Properties

Label 8800.2.a.bu
Level $8800$
Weight $2$
Character orbit 8800.a
Self dual yes
Analytic conductor $70.268$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8800,2,Mod(1,8800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8800.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8800 = 2^{5} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8800.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(70.2683537787\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.792644.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 7x^{3} + 4x^{2} + 4x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 1760)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{3} q^{3} - \beta_{4} q^{7} + ( - \beta_1 + 2) q^{9} + q^{11} + (\beta_{3} - \beta_{2} - 1) q^{13} + (\beta_{4} - \beta_{3} - \beta_1 - 1) q^{17} + ( - \beta_1 + 1) q^{19} + (\beta_{4} - \beta_{2} - \beta_1 + 2) q^{21}+ \cdots + ( - \beta_1 + 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 2 q^{7} + 11 q^{9} + 5 q^{11} - 6 q^{13} - 2 q^{17} + 6 q^{19} + 12 q^{21} + 12 q^{23} + 10 q^{29} - 8 q^{31} - 4 q^{37} - 16 q^{39} + 6 q^{41} - 4 q^{43} + 23 q^{49} + 14 q^{51} - 4 q^{53} + 16 q^{59}+ \cdots + 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - x^{4} - 7x^{3} + 4x^{2} + 4x - 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{3} - 6\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -\nu^{3} + 2\nu^{2} + 6\nu - 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 2\nu^{4} - \nu^{3} - 14\nu^{2} + 6 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( 2\nu^{4} - \nu^{3} - 14\nu^{2} + 2\nu + 6 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{4} - \beta_{3} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{2} + \beta _1 + 6 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3\beta_{4} - 3\beta_{3} + \beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 3\beta_{4} - 2\beta_{3} + 7\beta_{2} + 8\beta _1 + 37 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.466307
−2.34129
2.82909
−0.782073
0.827959
0 −2.94897 0 0 0 −3.88159 0 5.69645 0
1.2 0 −2.18777 0 0 0 2.49480 0 1.78634 0
1.3 0 0.575436 0 0 0 −5.08275 0 −2.66887 0
1.4 0 1.33638 0 0 0 2.90052 0 −1.21409 0
1.5 0 3.22493 0 0 0 1.56901 0 7.40017 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8800.2.a.bu 5
4.b odd 2 1 8800.2.a.bv 5
5.b even 2 1 1760.2.a.v yes 5
20.d odd 2 1 1760.2.a.u 5
40.e odd 2 1 3520.2.a.by 5
40.f even 2 1 3520.2.a.bz 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1760.2.a.u 5 20.d odd 2 1
1760.2.a.v yes 5 5.b even 2 1
3520.2.a.by 5 40.e odd 2 1
3520.2.a.bz 5 40.f even 2 1
8800.2.a.bu 5 1.a even 1 1 trivial
8800.2.a.bv 5 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8800))\):

\( T_{3}^{5} - 13T_{3}^{3} + 32T_{3} - 16 \) Copy content Toggle raw display
\( T_{7}^{5} + 2T_{7}^{4} - 27T_{7}^{3} - 8T_{7}^{2} + 208T_{7} - 224 \) Copy content Toggle raw display
\( T_{13}^{5} + 6T_{13}^{4} - 48T_{13}^{3} - 272T_{13}^{2} + 496T_{13} + 2656 \) Copy content Toggle raw display
\( T_{17}^{5} + 2T_{17}^{4} - 57T_{17}^{3} - 74T_{17}^{2} + 748T_{17} + 8 \) Copy content Toggle raw display
\( T_{19}^{5} - 6T_{19}^{4} - 23T_{19}^{3} + 108T_{19}^{2} + 176T_{19} - 192 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} \) Copy content Toggle raw display
$3$ \( T^{5} - 13 T^{3} + \cdots - 16 \) Copy content Toggle raw display
$5$ \( T^{5} \) Copy content Toggle raw display
$7$ \( T^{5} + 2 T^{4} + \cdots - 224 \) Copy content Toggle raw display
$11$ \( (T - 1)^{5} \) Copy content Toggle raw display
$13$ \( T^{5} + 6 T^{4} + \cdots + 2656 \) Copy content Toggle raw display
$17$ \( T^{5} + 2 T^{4} + \cdots + 8 \) Copy content Toggle raw display
$19$ \( T^{5} - 6 T^{4} + \cdots - 192 \) Copy content Toggle raw display
$23$ \( T^{5} - 12 T^{4} + \cdots - 6592 \) Copy content Toggle raw display
$29$ \( T^{5} - 10 T^{4} + \cdots - 7736 \) Copy content Toggle raw display
$31$ \( T^{5} + 8 T^{4} + \cdots + 64 \) Copy content Toggle raw display
$37$ \( T^{5} + 4 T^{4} + \cdots + 2616 \) Copy content Toggle raw display
$41$ \( T^{5} - 6 T^{4} + \cdots - 96 \) Copy content Toggle raw display
$43$ \( T^{5} + 4 T^{4} + \cdots + 1536 \) Copy content Toggle raw display
$47$ \( T^{5} - 116 T^{3} + \cdots - 7104 \) Copy content Toggle raw display
$53$ \( T^{5} + 4 T^{4} + \cdots + 2616 \) Copy content Toggle raw display
$59$ \( T^{5} - 16 T^{4} + \cdots - 14592 \) Copy content Toggle raw display
$61$ \( T^{5} - 10 T^{4} + \cdots + 72 \) Copy content Toggle raw display
$67$ \( T^{5} - 8 T^{4} + \cdots - 9472 \) Copy content Toggle raw display
$71$ \( T^{5} + 24 T^{4} + \cdots - 38464 \) Copy content Toggle raw display
$73$ \( T^{5} + 2 T^{4} + \cdots - 1376 \) Copy content Toggle raw display
$79$ \( T^{5} - 52 T^{3} + \cdots - 512 \) Copy content Toggle raw display
$83$ \( T^{5} + 4 T^{4} + \cdots - 15232 \) Copy content Toggle raw display
$89$ \( T^{5} - 24 T^{4} + \cdots + 51416 \) Copy content Toggle raw display
$97$ \( T^{5} + 26 T^{4} + \cdots + 46208 \) Copy content Toggle raw display
show more
show less