Properties

Label 8800.2.a.bw
Level 88008800
Weight 22
Character orbit 8800.a
Self dual yes
Analytic conductor 70.26870.268
Analytic rank 11
Dimension 55
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8800,2,Mod(1,8800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8800.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 8800=255211 8800 = 2^{5} \cdot 5^{2} \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 8800.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 70.268353778770.2683537787
Analytic rank: 11
Dimension: 55
Coefficient field: 5.5.5060976.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x52x47x3+12x2x2 x^{5} - 2x^{4} - 7x^{3} + 12x^{2} - x - 2 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β3,β41,\beta_1,\beta_2,\beta_3,\beta_4 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q3+(β31)q7+(β2+1)q9q11+(β4+β3)q13+(β4+β3β1+1)q17+(β4β21)q19+(β3β1+1)q21++(β21)q99+O(q100) q + \beta_1 q^{3} + ( - \beta_{3} - 1) q^{7} + (\beta_{2} + 1) q^{9} - q^{11} + ( - \beta_{4} + \beta_{3}) q^{13} + (\beta_{4} + \beta_{3} - \beta_1 + 1) q^{17} + (\beta_{4} - \beta_{2} - 1) q^{19} + ( - \beta_{3} - \beta_1 + 1) q^{21}+ \cdots + ( - \beta_{2} - 1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 5q+2q34q7+3q95q11+q135q19+4q21+q23+2q273q2911q312q3312q39+8q41+7q4310q479q4916q51+8q53+3q99+O(q100) 5 q + 2 q^{3} - 4 q^{7} + 3 q^{9} - 5 q^{11} + q^{13} - 5 q^{19} + 4 q^{21} + q^{23} + 2 q^{27} - 3 q^{29} - 11 q^{31} - 2 q^{33} - 12 q^{39} + 8 q^{41} + 7 q^{43} - 10 q^{47} - 9 q^{49} - 16 q^{51} + 8 q^{53}+ \cdots - 3 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x52x47x3+12x2x2 x^{5} - 2x^{4} - 7x^{3} + 12x^{2} - x - 2 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν24 \nu^{2} - 4 Copy content Toggle raw display
β3\beta_{3}== ν4ν38ν2+4ν+3 \nu^{4} - \nu^{3} - 8\nu^{2} + 4\nu + 3 Copy content Toggle raw display
β4\beta_{4}== ν4+2ν3+7ν211ν -\nu^{4} + 2\nu^{3} + 7\nu^{2} - 11\nu Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+4 \beta_{2} + 4 Copy content Toggle raw display
ν3\nu^{3}== β4+β3+β2+7β1+1 \beta_{4} + \beta_{3} + \beta_{2} + 7\beta _1 + 1 Copy content Toggle raw display
ν4\nu^{4}== β4+2β3+9β2+3β1+30 \beta_{4} + 2\beta_{3} + 9\beta_{2} + 3\beta _1 + 30 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−2.56529
−0.342572
0.594438
1.24959
3.06383
0 −2.56529 0 0 0 −1.28048 0 3.58073 0
1.2 0 −0.342572 0 0 0 −1.74484 0 −2.88264 0
1.3 0 0.594438 0 0 0 −3.46571 0 −2.64664 0
1.4 0 1.24959 0 0 0 3.00650 0 −1.43851 0
1.5 0 3.06383 0 0 0 −0.515465 0 6.38707 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
55 +1 +1
1111 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8800.2.a.bw yes 5
4.b odd 2 1 8800.2.a.bt yes 5
5.b even 2 1 8800.2.a.bs 5
20.d odd 2 1 8800.2.a.bx yes 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
8800.2.a.bs 5 5.b even 2 1
8800.2.a.bt yes 5 4.b odd 2 1
8800.2.a.bw yes 5 1.a even 1 1 trivial
8800.2.a.bx yes 5 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(8800))S_{2}^{\mathrm{new}}(\Gamma_0(8800)):

T352T347T33+12T32T32 T_{3}^{5} - 2T_{3}^{4} - 7T_{3}^{3} + 12T_{3}^{2} - T_{3} - 2 Copy content Toggle raw display
T75+4T745T7334T7239T712 T_{7}^{5} + 4T_{7}^{4} - 5T_{7}^{3} - 34T_{7}^{2} - 39T_{7} - 12 Copy content Toggle raw display
T135T13436T13328T132+247T13+361 T_{13}^{5} - T_{13}^{4} - 36T_{13}^{3} - 28T_{13}^{2} + 247T_{13} + 361 Copy content Toggle raw display
T17539T17336T172+43T17+40 T_{17}^{5} - 39T_{17}^{3} - 36T_{17}^{2} + 43T_{17} + 40 Copy content Toggle raw display
T195+5T19448T193288T192237T19+23 T_{19}^{5} + 5T_{19}^{4} - 48T_{19}^{3} - 288T_{19}^{2} - 237T_{19} + 23 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T5 T^{5} Copy content Toggle raw display
33 T52T4+2 T^{5} - 2 T^{4} + \cdots - 2 Copy content Toggle raw display
55 T5 T^{5} Copy content Toggle raw display
77 T5+4T4+12 T^{5} + 4 T^{4} + \cdots - 12 Copy content Toggle raw display
1111 (T+1)5 (T + 1)^{5} Copy content Toggle raw display
1313 T5T4++361 T^{5} - T^{4} + \cdots + 361 Copy content Toggle raw display
1717 T539T3++40 T^{5} - 39 T^{3} + \cdots + 40 Copy content Toggle raw display
1919 T5+5T4++23 T^{5} + 5 T^{4} + \cdots + 23 Copy content Toggle raw display
2323 T5T4+25 T^{5} - T^{4} + \cdots - 25 Copy content Toggle raw display
2929 T5+3T4++9 T^{5} + 3 T^{4} + \cdots + 9 Copy content Toggle raw display
3131 T5+11T4+1385 T^{5} + 11 T^{4} + \cdots - 1385 Copy content Toggle raw display
3737 T538T3+32 T^{5} - 38 T^{3} + \cdots - 32 Copy content Toggle raw display
4141 T58T4+8356 T^{5} - 8 T^{4} + \cdots - 8356 Copy content Toggle raw display
4343 T57T4++464 T^{5} - 7 T^{4} + \cdots + 464 Copy content Toggle raw display
4747 T5+10T4++64 T^{5} + 10 T^{4} + \cdots + 64 Copy content Toggle raw display
5353 T58T4+15514 T^{5} - 8 T^{4} + \cdots - 15514 Copy content Toggle raw display
5959 T5+6T4++2560 T^{5} + 6 T^{4} + \cdots + 2560 Copy content Toggle raw display
6161 T5+2T4++14890 T^{5} + 2 T^{4} + \cdots + 14890 Copy content Toggle raw display
6767 T5+6T4+736 T^{5} + 6 T^{4} + \cdots - 736 Copy content Toggle raw display
7171 T5+11T4+1744 T^{5} + 11 T^{4} + \cdots - 1744 Copy content Toggle raw display
7373 T589T3+4132 T^{5} - 89 T^{3} + \cdots - 4132 Copy content Toggle raw display
7979 T5+6T4++61760 T^{5} + 6 T^{4} + \cdots + 61760 Copy content Toggle raw display
8383 T521T4+3643 T^{5} - 21 T^{4} + \cdots - 3643 Copy content Toggle raw display
8989 T55T4+9991 T^{5} - 5 T^{4} + \cdots - 9991 Copy content Toggle raw display
9797 T5+13T4+6693 T^{5} + 13 T^{4} + \cdots - 6693 Copy content Toggle raw display
show more
show less