[N,k,chi] = [8800,2,Mod(1,8800)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8800, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("8800.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 , β 4 1,\beta_1,\beta_2,\beta_3,\beta_4 1 , β 1 , β 2 , β 3 , β 4 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 5 − 2 x 4 − 7 x 3 + 12 x 2 − x − 2 x^{5} - 2x^{4} - 7x^{3} + 12x^{2} - x - 2 x 5 − 2 x 4 − 7 x 3 + 1 2 x 2 − x − 2
x^5 - 2*x^4 - 7*x^3 + 12*x^2 - x - 2
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
ν 2 − 4 \nu^{2} - 4 ν 2 − 4
v^2 - 4
β 3 \beta_{3} β 3 = = =
ν 4 − ν 3 − 8 ν 2 + 4 ν + 3 \nu^{4} - \nu^{3} - 8\nu^{2} + 4\nu + 3 ν 4 − ν 3 − 8 ν 2 + 4 ν + 3
v^4 - v^3 - 8*v^2 + 4*v + 3
β 4 \beta_{4} β 4 = = =
− ν 4 + 2 ν 3 + 7 ν 2 − 11 ν -\nu^{4} + 2\nu^{3} + 7\nu^{2} - 11\nu − ν 4 + 2 ν 3 + 7 ν 2 − 1 1 ν
-v^4 + 2*v^3 + 7*v^2 - 11*v
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
β 2 + 4 \beta_{2} + 4 β 2 + 4
b2 + 4
ν 3 \nu^{3} ν 3 = = =
β 4 + β 3 + β 2 + 7 β 1 + 1 \beta_{4} + \beta_{3} + \beta_{2} + 7\beta _1 + 1 β 4 + β 3 + β 2 + 7 β 1 + 1
b4 + b3 + b2 + 7*b1 + 1
ν 4 \nu^{4} ν 4 = = =
β 4 + 2 β 3 + 9 β 2 + 3 β 1 + 30 \beta_{4} + 2\beta_{3} + 9\beta_{2} + 3\beta _1 + 30 β 4 + 2 β 3 + 9 β 2 + 3 β 1 + 3 0
b4 + 2*b3 + 9*b2 + 3*b1 + 30
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
p p p
Sign
2 2 2
+ 1 +1 + 1
5 5 5
+ 1 +1 + 1
11 11 1 1
+ 1 +1 + 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( Γ 0 ( 8800 ) ) S_{2}^{\mathrm{new}}(\Gamma_0(8800)) S 2 n e w ( Γ 0 ( 8 8 0 0 ) ) :
T 3 5 − 2 T 3 4 − 7 T 3 3 + 12 T 3 2 − T 3 − 2 T_{3}^{5} - 2T_{3}^{4} - 7T_{3}^{3} + 12T_{3}^{2} - T_{3} - 2 T 3 5 − 2 T 3 4 − 7 T 3 3 + 1 2 T 3 2 − T 3 − 2
T3^5 - 2*T3^4 - 7*T3^3 + 12*T3^2 - T3 - 2
T 7 5 + 4 T 7 4 − 5 T 7 3 − 34 T 7 2 − 39 T 7 − 12 T_{7}^{5} + 4T_{7}^{4} - 5T_{7}^{3} - 34T_{7}^{2} - 39T_{7} - 12 T 7 5 + 4 T 7 4 − 5 T 7 3 − 3 4 T 7 2 − 3 9 T 7 − 1 2
T7^5 + 4*T7^4 - 5*T7^3 - 34*T7^2 - 39*T7 - 12
T 13 5 − T 13 4 − 36 T 13 3 − 28 T 13 2 + 247 T 13 + 361 T_{13}^{5} - T_{13}^{4} - 36T_{13}^{3} - 28T_{13}^{2} + 247T_{13} + 361 T 1 3 5 − T 1 3 4 − 3 6 T 1 3 3 − 2 8 T 1 3 2 + 2 4 7 T 1 3 + 3 6 1
T13^5 - T13^4 - 36*T13^3 - 28*T13^2 + 247*T13 + 361
T 17 5 − 39 T 17 3 − 36 T 17 2 + 43 T 17 + 40 T_{17}^{5} - 39T_{17}^{3} - 36T_{17}^{2} + 43T_{17} + 40 T 1 7 5 − 3 9 T 1 7 3 − 3 6 T 1 7 2 + 4 3 T 1 7 + 4 0
T17^5 - 39*T17^3 - 36*T17^2 + 43*T17 + 40
T 19 5 + 5 T 19 4 − 48 T 19 3 − 288 T 19 2 − 237 T 19 + 23 T_{19}^{5} + 5T_{19}^{4} - 48T_{19}^{3} - 288T_{19}^{2} - 237T_{19} + 23 T 1 9 5 + 5 T 1 9 4 − 4 8 T 1 9 3 − 2 8 8 T 1 9 2 − 2 3 7 T 1 9 + 2 3
T19^5 + 5*T19^4 - 48*T19^3 - 288*T19^2 - 237*T19 + 23
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 5 T^{5} T 5
T^5
3 3 3
T 5 − 2 T 4 + ⋯ − 2 T^{5} - 2 T^{4} + \cdots - 2 T 5 − 2 T 4 + ⋯ − 2
T^5 - 2*T^4 - 7*T^3 + 12*T^2 - T - 2
5 5 5
T 5 T^{5} T 5
T^5
7 7 7
T 5 + 4 T 4 + ⋯ − 12 T^{5} + 4 T^{4} + \cdots - 12 T 5 + 4 T 4 + ⋯ − 1 2
T^5 + 4*T^4 - 5*T^3 - 34*T^2 - 39*T - 12
11 11 1 1
( T + 1 ) 5 (T + 1)^{5} ( T + 1 ) 5
(T + 1)^5
13 13 1 3
T 5 − T 4 + ⋯ + 361 T^{5} - T^{4} + \cdots + 361 T 5 − T 4 + ⋯ + 3 6 1
T^5 - T^4 - 36*T^3 - 28*T^2 + 247*T + 361
17 17 1 7
T 5 − 39 T 3 + ⋯ + 40 T^{5} - 39 T^{3} + \cdots + 40 T 5 − 3 9 T 3 + ⋯ + 4 0
T^5 - 39*T^3 - 36*T^2 + 43*T + 40
19 19 1 9
T 5 + 5 T 4 + ⋯ + 23 T^{5} + 5 T^{4} + \cdots + 23 T 5 + 5 T 4 + ⋯ + 2 3
T^5 + 5*T^4 - 48*T^3 - 288*T^2 - 237*T + 23
23 23 2 3
T 5 − T 4 + ⋯ − 25 T^{5} - T^{4} + \cdots - 25 T 5 − T 4 + ⋯ − 2 5
T^5 - T^4 - 51*T^3 + 159*T^2 - 33*T - 25
29 29 2 9
T 5 + 3 T 4 + ⋯ + 9 T^{5} + 3 T^{4} + \cdots + 9 T 5 + 3 T 4 + ⋯ + 9
T^5 + 3*T^4 - 31*T^3 - 65*T^2 + 147*T + 9
31 31 3 1
T 5 + 11 T 4 + ⋯ − 1385 T^{5} + 11 T^{4} + \cdots - 1385 T 5 + 1 1 T 4 + ⋯ − 1 3 8 5
T^5 + 11*T^4 - 78*T^3 - 1318*T^2 - 4247*T - 1385
37 37 3 7
T 5 − 38 T 3 + ⋯ − 32 T^{5} - 38 T^{3} + \cdots - 32 T 5 − 3 8 T 3 + ⋯ − 3 2
T^5 - 38*T^3 - 8*T^2 + 317*T - 32
41 41 4 1
T 5 − 8 T 4 + ⋯ − 8356 T^{5} - 8 T^{4} + \cdots - 8356 T 5 − 8 T 4 + ⋯ − 8 3 5 6
T^5 - 8*T^4 - 104*T^3 + 620*T^2 + 2987*T - 8356
43 43 4 3
T 5 − 7 T 4 + ⋯ + 464 T^{5} - 7 T^{4} + \cdots + 464 T 5 − 7 T 4 + ⋯ + 4 6 4
T^5 - 7*T^4 - 48*T^3 + 172*T^2 + 768*T + 464
47 47 4 7
T 5 + 10 T 4 + ⋯ + 64 T^{5} + 10 T^{4} + \cdots + 64 T 5 + 1 0 T 4 + ⋯ + 6 4
T^5 + 10*T^4 - 24*T^3 - 78*T^2 + 39*T + 64
53 53 5 3
T 5 − 8 T 4 + ⋯ − 15514 T^{5} - 8 T^{4} + \cdots - 15514 T 5 − 8 T 4 + ⋯ − 1 5 5 1 4
T^5 - 8*T^4 - 141*T^3 + 1216*T^2 + 889*T - 15514
59 59 5 9
T 5 + 6 T 4 + ⋯ + 2560 T^{5} + 6 T^{4} + \cdots + 2560 T 5 + 6 T 4 + ⋯ + 2 5 6 0
T^5 + 6*T^4 - 56*T^3 - 338*T^2 + 311*T + 2560
61 61 6 1
T 5 + 2 T 4 + ⋯ + 14890 T^{5} + 2 T^{4} + \cdots + 14890 T 5 + 2 T 4 + ⋯ + 1 4 8 9 0
T^5 + 2*T^4 - 137*T^3 - 350*T^2 + 4539*T + 14890
67 67 6 7
T 5 + 6 T 4 + ⋯ − 736 T^{5} + 6 T^{4} + \cdots - 736 T 5 + 6 T 4 + ⋯ − 7 3 6
T^5 + 6*T^4 - 76*T^3 - 120*T^2 + 1168*T - 736
71 71 7 1
T 5 + 11 T 4 + ⋯ − 1744 T^{5} + 11 T^{4} + \cdots - 1744 T 5 + 1 1 T 4 + ⋯ − 1 7 4 4
T^5 + 11*T^4 - 48*T^3 - 332*T^2 + 1632*T - 1744
73 73 7 3
T 5 − 89 T 3 + ⋯ − 4132 T^{5} - 89 T^{3} + \cdots - 4132 T 5 − 8 9 T 3 + ⋯ − 4 1 3 2
T^5 - 89*T^3 + 92*T^2 + 2003*T - 4132
79 79 7 9
T 5 + 6 T 4 + ⋯ + 61760 T^{5} + 6 T^{4} + \cdots + 61760 T 5 + 6 T 4 + ⋯ + 6 1 7 6 0
T^5 + 6*T^4 - 261*T^3 - 1392*T^2 + 11317*T + 61760
83 83 8 3
T 5 − 21 T 4 + ⋯ − 3643 T^{5} - 21 T^{4} + \cdots - 3643 T 5 − 2 1 T 4 + ⋯ − 3 6 4 3
T^5 - 21*T^4 - 59*T^3 + 1835*T^2 + 6317*T - 3643
89 89 8 9
T 5 − 5 T 4 + ⋯ − 9991 T^{5} - 5 T^{4} + \cdots - 9991 T 5 − 5 T 4 + ⋯ − 9 9 9 1
T^5 - 5*T^4 - 107*T^3 + 569*T^2 + 1827*T - 9991
97 97 9 7
T 5 + 13 T 4 + ⋯ − 6693 T^{5} + 13 T^{4} + \cdots - 6693 T 5 + 1 3 T 4 + ⋯ − 6 6 9 3
T^5 + 13*T^4 - 151*T^3 - 1337*T^2 + 6507*T - 6693
show more
show less