963690i \(0.586040\pi\)
\(182\) 0 0
\(183\) −4.46482 + 13.7413i −0.330049 + 1.01579i
\(184\) 0 0
\(185\) −6.53115 + 4.74516i −0.480179 + 0.348871i
\(186\) 0 0
\(187\) −11.8839 + 1.28809i −0.869036 + 0.0941943i
\(188\) 0 0
\(189\) 5.25873 3.82069i 0.382516 0.277914i
\(190\) 0 0
\(191\) −2.52639 + 7.77542i −0.182803 + 0.562610i −0.999904 0.0138853i \(-0.995580\pi\)
0.817101 + 0.576495i \(0.195580\pi\)
\(192\) 0 0
\(193\) 4.04119 + 2.93610i 0.290891 + 0.211345i 0.723654 0.690163i \(-0.242461\pi\)
−0.432763 + 0.901508i \(0.642461\pi\)
\(194\) 0 0
\(195\) 1.34362 + 4.13524i 0.0962187 + 0.296131i
\(196\) 0 0
\(197\) −7.00790 −0.499292 −0.249646 0.968337i \(-0.580314\pi\)
−0.249646 + 0.968337i \(0.580314\pi\)
\(198\) 0 0
\(199\) −18.8762 −1.33810 −0.669050 0.743217i \(-0.733299\pi\)
−0.669050 + 0.743217i \(0.733299\pi\)
\(200\) 0 0
\(201\) −2.91088 8.95875i −0.205317 0.631902i
\(202\) 0 0
\(203\) −2.73494 1.98705i −0.191955 0.139463i
\(204\) 0 0
\(205\) 3.19109 9.82117i 0.222875 0.685940i
\(206\) 0 0
\(207\) −0.0110362 + 0.00801823i −0.000767066 + 0.000557306i
\(208\) 0 0
\(209\) −20.3095 11.6379i −1.40483 0.805009i
\(210\) 0 0
\(211\) 11.1392 8.09308i 0.766852 0.557150i −0.134153 0.990961i \(-0.542831\pi\)
0.901004 + 0.433810i \(0.142831\pi\)
\(212\) 0 0
\(213\) 2.48424 7.64569i 0.170217 0.523874i
\(214\) 0 0
\(215\) −5.57074 4.04738i −0.379921 0.276029i
\(216\) 0 0
\(217\) 1.09645 + 3.37453i 0.0744319 + 0.229078i
\(218\) 0 0
\(219\) −3.52790 −0.238394
\(220\) 0 0
\(221\) 9.03828 0.607980
\(222\) 0 0
\(223\) −8.89894 27.3881i −0.595917 1.83404i −0.550108 0.835094i \(-0.685413\pi\)
−0.0458095 0.998950i \(-0.514587\pi\)
\(224\) 0 0
\(225\) −0.00499969 0.00363249i −0.000333313 0.000242166i
\(226\) 0 0
\(227\) −7.50197 + 23.0887i −0.497923 + 1.53245i 0.314428 + 0.949281i \(0.398187\pi\)
−0.812351 + 0.583168i \(0.801813\pi\)
\(228\) 0 0
\(229\) 13.2625 9.63574i 0.876408 0.636748i −0.0558905 0.998437i \(-0.517800\pi\)
0.932299 + 0.361689i \(0.117800\pi\)
\(230\) 0 0
\(231\) −5.33572 + 4.83578i −0.351065 + 0.318171i
\(232\) 0 0
\(233\) 2.03746 1.48030i 0.133478 0.0969776i −0.519043 0.854748i \(-0.673711\pi\)
0.652521 + 0.757771i \(0.273711\pi\)
\(234\) 0 0
\(235\) 0.493365 1.51842i 0.0321836 0.0990509i
\(236\) 0 0
\(237\) 23.5128 + 17.0831i 1.52732 + 1.10967i
\(238\) 0 0
\(239\) −2.06369 6.35138i −0.133489 0.410837i 0.861863 0.507141i \(-0.169298\pi\)
−0.995352 + 0.0963045i \(0.969298\pi\)
\(240\) 0 0
\(241\) −2.14310 −0.138049 −0.0690247 0.997615i \(-0.521989\pi\)
−0.0690247 + 0.997615i \(0.521989\pi\)
\(242\) 0 0
\(243\) −0.0642239 −0.00411997
\(244\) 0 0
\(245\) 1.67854 + 5.16602i 0.107238 + 0.330045i
\(246\) 0 0
\(247\) 14.3187 + 10.4032i 0.911079 + 0.661938i
\(248\) 0 0
\(249\) 3.01411 9.27649i 0.191012 0.587873i
\(250\) 0 0
\(251\) 11.6422 8.45856i 0.734850 0.533900i −0.156244 0.987718i \(-0.549939\pi\)
0.891094 + 0.453819i \(0.149939\pi\)
\(252\) 0 0
\(253\) −5.42463 + 4.91636i −0.341043 + 0.309089i
\(254\) 0 0
\(255\) −5.05550 + 3.67303i −0.316587 + 0.230014i
\(256\) 0 0
\(257\) 7.54105 23.2090i 0.470398 1.44774i −0.381667 0.924300i \(-0.624650\pi\)
0.852065 0.523436i \(-0.175350\pi\)
\(258\) 0 0
\(259\) 8.17861 + 5.94211i 0.508194 + 0.369225i
\(260\) 0 0
\(261\) 0.00515546 + 0.0158669i 0.000319115 + 0.000982135i
\(262\) 0 0
\(263\) −0.992957 −0.0612283 −0.0306142 0.999531i \(-0.509746\pi\)
−0.0306142 + 0.999531i \(0.509746\pi\)
\(264\) 0 0
\(265\) −1.77393 −0.108972
\(266\) 0 0
\(267\) −2.53336 7.79687i −0.155039 0.477161i
\(268\) 0 0
\(269\) −24.6128 17.8822i −1.50067 1.09030i −0.970115 0.242645i \(-0.921985\pi\)
−0.530551 0.847653i \(-0.678015\pi\)
\(270\) 0 0
\(271\) −8.01666 + 24.6728i −0.486978 + 1.49876i 0.342119 + 0.939657i \(0.388856\pi\)
−0.829096 + 0.559106i \(0.811144\pi\)
\(272\) 0 0
\(273\) 4.40496 3.20039i 0.266600 0.193697i
\(274\) 0 0
\(275\) −2.87765 1.64897i −0.173529 0.0994369i
\(276\) 0 0
\(277\) 4.07624 2.96156i 0.244917 0.177943i −0.458554 0.888667i \(-0.651632\pi\)
0.703471 + 0.710724i \(0.251632\pi\)
\(278\) 0 0
\(279\) 0.00541108 0.0166536i 0.000323953 0.000997025i
\(280\) 0 0
\(281\) −16.8065 12.2106i −1.00259 0.728424i −0.0399476 0.999202i \(-0.512719\pi\)
−0.962642 + 0.270778i \(0.912719\pi\)
\(282\) 0 0
\(283\) 1.40797 + 4.33329i 0.0836952 + 0.257587i 0.984143 0.177377i \(-0.0567611\pi\)
−0.900448 + 0.434964i \(0.856761\pi\)
\(284\) 0 0
\(285\) −12.2368 −0.724845
\(286\) 0 0
\(287\) −12.9314 −0.763319
\(288\) 0 0
\(289\) −1.23927 3.81407i −0.0728981 0.224357i
\(290\) 0 0
\(291\) −26.7836 19.4594i −1.57008 1.14073i
\(292\) 0 0
\(293\) −0.738834 + 2.27390i −0.0431631 + 0.132842i −0.970316 0.241841i \(-0.922249\pi\)
0.927153 + 0.374684i \(0.122249\pi\)
\(294\) 0 0
\(295\) 3.53449 2.56796i 0.205786 0.149512i
\(296\) 0 0
\(297\) −17.1156 + 1.85515i −0.993150 + 0.107647i
\(298\) 0 0
\(299\) 4.47836 3.25372i 0.258990 0.188167i
\(300\) 0 0
\(301\) −2.66457 + 8.20071i −0.153583 + 0.472681i
\(302\) 0 0
\(303\) 19.9538 + 14.4972i 1.14631 + 0.832845i
\(304\) 0 0
\(305\) 2.57511 + 7.92538i 0.147451 + 0.453806i
\(306\) 0 0
\(307\) −3.26648 −0.186428 −0.0932138 0.995646i \(-0.529714\pi\)
−0.0932138 + 0.995646i \(0.529714\pi\)
\(308\) 0 0
\(309\) 27.5359 1.56646
\(310\) 0 0
\(311\) −0.845368 2.60177i −0.0479364 0.147533i 0.924223 0.381853i \(-0.124714\pi\)
−0.972160 + 0.234320i \(0.924714\pi\)
\(312\) 0 0
\(313\) 8.38026 + 6.08861i 0.473680 + 0.344149i 0.798874 0.601499i \(-0.205430\pi\)
−0.325194 + 0.945647i \(0.605430\pi\)
\(314\) 0 0
\(315\) −0.00239143 + 0.00736007i −0.000134742 + 0.000414693i
\(316\) 0 0
\(317\) −25.2866 + 18.3718i −1.42024 + 1.03186i −0.428504 + 0.903540i \(0.640959\pi\)
−0.991732 + 0.128323i \(0.959041\pi\)
\(318\) 0 0
\(319\) 3.66829 + 8.16762i 0.205385 + 0.457299i
\(320\) 0 0
\(321\) −5.68003 + 4.12678i −0.317028 + 0.230334i
\(322\) 0 0
\(323\) −7.86034 + 24.1916i −0.437361 + 1.34606i
\(324\) 0 0
\(325\) 2.02882 + 1.47403i 0.112539 + 0.0817643i
\(326\) 0 0
\(327\) 3.16029 + 9.72638i 0.174765 + 0.537870i
\(328\) 0 0
\(329\) −1.99929 −0.110224
\(330\) 0 0
\(331\) 29.7878 1.63729 0.818644 0.574302i \(-0.194726\pi\)
0.818644 + 0.574302i \(0.194726\pi\)
\(332\) 0 0
\(333\) −0.0154170 0.0474486i −0.000844846 0.00260017i
\(334\) 0 0
\(335\) −4.39533 3.19339i −0.240143 0.174474i
\(336\) 0 0
\(337\) −9.21954 + 28.3748i −0.502220 + 1.54568i 0.303173 + 0.952935i \(0.401954\pi\)
−0.805394 + 0.592740i \(0.798046\pi\)
\(338\) 0 0
\(339\) −4.78884 + 3.47929i −0.260094 + 0.188969i
\(340\) 0 0
\(341\) 1.92398 9.19845i 0.104190 0.498124i
\(342\) 0 0
\(343\) 12.5946 9.15051i 0.680045 0.494081i
\(344\) 0 0
\(345\) −1.18267 + 3.63989i −0.0636729 + 0.195965i
\(346\) 0 0
\(347\) −17.9739 13.0588i −0.964891 0.701035i −0.0106099 0.999944i \(-0.503377\pi\)
−0.954282 + 0.298909i \(0.903377\pi\)
\(348\) 0 0
\(349\) −5.93726 18.2730i −0.317814 0.978132i −0.974581 0.224038i \(-0.928076\pi\)
0.656766 0.754094i \(-0.271924\pi\)
\(350\) 0 0
\(351\) 13.0173 0.694811
\(352\) 0 0
\(353\) 31.0691 1.65364 0.826821 0.562466i \(-0.190147\pi\)
0.826821 + 0.562466i \(0.190147\pi\)
\(354\) 0 0
\(355\) −1.43280 4.40970i −0.0760451 0.234043i
\(356\) 0 0
\(357\) 6.33073 + 4.59955i 0.335058 + 0.243434i
\(358\) 0 0
\(359\) 8.50924 26.1887i 0.449100 1.38219i −0.428823 0.903388i \(-0.641072\pi\)
0.877924 0.478801i \(-0.158928\pi\)
\(360\) 0 0
\(361\) −24.9262 + 18.1099i −1.31190 + 0.953153i
\(362\) 0 0
\(363\) 18.6292 4.08643i 0.977782 0.214482i
\(364\) 0 0
\(365\) −1.64614 + 1.19599i −0.0861629 + 0.0626010i
\(366\) 0 0
\(367\) −7.35123 + 22.6248i −0.383731 + 1.18100i 0.553665 + 0.832739i \(0.313229\pi\)
−0.937397 + 0.348264i \(0.886771\pi\)
\(368\) 0 0
\(369\) 0.0516297 + 0.0375112i 0.00268774 + 0.00195275i
\(370\) 0 0
\(371\) 0.686451 + 2.11268i 0.0356387 + 0.109685i
\(372\) 0 0
\(373\) −15.5085 −0.803000 −0.401500 0.915859i \(-0.631511\pi\)
−0.401500 + 0.915859i \(0.631511\pi\)
\(374\) 0 0
\(375\) −1.73383 −0.0895348
\(376\) 0 0
\(377\) −2.09203 6.43862i −0.107745 0.331606i
\(378\) 0 0
\(379\) −15.4087 11.1950i −0.791489 0.575051i 0.116916 0.993142i \(-0.462699\pi\)
−0.908405 + 0.418091i \(0.862699\pi\)
\(380\) 0 0
\(381\) −3.31762 + 10.2106i −0.169967 + 0.523103i
\(382\) 0 0
\(383\) −12.8006 + 9.30018i −0.654080 + 0.475217i −0.864659 0.502360i \(-0.832465\pi\)
0.210578 + 0.977577i \(0.432465\pi\)
\(384\) 0 0
\(385\) −0.850306 + 4.06526i −0.0433356 + 0.207185i
\(386\) 0 0
\(387\) 0.0344269 0.0250126i 0.00175002 0.00127146i
\(388\) 0 0
\(389\) −5.01448 + 15.4330i −0.254244 + 0.782483i 0.739733 + 0.672900i \(0.234952\pi\)
−0.993978 + 0.109583i \(0.965048\pi\)
\(390\) 0 0
\(391\) 6.43622 + 4.67619i 0.325494 + 0.236485i
\(392\) 0 0
\(393\) 3.96440 + 12.2012i 0.199977 + 0.615467i
\(394\) 0 0
\(395\) 16.7625 0.843415
\(396\) 0 0
\(397\) 31.3002 1.57091 0.785455 0.618919i \(-0.212429\pi\)
0.785455 + 0.618919i \(0.212429\pi\)
\(398\) 0 0
\(399\) 4.73522 + 14.5735i 0.237057 + 0.729588i
\(400\) 0 0
\(401\) 5.55064 + 4.03277i 0.277186 + 0.201387i 0.717689 0.696364i \(-0.245200\pi\)
−0.440503 + 0.897751i \(0.645200\pi\)
\(402\) 0 0
\(403\) −2.19576 + 6.75786i −0.109379 + 0.336633i
\(404\) 0 0
\(405\) −7.29612 + 5.30094i −0.362547 + 0.263406i
\(406\) 0 0
\(407\) −10.9697 24.4246i −0.543749 1.21068i
\(408\) 0 0
\(409\) 18.4691 13.4186i 0.913238 0.663506i −0.0285937 0.999591i \(-0.509103\pi\)
0.941832 + 0.336085i \(0.109103\pi\)
\(410\) 0 0
\(411\) 9.90288 30.4779i 0.488473 1.50336i
\(412\) 0 0
\(413\) −4.42606 3.21572i −0.217792 0.158235i
\(414\) 0 0
\(415\) −1.73841 5.35027i −0.0853352 0.262635i
\(416\) 0 0
\(417\) 30.9358 1.51493
\(418\) 0 0
\(419\) −5.98106 −0.292194 −0.146097 0.989270i \(-0.546671\pi\)
−0.146097 + 0.989270i \(0.546671\pi\)
\(420\) 0 0
\(421\) 11.6887 + 35.9742i 0.569674 + 1.75328i 0.653639 + 0.756807i \(0.273242\pi\)
−0.0839652 + 0.996469i \(0.526758\pi\)
\(422\) 0 0
\(423\) 0.00798232 + 0.00579949i 0.000388114 + 0.000281981i
\(424\) 0 0
\(425\) −1.11373 + 3.42772i −0.0540240 + 0.166269i
\(426\) 0 0
\(427\) 8.44232 6.13370i 0.408552 0.296831i
\(428\) 0 0
\(429\) −14.3369 + 1.55397i −0.692191 + 0.0750262i
\(430\) 0 0
\(431\) 5.27409 3.83185i 0.254044 0.184574i −0.453473 0.891270i \(-0.649815\pi\)
0.707517 + 0.706696i \(0.249815\pi\)
\(432\) 0 0
\(433\) −8.96761 + 27.5995i −0.430956 + 1.32635i 0.466219 + 0.884669i \(0.345616\pi\)
−0.897175 + 0.441676i \(0.854384\pi\)
\(434\) 0 0
\(435\) 3.78673 + 2.75122i 0.181560 + 0.131911i
\(436\) 0 0
\(437\) 4.81412 + 14.8163i 0.230291 + 0.708762i
\(438\) 0 0
\(439\) −12.2777 −0.585984 −0.292992 0.956115i \(-0.594651\pi\)
−0.292992 + 0.956115i \(0.594651\pi\)
\(440\) 0 0
\(441\) −0.0335688 −0.00159851
\(442\) 0 0
\(443\) −2.70527 8.32598i −0.128531 0.395579i 0.865996 0.500050i \(-0.166685\pi\)
−0.994528 + 0.104471i \(0.966685\pi\)
\(444\) 0 0
\(445\) −3.82529 2.77923i −0.181336 0.131748i
\(446\) 0 0
\(447\) −3.96432 + 12.2009i −0.187506 + 0.577084i
\(448\) 0 0
\(449\) 16.9978 12.3496i 0.802175 0.582814i −0.109376 0.994000i \(-0.534885\pi\)
0.911551 + 0.411186i \(0.134885\pi\)
\(450\) 0 0
\(451\) 29.7163 + 17.0283i 1.39929 + 0.801830i
\(452\) 0 0
\(453\) 6.19313 4.49957i 0.290979 0.211408i
\(454\) 0 0
\(455\) 0.970419 2.98664i 0.0454940 0.140016i
\(456\) 0 0
\(457\) 11.1794 + 8.12230i 0.522950 + 0.379945i 0.817714 0.575625i \(-0.195241\pi\)
−0.294764 + 0.955570i \(0.595241\pi\)
\(458\) 0 0
\(459\) 5.78115 + 17.7925i 0.269841 + 0.830485i
\(460\) 0 0
\(461\) −38.6522 −1.80021 −0.900106 0.435672i \(-0.856511\pi\)
−0.900106 + 0.435672i \(0.856511\pi\)
\(462\) 0 0
\(463\) 15.0206 0.698066 0.349033 0.937110i \(-0.386510\pi\)
0.349033 + 0.937110i \(0.386510\pi\)
\(464\) 0 0
\(465\) −1.51812 4.67229i −0.0704011 0.216672i
\(466\) 0 0
\(467\) 9.53857 + 6.93018i 0.441393 + 0.320690i 0.786188 0.617987i \(-0.212052\pi\)
−0.344795 + 0.938678i \(0.612052\pi\)
\(468\) 0 0
\(469\) −2.10236 + 6.47039i −0.0970778 + 0.298775i
\(470\) 0 0
\(471\) 3.26909 2.37513i 0.150632 0.109440i
\(472\) 0 0
\(473\) 16.9220 15.3364i 0.778072 0.705169i
\(474\) 0 0
\(475\) −5.70976 + 4.14838i −0.261982 + 0.190341i
\(476\) 0 0
\(477\) 0.00338770 0.0104263i 0.000155112 0.000477386i
\(478\) 0 0
\(479\) 14.8577 + 10.7948i 0.678866 + 0.493225i 0.872981 0.487754i \(-0.162184\pi\)
−0.194115 + 0.980979i \(0.562184\pi\)
\(480\) 0 0
\(481\) 6.25606 + 19.2542i 0.285252 + 0.877915i
\(482\) 0 0
\(483\) 4.79261 0.218071
\(484\) 0 0
\(485\) −19.0943 −0.867026
\(486\) 0 0
\(487\) −6.90222 21.2428i −0.312769 0.962605i −0.976663 0.214778i \(-0.931097\pi\)
0.663893 0.747827i \(-0.268903\pi\)
\(488\) 0 0
\(489\) 2.11268 + 1.53495i 0.0955388 + 0.0694130i
\(490\) 0 0
\(491\) −2.69256 + 8.28684i −0.121513 + 0.373980i −0.993250 0.115995i \(-0.962994\pi\)
0.871736 + 0.489975i \(0.162994\pi\)
\(492\) 0 0
\(493\) 7.87147 5.71896i 0.354513 0.257569i
\(494\) 0 0
\(495\) 0.0151873 0.0137643i 0.000682619 0.000618660i
\(496\) 0 0
\(497\) −4.69733 + 3.41281i −0.210704 + 0.153085i
\(498\) 0 0
\(499\) −12.0473 + 37.0779i −0.539312 + 1.65983i 0.194830 + 0.980837i \(0.437585\pi\)
−0.734142 + 0.678996i \(0.762415\pi\)
\(500\) 0 0
\(501\) 13.7427 + 9.98466i 0.613979 + 0.446082i
\(502\) 0 0
\(503\) −3.94916 12.1543i −0.176084 0.541932i 0.823597 0.567175i \(-0.191964\pi\)
−0.999681 + 0.0252436i \(0.991964\pi\)
\(504\) 0 0
\(505\) 14.2252 0.633015
\(506\) 0 0
\(507\) −11.6360 −0.516771
\(508\) 0 0
\(509\) 11.4262 + 35.1664i 0.506459 + 1.55872i 0.798303 + 0.602256i \(0.205731\pi\)
−0.291844 + 0.956466i \(0.594269\pi\)
\(510\) 0 0
\(511\) 2.06137 + 1.49768i 0.0911899 + 0.0662533i
\(512\) 0 0
\(513\) −11.3208 + 34.8417i −0.499824 + 1.53830i
\(514\) 0 0
\(515\) 12.8484 9.33492i 0.566169 0.411346i
\(516\) 0 0
\(517\) 4.59435 + 2.63269i 0.202059 + 0.115786i
\(518\) 0 0
\(519\) 28.1853 20.4779i 1.23720 0.898878i
\(520\) 0 0
\(521\) −2.77225 + 8.53211i −0.121454 + 0.373798i −0.993238 0.116092i \(-0.962963\pi\)
0.871784 + 0.489891i \(0.162963\pi\)
\(522\) 0 0
\(523\) 2.50362 + 1.81899i 0.109476 + 0.0795387i 0.641176 0.767394i \(-0.278447\pi\)
−0.531701 + 0.846932i \(0.678447\pi\)
\(524\) 0 0
\(525\) 0.670934 + 2.06492i 0.0292820 + 0.0901206i
\(526\) 0 0
\(527\) −10.2121 −0.444846
\(528\) 0 0
\(529\) −18.1275 −0.788154
\(530\) 0 0
\(531\) 0.00834329 + 0.0256780i 0.000362068 + 0.00111433i
\(532\) 0 0
\(533\) −20.9508 15.2217i −0.907481 0.659324i
\(534\) 0 0
\(535\) −1.25132 + 3.85116i −0.0540992 + 0.166500i
\(536\) 0 0
\(537\) 22.7307 16.5148i 0.980900 0.712666i
\(538\) 0 0
\(539\) −17.9106 + 1.94132i −0.771464 + 0.0836185i
\(540\) 0 0
\(541\) 15.2808 11.1022i 0.656974 0.477320i −0.208665 0.977987i \(-0.566912\pi\)
0.865640 + 0.500667i \(0.166912\pi\)
\(542\) 0 0
\(543\) −5.05176 + 15.5477i −0.216792 + 0.667217i
\(544\) 0 0
\(545\) 4.77194 + 3.46702i 0.204407 + 0.148511i
\(546\) 0 0
\(547\) 10.5202 + 32.3777i 0.449810 + 1.38437i 0.877122 + 0.480268i \(0.159461\pi\)
−0.427312 + 0.904104i \(0.640539\pi\)
\(548\) 0 0
\(549\) −0.0514991 −0.00219793
\(550\) 0 0
\(551\) 19.0528 0.811678
\(552\) 0 0
\(553\) −6.48653 19.9635i −0.275835 0.848934i
\(554\) 0 0
\(555\) −11.3239 8.22731i −0.480674 0.349230i
\(556\) 0 0
\(557\) 6.13777 18.8901i 0.260065 0.800399i −0.732724 0.680526i \(-0.761751\pi\)
0.992789 0.119873i \(-0.0382487\pi\)
\(558\) 0 0
\(559\) −13.9701 + 10.1499i −0.590873 + 0.429294i
\(560\) 0 0
\(561\) −8.49123 18.9061i −0.358500 0.798216i
\(562\) 0 0
\(563\) −19.2154 + 13.9608i −0.809834 + 0.588379i −0.913782 0.406204i \(-0.866852\pi\)
0.103949 + 0.994583i \(0.466852\pi\)
\(564\) 0 0
\(565\) −1.05499 + 3.24692i −0.0443836 + 0.136599i
\(566\) 0 0
\(567\) 9.13655 + 6.63809i 0.383699 + 0.278774i
\(568\) 0 0
\(569\) 11.2508 + 34.6264i 0.471658 + 1.45161i 0.850413 + 0.526116i \(0.176352\pi\)
−0.378755 + 0.925497i \(0.623648\pi\)
\(570\) 0 0
\(571\) 1.49673 0.0626362 0.0313181 0.999509i \(-0.490030\pi\)
0.0313181 + 0.999509i \(0.490030\pi\)
\(572\) 0 0
\(573\) −14.1751 −0.592172
\(574\) 0 0
\(575\) 0.682114 + 2.09933i 0.0284461 + 0.0875481i
\(576\) 0 0
\(577\) −33.3772 24.2500i −1.38951 1.00954i −0.995919 0.0902557i \(-0.971232\pi\)
−0.393594 0.919284i \(-0.628768\pi\)
\(578\) 0 0
\(579\) −2.67634 + 8.23693i −0.111225 + 0.342315i
\(580\) 0 0
\(581\) −5.69925 + 4.14075i −0.236445 + 0.171787i
\(582\) 0 0
\(583\) 1.20454 5.75884i 0.0498870 0.238507i
\(584\) 0 0
\(585\) −0.0125381 + 0.00910943i −0.000518385 + 0.000376628i
\(586\) 0 0
\(587\) −12.8847 + 39.6551i −0.531810 + 1.63674i 0.218634 + 0.975807i \(0.429840\pi\)
−0.750443 + 0.660935i \(0.770160\pi\)
\(588\) 0 0
\(589\) −16.1783 11.7543i −0.666617 0.484326i
\(590\) 0 0
\(591\) −3.75472 11.5558i −0.154449 0.475344i
\(592\) 0 0
\(593\) 16.0656 0.659736 0.329868 0.944027i \(-0.392996\pi\)
0.329868 + 0.944027i \(0.392996\pi\)
\(594\) 0 0
\(595\) 4.51324 0.185025
\(596\) 0 0
\(597\) −10.1136 31.1264i −0.413921 1.27392i
\(598\) 0 0
\(599\) −20.5746 14.9483i −0.840655 0.610771i 0.0818988 0.996641i \(-0.473902\pi\)
−0.922553 + 0.385869i \(0.873902\pi\)
\(600\) 0 0
\(601\) 4.15982 12.8026i 0.169682 0.522229i −0.829668 0.558257i \(-0.811470\pi\)
0.999351 + 0.0360277i \(0.0114704\pi\)
\(602\) 0 0
\(603\) 0.0271630 0.0197350i 0.00110616 0.000803673i
\(604\) 0 0
\(605\) 7.30718 8.22224i 0.297079 0.334281i
\(606\) 0 0
\(607\) −1.66478 + 1.20953i −0.0675712 + 0.0490933i −0.621058 0.783765i \(-0.713297\pi\)
0.553487 + 0.832858i \(0.313297\pi\)
\(608\) 0 0
\(609\) 1.81126 5.57447i 0.0733958 0.225889i
\(610\) 0 0
\(611\) −3.23915 2.35338i −0.131042 0.0952074i
\(612\) 0 0
\(613\) −11.8489 36.4670i −0.478571 1.47289i −0.841081 0.540909i \(-0.818080\pi\)
0.362510 0.931980i \(-0.381920\pi\)
\(614\) 0 0
\(615\) 17.9046 0.721982
\(616\) 0 0
\(617\) 7.25724 0.292166 0.146083 0.989272i \(-0.453333\pi\)
0.146083 + 0.989272i \(0.453333\pi\)
\(618\) 0 0
\(619\) 5.44221 + 16.7494i 0.218741 + 0.673215i 0.998867 + 0.0475925i \(0.0151549\pi\)
−0.780126 + 0.625622i \(0.784845\pi\)
\(620\) 0 0
\(621\) 9.26969 + 6.73483i 0.371980 + 0.270259i
\(622\) 0 0
\(623\) −1.82970 + 5.63123i −0.0733052 + 0.225610i
\(624\) 0 0
\(625\) −0.809017 + 0.587785i −0.0323607 + 0.0235114i
\(626\) 0 0
\(627\) 8.30907 39.7252i 0.331832 1.58647i
\(628\) 0 0
\(629\) −23.5390 + 17.1021i −0.938562 + 0.681905i
\(630\) 0 0
\(631\) 8.78700 27.0436i 0.349805 1.07659i −0.609156 0.793051i \(-0.708492\pi\)
0.958961 0.283539i \(-0.0915084\pi\)
\(632\) 0 0
\(633\) 19.3135 + 14.0320i 0.767641 + 0.557724i
\(634\) 0 0
\(635\) 1.91346 + 5.88901i 0.0759332 + 0.233698i
\(636\) 0 0
\(637\) 13.6219 0.539718
\(638\) 0 0
\(639\) 0.0286542 0.00113354
\(640\) 0 0
\(641\) −13.1372 40.4322i −0.518889 1.59698i −0.776093 0.630618i \(-0.782801\pi\)
0.257205 0.966357i \(-0.417199\pi\)
\(642\) 0 0
\(643\) −18.5865 13.5039i −0.732981 0.532542i 0.157524 0.987515i \(-0.449649\pi\)
−0.890505 + 0.454973i \(0.849649\pi\)
\(644\) 0 0
\(645\) 3.68931 11.3545i 0.145266 0.447084i
\(646\) 0 0
\(647\) −11.5392 + 8.38372i −0.453653 + 0.329598i −0.791036 0.611769i \(-0.790458\pi\)
0.337383 + 0.941367i \(0.390458\pi\)
\(648\) 0 0
\(649\) 5.93654 + 13.2180i 0.233030 + 0.518851i
\(650\) 0 0
\(651\) −4.97704 + 3.61603i −0.195066 + 0.141724i
\(652\) 0 0
\(653\) −8.29334 + 25.5243i −0.324543 + 0.998842i 0.647103 + 0.762403i \(0.275980\pi\)
−0.971646 + 0.236439i \(0.924020\pi\)
\(654\) 0 0
\(655\) 5.98611 + 4.34917i 0.233897 + 0.169936i
\(656\) 0 0
\(657\) −0.00388577 0.0119592i −0.000151598 0.000466572i
\(658\) 0 0
\(659\) −28.8747 −1.12480 −0.562400 0.826865i \(-0.690122\pi\)
−0.562400 + 0.826865i \(0.690122\pi\)
\(660\) 0 0
\(661\) −23.6938 −0.921582 −0.460791 0.887509i \(-0.652434\pi\)
−0.460791 + 0.887509i \(0.652434\pi\)
\(662\) 0 0
\(663\) 4.84256 + 14.9039i 0.188070 + 0.578819i
\(664\) 0 0
\(665\) 7.15003 + 5.19480i 0.277266 + 0.201446i
\(666\) 0 0
\(667\) 1.84144 5.66736i 0.0713007 0.219441i
\(668\) 0 0
\(669\) 40.3944 29.3482i 1.56174 1.13467i
\(670\) 0 0
\(671\) −27.4773 + 2.97825i −1.06075 + 0.114974i
\(672\) 0 0
\(673\) 4.77758 3.47111i 0.184162 0.133802i −0.491885 0.870660i \(-0.663692\pi\)
0.676047 + 0.736859i \(0.263692\pi\)
\(674\) 0 0
\(675\) −1.60404 + 4.93673i −0.0617396 + 0.190015i
\(676\) 0 0
\(677\) −24.6423 17.9036i −0.947079 0.688093i 0.00303550 0.999995i \(-0.499034\pi\)
−0.950114 + 0.311903i \(0.899034\pi\)
\(678\) 0 0
\(679\) 7.38883 + 22.7405i 0.283557 + 0.872699i
\(680\) 0 0
\(681\) −42.0921 −1.61297
\(682\) 0 0
\(683\) 2.95068 0.112905 0.0564524 0.998405i \(-0.482021\pi\)
0.0564524 + 0.998405i \(0.482021\pi\)
\(684\) 0 0
\(685\) −5.71155 17.5783i −0.218227 0.671634i
\(686\) 0 0
\(687\) 22.9949 + 16.7068i 0.877310 + 0.637403i
\(688\) 0 0
\(689\) −1.37469 + 4.23087i −0.0523717 + 0.161183i
\(690\) 0 0
\(691\) −31.2400 + 22.6972i −1.18842 + 0.863441i −0.993097 0.117297i \(-0.962577\pi\)
−0.195327 + 0.980738i \(0.562577\pi\)
\(692\) 0 0
\(693\) −0.0222697 0.0127611i −0.000845955 0.000484756i
\(694\) 0 0
\(695\) 14.4348 10.4875i 0.547544 0.397814i
\(696\) 0 0
\(697\) 11.5011 35.3966i 0.435634 1.34074i
\(698\) 0 0
\(699\) 3.53261 + 2.56659i 0.133616 + 0.0970775i
\(700\) 0 0
\(701\) 10.2324 + 31.4922i 0.386474 + 1.18944i 0.935405 + 0.353577i \(0.115035\pi\)
−0.548931 + 0.835867i \(0.684965\pi\)
\(702\) 0 0
\(703\) −56.9760 −2.14889
\(704\) 0 0
\(705\) 2.76817 0.104255
\(706\) 0 0
\(707\) −5.50468 16.9417i −0.207025 0.637157i
\(708\) 0 0
\(709\) −17.7941 12.9282i −0.668272 0.485528i 0.201174 0.979555i \(-0.435524\pi\)
−0.869446 + 0.494027i \(0.835524\pi\)
\(710\) 0 0
\(711\) −0.0320116 + 0.0985217i −0.00120053 + 0.00369485i
\(712\) 0 0
\(713\) −5.05998 + 3.67629i −0.189498 + 0.137678i
\(714\) 0 0
\(715\) −6.16286 + 5.58542i −0.230478 + 0.208883i
\(716\) 0 0
\(717\) 9.36757 6.80594i 0.349838 0.254172i
\(718\) 0 0
\(719\) 1.85139 5.69798i 0.0690450 0.212499i −0.910580 0.413332i \(-0.864365\pi\)
0.979625 + 0.200833i \(0.0643649\pi\)
\(720\) 0 0
\(721\) −16.0894 11.6896i −0.599200 0.435344i
\(722\) 0 0
\(723\) −1.14824 3.53392i −0.0427035 0.131428i
\(724\) 0 0
\(725\) 2.69960 0.100261
\(726\) 0 0
\(727\) 4.06512 0.150767 0.0753834 0.997155i \(-0.475982\pi\)
0.0753834 + 0.997155i \(0.475982\pi\)
\(728\) 0 0
\(729\) 8.32620 + 25.6254i 0.308378 + 0.949089i
\(730\) 0 0
\(731\) −20.0776 14.5872i −0.742596 0.539528i
\(732\) 0 0
\(733\) −9.24807 + 28.4626i −0.341585 + 1.05129i 0.621801 + 0.783175i \(0.286401\pi\)
−0.963386 + 0.268117i \(0.913599\pi\)
\(734\) 0 0
\(735\) −7.61930 + 5.53574i −0.281042 + 0.204189i
\(736\) 0 0
\(737\) 13.3515 12.1005i 0.491808 0.445727i
\(738\) 0 0
\(739\) −15.9174 + 11.5646i −0.585530 + 0.425412i −0.840713 0.541480i \(-0.817864\pi\)
0.255184 + 0.966893i \(0.417864\pi\)
\(740\) 0 0
\(741\) −9.48281 + 29.1851i −0.348360 + 1.07214i
\(742\) 0 0
\(743\) −21.5791 15.6782i −0.791662 0.575176i 0.116794 0.993156i \(-0.462738\pi\)
−0.908456 + 0.417980i \(0.862738\pi\)
\(744\) 0 0
\(745\) 2.28645 + 7.03696i 0.0837689 + 0.257814i
\(746\) 0 0
\(747\) 0.0347660 0.00127202
\(748\) 0 0
\(749\) 5.07079 0.185282
\(750\) 0 0
\(751\) −2.43053 7.48041i −0.0886914 0.272964i 0.896867 0.442301i \(-0.145838\pi\)
−0.985558 + 0.169336i \(0.945838\pi\)
\(752\) 0 0
\(753\) 20.1857 + 14.6657i 0.735607 + 0.534449i
\(754\) 0 0
\(755\) 1.36436 4.19906i 0.0496540 0.152819i
\(756\) 0 0
\(757\) 19.7853 14.3748i 0.719108 0.522463i −0.166991 0.985958i \(-0.553405\pi\)
0.886099 + 0.463496i \(0.153405\pi\)
\(758\) 0 0
\(759\) −11.0134 6.31097i −0.399760 0.229074i
\(760\) 0 0
\(761\) 42.2329 30.6840i 1.53094 1.11229i 0.575230 0.817992i \(-0.304913\pi\)
0.955712 0.294302i \(-0.0950873\pi\)
\(762\) 0 0
\(763\) 2.28249 7.02480i 0.0826319 0.254315i
\(764\) 0 0
\(765\) −0.0180195 0.0130919i −0.000651495 0.000473339i
\(766\) 0 0
\(767\) −3.38562 10.4199i −0.122248 0.376240i
\(768\) 0 0
\(769\) 26.7480 0.964558 0.482279 0.876018i \(-0.339809\pi\)
0.482279 + 0.876018i \(0.339809\pi\)
\(770\) 0 0
\(771\) 42.3114 1.52381
\(772\) 0 0
\(773\) −15.5257 47.7833i −0.558422 1.71865i −0.686730 0.726913i \(-0.740954\pi\)
0.128307 0.991734i \(-0.459046\pi\)
\(774\) 0 0
\(775\) −2.29231 1.66546i −0.0823423 0.0598252i
\(776\) 0 0
\(777\) −5.41641 + 16.6700i −0.194313 + 0.598033i
\(778\) 0 0
\(779\) 58.9623 42.8386i 2.11254 1.53485i
\(780\) 0 0
\(781\) 15.2884 1.65710i 0.547063 0.0592959i
\(782\) 0 0
\(783\) 11.3368 8.23667i 0.405144 0.294354i
\(784\) 0 0
\(785\) 0.720185 2.21650i 0.0257045 0.0791104i
\(786\) 0 0
\(787\) −26.1647 19.0098i −0.932672 0.677626i 0.0139739 0.999902i \(-0.495552\pi\)
−0.946645 + 0.322277i \(0.895552\pi\)
\(788\) 0 0
\(789\) −0.532010 1.63736i −0.0189401 0.0582915i
\(790\) 0 0
\(791\) 4.27518 0.152008
\(792\) 0 0
\(793\) 20.8978 0.742103
\(794\) 0 0
\(795\) −0.950444 2.92517i −0.0337088 0.103745i
\(796\) 0 0
\(797\) −31.2484 22.7033i −1.10688 0.804193i −0.124707 0.992194i \(-0.539799\pi\)
−0.982169 + 0.188001i \(0.939799\pi\)
\(798\) 0 0
\(799\) 1.77814 5.47257i 0.0629062 0.193605i
\(800\) 0 0
\(801\) 0.0236401 0.0171756i 0.000835283 0.000606868i
\(802\) 0 0
\(803\) −2.76486 6.15609i −0.0975699 0.217244i
\(804\) 0 0
\(805\) 2.23626 1.62474i 0.0788178 0.0572645i
\(806\) 0 0
\(807\) 16.3002 50.1668i 0.573794 1.76596i
\(808\) 0 0
\(809\) 23.9627 + 17.4099i 0.842484 + 0.612101i 0.923064 0.384648i \(-0.125677\pi\)
−0.0805792 + 0.996748i \(0.525677\pi\)
\(810\) 0 0
\(811\) 4.51727 + 13.9027i 0.158623 + 0.488191i 0.998510 0.0545700i \(-0.0173788\pi\)
−0.839887 + 0.542761i \(0.817379\pi\)
\(812\) 0 0
\(813\) −44.9799 −1.57751
\(814\) 0 0
\(815\) 1.50615 0.0527583
\(816\) 0 0
\(817\) −15.0175 46.2191i −0.525396 1.61700i
\(818\) 0 0
\(819\) 0.0157007 + 0.0114073i 0.000548628 + 0.000398602i
\(820\) 0 0
\(821\) 8.64907 26.6191i 0.301855 0.929013i −0.678978 0.734159i \(-0.737577\pi\)
0.980832 0.194854i \(-0.0624233\pi\)
\(822\) 0 0
\(823\) 14.2865 10.3797i 0.497995 0.361815i −0.310256 0.950653i \(-0.600415\pi\)
0.808251 + 0.588839i \(0.200415\pi\)
\(824\) 0 0
\(825\) 1.17731 5.62867i 0.0409888 0.195965i
\(826\) 0 0
\(827\) −3.13665 + 2.27891i −0.109072 + 0.0792455i −0.640984 0.767554i \(-0.721474\pi\)
0.531912 + 0.846800i \(0.321474\pi\)
\(828\) 0 0
\(829\) −6.43603 + 19.8081i −0.223532 + 0.687962i 0.774905 + 0.632078i \(0.217798\pi\)
−0.998437 + 0.0558842i \(0.982202\pi\)
\(830\) 0 0
\(831\) 7.06752 + 5.13485i 0.245170 + 0.178126i
\(832\) 0 0
\(833\) 6.04966 + 18.6189i 0.209608 + 0.645108i
\(834\) 0 0
\(835\) 9.79732 0.339050
\(836\) 0 0
\(837\) −14.7079 −0.508378
\(838\) 0 0
\(839\) 9.02525 + 27.7769i 0.311586 + 0.958964i 0.977137 + 0.212611i \(0.0681967\pi\)
−0.665551 + 0.746353i \(0.731803\pi\)
\(840\) 0 0
\(841\) 17.5655 + 12.7621i 0.605707 + 0.440072i
\(842\) 0 0
\(843\) 11.1303 34.2557i 0.383349 1.17983i
\(844\) 0 0
\(845\) −5.42940 + 3.94469i −0.186777 + 0.135702i
\(846\) 0 0
\(847\) −12.6200 5.52082i −0.433627 0.189698i
\(848\) 0 0
\(849\) −6.39111 + 4.64342i −0.219342 + 0.159362i
\(850\) 0 0
\(851\) −5.50667 + 16.9478i −0.188766 + 0.580962i
\(852\) 0 0
\(853\) −46.3786 33.6960i −1.58797 1.15373i −0.906764 0.421638i \(-0.861455\pi\)
−0.681207 0.732091i \(-0.738545\pi\)
\(854\) 0 0
\(855\) −0.0134781 0.0414813i −0.000460941 0.00141863i
\(856\) 0 0
\(857\) 43.7938 1.49597 0.747984 0.663717i \(-0.231022\pi\)
0.747984 + 0.663717i \(0.231022\pi\)
\(858\) 0 0
\(859\) 32.0382 1.09313 0.546564 0.837417i \(-0.315935\pi\)
0.546564 + 0.837417i \(0.315935\pi\)
\(860\) 0 0
\(861\) −6.92846 21.3236i −0.236121 0.726707i
\(862\) 0 0
\(863\) 40.9055 + 29.7196i 1.39244 + 1.01167i 0.995593 + 0.0937806i \(0.0298952\pi\)
0.396846 + 0.917885i \(0.370105\pi\)
\(864\) 0 0
\(865\) 6.20927 19.1102i 0.211122 0.649765i
\(866\) 0 0
\(867\) 5.62533 4.08704i 0.191046 0.138803i
\(868\) 0 0
\(869\) −11.3822 + 54.4174i −0.386114 + 1.84599i
\(870\) 0 0
\(871\) −11.0225 + 8.00828i −0.373482 + 0.271350i
\(872\) 0 0
\(873\) 0.0364646 0.112226i 0.00123414 0.00379829i
\(874\) 0 0
\(875\) 1.01309 + 0.736053i 0.0342487 + 0.0248831i
\(876\) 0 0
\(877\) 6.17959 + 19.0188i 0.208670 + 0.642220i 0.999543 + 0.0302393i \(0.00962694\pi\)
−0.790873 + 0.611981i \(0.790373\pi\)
\(878\) 0 0
\(879\) −4.14545 −0.139823
\(880\) 0 0
\(881\) −19.7712 −0.666108 −0.333054 0.942908i \(-0.608079\pi\)
−0.333054 + 0.942908i \(0.608079\pi\)
\(882\) 0 0
\(883\) 2.69759 + 8.30232i 0.0907810 + 0.279395i 0.986131 0.165968i \(-0.0530747\pi\)
−0.895350 + 0.445363i \(0.853075\pi\)
\(884\) 0 0
\(885\) 6.12822 + 4.45241i 0.205998 + 0.149666i
\(886\) 0 0
\(887\) 15.4955 47.6902i 0.520287 1.60128i −0.253165 0.967423i \(-0.581471\pi\)
0.773452 0.633855i \(-0.218529\pi\)
\(888\) 0 0
\(889\) 6.27313 4.55769i 0.210394 0.152860i
\(890\) 0 0
\(891\) −12.2546 27.2854i −0.410544 0.914095i
\(892\) 0 0
\(893\) 9.11599 6.62315i 0.305055 0.221635i
\(894\) 0 0
\(895\) 5.00760 15.4118i 0.167385 0.515159i
\(896\) 0 0
\(897\) 7.76473 + 5.64141i 0.259257 + 0.188361i
\(898\) 0 0
\(899\) 2.36373 + 7.27482i 0.0788349 + 0.242629i
\(900\) 0 0
\(901\) −6.39345 −0.212997
\(902\) 0 0
\(903\) −14.9504 −0.497518
\(904\) 0 0
\(905\) 2.91364 + 8.96725i 0.0968526 + 0.298082i
\(906\) 0 0
\(907\) 17.4459 + 12.6752i 0.579281 + 0.420872i 0.838465 0.544956i \(-0.183453\pi\)
−0.259184 + 0.965828i \(0.583453\pi\)
\(908\) 0 0
\(909\) −0.0271661 + 0.0836087i −0.000901043 + 0.00277312i
\(910\) 0 0
\(911\) 20.9688 15.2347i 0.694728 0.504749i −0.183483 0.983023i \(-0.558737\pi\)
0.878211 + 0.478274i \(0.158737\pi\)
\(912\) 0 0
\(913\) 18.5494 2.01056i 0.613895 0.0665398i
\(914\) 0 0
\(915\) −11.6890 + 8.49259i −0.386428 + 0.280756i
\(916\) 0 0
\(917\) 2.86325 8.81219i 0.0945530 0.291004i
\(918\) 0 0
\(919\) 10.6510 + 7.73843i 0.351345 + 0.255267i 0.749433 0.662080i \(-0.230326\pi\)
−0.398088 + 0.917347i \(0.630326\pi\)
\(920\) 0 0
\(921\) −1.75013 5.38633i −0.0576686 0.177486i
\(922\) 0 0
\(923\) −11.6276 −0.382727
\(924\) 0 0
\(925\) −8.07294 −0.265437
\(926\) 0 0
\(927\) 0.0303291 + 0.0933434i 0.000996139 + 0.00306580i
\(928\) 0 0
\(929\) −32.5849 23.6743i −1.06908 0.776728i −0.0933293 0.995635i \(-0.529751\pi\)
−0.975746 + 0.218907i \(0.929751\pi\)
\(930\) 0 0
\(931\) −11.8466 + 36.4600i −0.388255 + 1.19493i
\(932\) 0 0
\(933\) 3.83732 2.78798i 0.125628 0.0912743i
\(934\) 0 0
\(935\) −10.3714 5.94309i −0.339181 0.194360i
\(936\) 0 0
\(937\) −30.2387 + 21.9697i −0.987855 + 0.717719i −0.959450 0.281878i \(-0.909043\pi\)
−0.0284047 + 0.999597i \(0.509043\pi\)
\(938\) 0 0
\(939\) −5.54995 + 17.0810i −0.181116 + 0.557418i
\(940\) 0 0
\(941\) 30.9226 + 22.4666i 1.00805 + 0.732389i 0.963799 0.266632i \(-0.0859107\pi\)
0.0442485 + 0.999021i \(0.485911\pi\)
\(942\) 0 0
\(943\) −7.04391 21.6789i −0.229381 0.705963i
\(944\) 0 0
\(945\) 6.50015 0.211450
\(946\) 0 0
\(947\) 58.9505 1.91564 0.957818 0.287377i \(-0.0927832\pi\)
0.957818 + 0.287377i \(0.0927832\pi\)
\(948\) 0 0
\(949\) 1.57681 + 4.85291i 0.0511853 + 0.157532i
\(950\) 0 0
\(951\) −43.8428 31.8536i −1.42170 1.03292i
\(952\) 0 0
\(953\) 6.37363 19.6160i 0.206462 0.635425i −0.793188 0.608977i \(-0.791580\pi\)
0.999650 0.0264484i \(-0.00841976\pi\)
\(954\) 0 0
\(955\) −6.61417 + 4.80547i −0.214029 + 0.155502i
\(956\) 0 0
\(957\) −11.5028 + 10.4250i −0.371832 + 0.336992i
\(958\) 0 0
\(959\) −18.7249 + 13.6044i −0.604658 + 0.439310i
\(960\) 0 0
\(961\) −7.09859 + 21.8472i −0.228987 + 0.704749i
\(962\) 0 0
\(963\) −0.0202455 0.0147092i −0.000652402 0.000473998i
\(964\) 0 0
\(965\) 1.54360 + 4.75070i 0.0496901 + 0.152931i
\(966\) 0 0
\(967\) 35.8174 1.15181 0.575904 0.817517i \(-0.304650\pi\)
0.575904 + 0.817517i \(0.304650\pi\)
\(968\) 0 0
\(969\) −44.1028 −1.41679
\(970\) 0 0
\(971\) −3.49481 10.7559i −0.112154 0.345174i 0.879189 0.476473i \(-0.158085\pi\)
−0.991343 + 0.131299i \(0.958085\pi\)
\(972\) 0 0
\(973\) −18.0760 13.1330i −0.579489 0.421023i
\(974\) 0 0
\(975\) −1.34362 + 4.13524i −0.0430303 + 0.132434i
\(976\) 0 0
\(977\) −18.7803 + 13.6447i −0.600834 + 0.436531i −0.846175 0.532906i \(-0.821100\pi\)
0.245341 + 0.969437i \(0.421100\pi\)
\(978\) 0 0
\(979\) 11.6199 10.5311i 0.371373 0.336577i
\(980\) 0 0
\(981\) −0.0294904 + 0.0214260i −0.000941556 + 0.000684080i
\(982\) 0 0
\(983\) −10.5567 + 32.4901i −0.336706 + 1.03627i 0.629170 + 0.777268i \(0.283395\pi\)
−0.965876 + 0.259006i \(0.916605\pi\)
\(984\) 0 0
\(985\) −5.66951 4.11914i −0.180646 0.131247i
\(986\) 0 0
\(987\) −1.07119 3.29678i −0.0340963 0.104938i
\(988\) 0 0
\(989\) −15.1995 −0.483316
\(990\) 0 0
\(991\) 27.7516 0.881560 0.440780 0.897615i \(-0.354702\pi\)
0.440780 + 0.897615i \(0.354702\pi\)
\(992\) 0 0
\(993\) 15.9598 + 49.1194i 0.506470 + 1.55876i
\(994\) 0 0
\(995\) −15.2712 11.0952i −0.484129 0.351740i
\(996\) 0 0
\(997\) −13.3489 + 41.0836i −0.422763 + 1.30113i 0.482358 + 0.875974i \(0.339781\pi\)
−0.905120 + 0.425155i \(0.860219\pi\)
\(998\) 0 0
\(999\) −33.9018 + 24.6311i −1.07261 + 0.779293i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 880.2.bo.j.641.3 12
4.3 odd 2 440.2.y.b.201.1 yes 12
11.2 odd 10 9680.2.a.cy.1.5 6
11.4 even 5 inner 880.2.bo.j.81.3 12
11.9 even 5 9680.2.a.cx.1.5 6
44.15 odd 10 440.2.y.b.81.1 12
44.31 odd 10 4840.2.a.bf.1.2 6
44.35 even 10 4840.2.a.be.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
440.2.y.b.81.1 12 44.15 odd 10
440.2.y.b.201.1 yes 12 4.3 odd 2
880.2.bo.j.81.3 12 11.4 even 5 inner
880.2.bo.j.641.3 12 1.1 even 1 trivial
4840.2.a.be.1.2 6 44.35 even 10
4840.2.a.bf.1.2 6 44.31 odd 10
9680.2.a.cx.1.5 6 11.9 even 5
9680.2.a.cy.1.5 6 11.2 odd 10