Properties

Label 8800.2.a.bg
Level $8800$
Weight $2$
Character orbit 8800.a
Self dual yes
Analytic conductor $70.268$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8800,2,Mod(1,8800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8800.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8800 = 2^{5} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8800.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(70.2683537787\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.229.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 4x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 1760)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{2} - 1) q^{3} + ( - \beta_1 + 1) q^{7} + (2 \beta_{2} - \beta_1 + 2) q^{9} - q^{11} - 2 q^{13} + ( - \beta_{2} - 1) q^{17} + (2 \beta_{2} + \beta_1 + 3) q^{19} + ( - 3 \beta_{2} - 1) q^{21}+ \cdots + ( - 2 \beta_{2} + \beta_1 - 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 2 q^{3} + 4 q^{7} + 5 q^{9} - 3 q^{11} - 6 q^{13} - 2 q^{17} + 6 q^{19} + 6 q^{23} - 20 q^{27} - 6 q^{29} + 2 q^{33} - 16 q^{37} + 4 q^{39} + 6 q^{41} - 2 q^{43} + 6 q^{47} + 9 q^{49} + 14 q^{51}+ \cdots - 5 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 4x - 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{2} + \nu - 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{2} + \beta _1 + 6 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.86081
2.11491
−0.254102
0 −3.32340 0 0 0 2.39821 0 8.04502 0
1.2 0 −0.357926 0 0 0 −2.58774 0 −2.87189 0
1.3 0 1.68133 0 0 0 4.18953 0 −0.173127 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8800.2.a.bg 3
4.b odd 2 1 8800.2.a.bj 3
5.b even 2 1 1760.2.a.t yes 3
20.d odd 2 1 1760.2.a.q 3
40.e odd 2 1 3520.2.a.bx 3
40.f even 2 1 3520.2.a.bu 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1760.2.a.q 3 20.d odd 2 1
1760.2.a.t yes 3 5.b even 2 1
3520.2.a.bu 3 40.f even 2 1
3520.2.a.bx 3 40.e odd 2 1
8800.2.a.bg 3 1.a even 1 1 trivial
8800.2.a.bj 3 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8800))\):

\( T_{3}^{3} + 2T_{3}^{2} - 5T_{3} - 2 \) Copy content Toggle raw display
\( T_{7}^{3} - 4T_{7}^{2} - 7T_{7} + 26 \) Copy content Toggle raw display
\( T_{13} + 2 \) Copy content Toggle raw display
\( T_{17}^{3} + 2T_{17}^{2} - 5T_{17} - 2 \) Copy content Toggle raw display
\( T_{19}^{3} - 6T_{19}^{2} - 31T_{19} + 184 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + 2 T^{2} + \cdots - 2 \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - 4 T^{2} + \cdots + 26 \) Copy content Toggle raw display
$11$ \( (T + 1)^{3} \) Copy content Toggle raw display
$13$ \( (T + 2)^{3} \) Copy content Toggle raw display
$17$ \( T^{3} + 2 T^{2} + \cdots - 2 \) Copy content Toggle raw display
$19$ \( T^{3} - 6 T^{2} + \cdots + 184 \) Copy content Toggle raw display
$23$ \( (T - 2)^{3} \) Copy content Toggle raw display
$29$ \( T^{3} + 6 T^{2} + \cdots - 82 \) Copy content Toggle raw display
$31$ \( T^{3} - 57T - 52 \) Copy content Toggle raw display
$37$ \( T^{3} + 16 T^{2} + \cdots + 74 \) Copy content Toggle raw display
$41$ \( T^{3} - 6 T^{2} + \cdots + 56 \) Copy content Toggle raw display
$43$ \( T^{3} + 2 T^{2} + \cdots - 512 \) Copy content Toggle raw display
$47$ \( T^{3} - 6 T^{2} + \cdots + 56 \) Copy content Toggle raw display
$53$ \( T^{3} + 16 T^{2} + \cdots + 74 \) Copy content Toggle raw display
$59$ \( T^{3} + 4 T^{2} + \cdots + 256 \) Copy content Toggle raw display
$61$ \( T^{3} - 14 T^{2} + \cdots + 2 \) Copy content Toggle raw display
$67$ \( T^{3} + 14 T^{2} + \cdots - 224 \) Copy content Toggle raw display
$71$ \( T^{3} - 8 T^{2} + \cdots - 4 \) Copy content Toggle raw display
$73$ \( T^{3} + 26 T^{2} + \cdots - 328 \) Copy content Toggle raw display
$79$ \( T^{3} + 32 T^{2} + \cdots + 928 \) Copy content Toggle raw display
$83$ \( T^{3} + 10 T^{2} + \cdots - 8 \) Copy content Toggle raw display
$89$ \( T^{3} - 4 T^{2} + \cdots + 566 \) Copy content Toggle raw display
$97$ \( T^{3} - 2 T^{2} + \cdots + 1184 \) Copy content Toggle raw display
show more
show less