Properties

Label 882.2.bl.a.395.12
Level $882$
Weight $2$
Character 882.395
Analytic conductor $7.043$
Analytic rank $0$
Dimension $240$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,2,Mod(17,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(42))
 
chi = DirichletCharacter(H, H._module([21, 25]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 882.bl (of order \(42\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.04280545828\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(20\) over \(\Q(\zeta_{42})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{42}]$

Embedding invariants

Embedding label 395.12
Character \(\chi\) \(=\) 882.395
Dual form 882.2.bl.a.719.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.930874 + 0.365341i) q^{2} +(0.733052 + 0.680173i) q^{4} +(-2.38675 - 1.62726i) q^{5} +(-1.53151 + 2.15742i) q^{7} +(0.433884 + 0.900969i) q^{8} +(-1.62726 - 2.38675i) q^{10} +(-0.328853 - 2.18179i) q^{11} +(-1.90048 + 1.51558i) q^{13} +(-2.21384 + 1.44876i) q^{14} +(0.0747301 + 0.997204i) q^{16} +(-1.54987 - 0.478073i) q^{17} +(-5.96225 + 3.44230i) q^{19} +(-0.642794 - 2.81626i) q^{20} +(0.490979 - 2.15112i) q^{22} +(0.270954 + 0.878413i) q^{23} +(1.22189 + 3.11333i) q^{25} +(-2.32282 + 0.716494i) q^{26} +(-2.59010 + 0.539808i) q^{28} +(-3.46478 + 0.790814i) q^{29} +(-7.19671 - 4.15502i) q^{31} +(-0.294755 + 0.955573i) q^{32} +(-1.26808 - 1.01126i) q^{34} +(7.16601 - 2.65705i) q^{35} +(-2.79305 + 2.59157i) q^{37} +(-6.80771 + 1.02610i) q^{38} +(0.430537 - 2.85642i) q^{40} +(1.04356 - 0.502552i) q^{41} +(-0.507888 - 0.244586i) q^{43} +(1.24293 - 1.82304i) q^{44} +(-0.0686958 + 0.916682i) q^{46} +(-2.28364 + 5.81862i) q^{47} +(-2.30893 - 6.60824i) q^{49} +3.34452i q^{50} +(-2.42401 - 0.181655i) q^{52} +(6.70669 - 7.22810i) q^{53} +(-2.76545 + 5.74252i) q^{55} +(-2.60827 - 0.443776i) q^{56} +(-3.51419 - 0.529679i) q^{58} +(-4.53118 + 3.08931i) q^{59} +(4.79525 + 5.16805i) q^{61} +(-5.18123 - 6.49705i) q^{62} +(-0.623490 + 0.781831i) q^{64} +(7.00222 - 0.524744i) q^{65} +(-1.18486 + 2.05224i) q^{67} +(-0.810966 - 1.40463i) q^{68} +(7.64138 + 0.144658i) q^{70} +(-3.34620 - 0.763749i) q^{71} +(9.86161 - 3.87040i) q^{73} +(-3.54679 + 1.39201i) q^{74} +(-6.71200 - 1.53197i) q^{76} +(5.21069 + 2.63197i) q^{77} +(8.54125 + 14.7939i) q^{79} +(1.44434 - 2.50168i) q^{80} +(1.15503 - 0.0865573i) q^{82} +(7.46549 - 9.36143i) q^{83} +(2.92121 + 3.66308i) q^{85} +(-0.383422 - 0.413231i) q^{86} +(1.82304 - 1.24293i) q^{88} +(-7.83109 - 1.18035i) q^{89} +(-0.359138 - 6.42128i) q^{91} +(-0.398849 + 0.828218i) q^{92} +(-4.25156 + 4.58209i) q^{94} +(19.8319 + 1.48619i) q^{95} +9.32506i q^{97} +(0.264938 - 6.99498i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240 q - 20 q^{4} - 4 q^{7} - 12 q^{10} + 20 q^{16} + 24 q^{19} - 20 q^{22} + 24 q^{25} + 4 q^{28} + 12 q^{31} - 32 q^{37} + 44 q^{40} - 48 q^{43} + 204 q^{49} + 140 q^{55} + 136 q^{58} + 88 q^{61} + 40 q^{64}+ \cdots + 80 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(e\left(\frac{1}{42}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.930874 + 0.365341i 0.658227 + 0.258335i
\(3\) 0 0
\(4\) 0.733052 + 0.680173i 0.366526 + 0.340086i
\(5\) −2.38675 1.62726i −1.06739 0.727731i −0.103656 0.994613i \(-0.533054\pi\)
−0.963729 + 0.266882i \(0.914007\pi\)
\(6\) 0 0
\(7\) −1.53151 + 2.15742i −0.578858 + 0.815429i
\(8\) 0.433884 + 0.900969i 0.153401 + 0.318541i
\(9\) 0 0
\(10\) −1.62726 2.38675i −0.514584 0.754755i
\(11\) −0.328853 2.18179i −0.0991528 0.657836i −0.982100 0.188363i \(-0.939682\pi\)
0.882947 0.469473i \(-0.155556\pi\)
\(12\) 0 0
\(13\) −1.90048 + 1.51558i −0.527099 + 0.420348i −0.850547 0.525898i \(-0.823729\pi\)
0.323448 + 0.946246i \(0.395158\pi\)
\(14\) −2.21384 + 1.44876i −0.591674 + 0.387198i
\(15\) 0 0
\(16\) 0.0747301 + 0.997204i 0.0186825 + 0.249301i
\(17\) −1.54987 0.478073i −0.375900 0.115950i 0.101048 0.994882i \(-0.467781\pi\)
−0.476947 + 0.878932i \(0.658257\pi\)
\(18\) 0 0
\(19\) −5.96225 + 3.44230i −1.36783 + 0.789719i −0.990651 0.136420i \(-0.956440\pi\)
−0.377182 + 0.926139i \(0.623107\pi\)
\(20\) −0.642794 2.81626i −0.143733 0.629736i
\(21\) 0 0
\(22\) 0.490979 2.15112i 0.104677 0.458620i
\(23\) 0.270954 + 0.878413i 0.0564979 + 0.183162i 0.979423 0.201818i \(-0.0646848\pi\)
−0.922925 + 0.384979i \(0.874209\pi\)
\(24\) 0 0
\(25\) 1.22189 + 3.11333i 0.244378 + 0.622665i
\(26\) −2.32282 + 0.716494i −0.455542 + 0.140516i
\(27\) 0 0
\(28\) −2.59010 + 0.539808i −0.489483 + 0.102014i
\(29\) −3.46478 + 0.790814i −0.643394 + 0.146850i −0.531755 0.846898i \(-0.678467\pi\)
−0.111639 + 0.993749i \(0.535610\pi\)
\(30\) 0 0
\(31\) −7.19671 4.15502i −1.29257 0.746264i −0.313459 0.949602i \(-0.601488\pi\)
−0.979109 + 0.203338i \(0.934821\pi\)
\(32\) −0.294755 + 0.955573i −0.0521058 + 0.168923i
\(33\) 0 0
\(34\) −1.26808 1.01126i −0.217473 0.173429i
\(35\) 7.16601 2.65705i 1.21128 0.449124i
\(36\) 0 0
\(37\) −2.79305 + 2.59157i −0.459175 + 0.426052i −0.875540 0.483145i \(-0.839494\pi\)
0.416365 + 0.909198i \(0.363304\pi\)
\(38\) −6.80771 + 1.02610i −1.10436 + 0.166455i
\(39\) 0 0
\(40\) 0.430537 2.85642i 0.0680738 0.451640i
\(41\) 1.04356 0.502552i 0.162977 0.0784855i −0.350617 0.936519i \(-0.614028\pi\)
0.513594 + 0.858033i \(0.328314\pi\)
\(42\) 0 0
\(43\) −0.507888 0.244586i −0.0774521 0.0372990i 0.394757 0.918786i \(-0.370829\pi\)
−0.472209 + 0.881487i \(0.656543\pi\)
\(44\) 1.24293 1.82304i 0.187379 0.274834i
\(45\) 0 0
\(46\) −0.0686958 + 0.916682i −0.0101286 + 0.135157i
\(47\) −2.28364 + 5.81862i −0.333103 + 0.848733i 0.661965 + 0.749535i \(0.269723\pi\)
−0.995068 + 0.0991977i \(0.968372\pi\)
\(48\) 0 0
\(49\) −2.30893 6.60824i −0.329847 0.944034i
\(50\) 3.34452i 0.472987i
\(51\) 0 0
\(52\) −2.42401 0.181655i −0.336150 0.0251910i
\(53\) 6.70669 7.22810i 0.921235 0.992855i −0.0787568 0.996894i \(-0.525095\pi\)
0.999992 + 0.00403857i \(0.00128552\pi\)
\(54\) 0 0
\(55\) −2.76545 + 5.74252i −0.372893 + 0.774321i
\(56\) −2.60827 0.443776i −0.348544 0.0593021i
\(57\) 0 0
\(58\) −3.51419 0.529679i −0.461436 0.0695503i
\(59\) −4.53118 + 3.08931i −0.589909 + 0.402193i −0.821158 0.570701i \(-0.806671\pi\)
0.231248 + 0.972895i \(0.425719\pi\)
\(60\) 0 0
\(61\) 4.79525 + 5.16805i 0.613969 + 0.661701i 0.961127 0.276105i \(-0.0890438\pi\)
−0.347158 + 0.937807i \(0.612853\pi\)
\(62\) −5.18123 6.49705i −0.658017 0.825127i
\(63\) 0 0
\(64\) −0.623490 + 0.781831i −0.0779362 + 0.0977289i
\(65\) 7.00222 0.524744i 0.868518 0.0650864i
\(66\) 0 0
\(67\) −1.18486 + 2.05224i −0.144754 + 0.250722i −0.929281 0.369373i \(-0.879572\pi\)
0.784527 + 0.620095i \(0.212906\pi\)
\(68\) −0.810966 1.40463i −0.0983441 0.170337i
\(69\) 0 0
\(70\) 7.64138 + 0.144658i 0.913320 + 0.0172900i
\(71\) −3.34620 0.763749i −0.397121 0.0906404i 0.0192962 0.999814i \(-0.493857\pi\)
−0.416418 + 0.909173i \(0.636715\pi\)
\(72\) 0 0
\(73\) 9.86161 3.87040i 1.15421 0.452996i 0.290449 0.956890i \(-0.406195\pi\)
0.863765 + 0.503895i \(0.168100\pi\)
\(74\) −3.54679 + 1.39201i −0.412306 + 0.161818i
\(75\) 0 0
\(76\) −6.71200 1.53197i −0.769919 0.175729i
\(77\) 5.21069 + 2.63197i 0.593813 + 0.299941i
\(78\) 0 0
\(79\) 8.54125 + 14.7939i 0.960965 + 1.66444i 0.720085 + 0.693886i \(0.244103\pi\)
0.240881 + 0.970555i \(0.422564\pi\)
\(80\) 1.44434 2.50168i 0.161483 0.279696i
\(81\) 0 0
\(82\) 1.15503 0.0865573i 0.127551 0.00955865i
\(83\) 7.46549 9.36143i 0.819444 1.02755i −0.179596 0.983740i \(-0.557479\pi\)
0.999040 0.0438099i \(-0.0139496\pi\)
\(84\) 0 0
\(85\) 2.92121 + 3.66308i 0.316850 + 0.397317i
\(86\) −0.383422 0.413231i −0.0413455 0.0445598i
\(87\) 0 0
\(88\) 1.82304 1.24293i 0.194337 0.132497i
\(89\) −7.83109 1.18035i −0.830094 0.125117i −0.279769 0.960067i \(-0.590258\pi\)
−0.550325 + 0.834951i \(0.685496\pi\)
\(90\) 0 0
\(91\) −0.359138 6.42128i −0.0376479 0.673133i
\(92\) −0.398849 + 0.828218i −0.0415828 + 0.0863477i
\(93\) 0 0
\(94\) −4.25156 + 4.58209i −0.438515 + 0.472607i
\(95\) 19.8319 + 1.48619i 2.03471 + 0.152480i
\(96\) 0 0
\(97\) 9.32506i 0.946816i 0.880843 + 0.473408i \(0.156976\pi\)
−0.880843 + 0.473408i \(0.843024\pi\)
\(98\) 0.264938 6.99498i 0.0267628 0.706600i
\(99\) 0 0
\(100\) −1.22189 + 3.11333i −0.122189 + 0.311333i
\(101\) 0.340104 4.53837i 0.0338416 0.451585i −0.954384 0.298582i \(-0.903486\pi\)
0.988226 0.153003i \(-0.0488945\pi\)
\(102\) 0 0
\(103\) −6.38286 + 9.36194i −0.628922 + 0.922459i −0.999981 0.00615006i \(-0.998042\pi\)
0.371059 + 0.928609i \(0.378995\pi\)
\(104\) −2.19008 1.05469i −0.214755 0.103421i
\(105\) 0 0
\(106\) 8.88380 4.27821i 0.862871 0.415537i
\(107\) 2.54863 16.9090i 0.246385 1.63466i −0.433368 0.901217i \(-0.642675\pi\)
0.679753 0.733441i \(-0.262087\pi\)
\(108\) 0 0
\(109\) 9.81632 1.47957i 0.940233 0.141717i 0.338996 0.940788i \(-0.389913\pi\)
0.601237 + 0.799071i \(0.294675\pi\)
\(110\) −4.67226 + 4.33523i −0.445483 + 0.413348i
\(111\) 0 0
\(112\) −2.26584 1.36601i −0.214102 0.129076i
\(113\) −5.06070 4.03578i −0.476071 0.379654i 0.355855 0.934541i \(-0.384190\pi\)
−0.831925 + 0.554888i \(0.812761\pi\)
\(114\) 0 0
\(115\) 0.782703 2.53746i 0.0729874 0.236619i
\(116\) −3.07775 1.77694i −0.285762 0.164985i
\(117\) 0 0
\(118\) −5.34661 + 1.22033i −0.492195 + 0.112340i
\(119\) 3.40506 2.61156i 0.312141 0.239401i
\(120\) 0 0
\(121\) 5.85922 1.80733i 0.532656 0.164303i
\(122\) 2.57567 + 6.56271i 0.233190 + 0.594159i
\(123\) 0 0
\(124\) −2.44943 7.94085i −0.219965 0.713110i
\(125\) −1.06413 + 4.66226i −0.0951788 + 0.417006i
\(126\) 0 0
\(127\) −2.52230 11.0509i −0.223818 0.980611i −0.954574 0.297973i \(-0.903690\pi\)
0.730756 0.682639i \(-0.239168\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) 6.70989 + 2.06973i 0.588496 + 0.181527i
\(131\) −0.120961 1.61411i −0.0105684 0.141025i 0.989423 0.145056i \(-0.0463361\pi\)
−0.999992 + 0.00403039i \(0.998717\pi\)
\(132\) 0 0
\(133\) 1.70476 18.1350i 0.147822 1.57251i
\(134\) −1.85273 + 1.47750i −0.160051 + 0.127637i
\(135\) 0 0
\(136\) −0.241736 1.60382i −0.0207287 0.137526i
\(137\) 5.93678 + 8.70766i 0.507213 + 0.743946i 0.991378 0.131031i \(-0.0418288\pi\)
−0.484165 + 0.874977i \(0.660876\pi\)
\(138\) 0 0
\(139\) −3.62648 7.53047i −0.307594 0.638726i 0.688671 0.725074i \(-0.258195\pi\)
−0.996265 + 0.0863480i \(0.972480\pi\)
\(140\) 7.06031 + 2.92637i 0.596705 + 0.247323i
\(141\) 0 0
\(142\) −2.83586 1.93346i −0.237980 0.162252i
\(143\) 3.93167 + 3.64806i 0.328783 + 0.305066i
\(144\) 0 0
\(145\) 9.55641 + 3.75061i 0.793617 + 0.311472i
\(146\) 10.5939 0.876760
\(147\) 0 0
\(148\) −3.81017 −0.313194
\(149\) −19.7693 7.75889i −1.61957 0.635633i −0.629598 0.776921i \(-0.716780\pi\)
−0.989968 + 0.141288i \(0.954876\pi\)
\(150\) 0 0
\(151\) 10.1747 + 9.44079i 0.828009 + 0.768280i 0.975317 0.220810i \(-0.0708702\pi\)
−0.147307 + 0.989091i \(0.547061\pi\)
\(152\) −5.68833 3.87824i −0.461385 0.314567i
\(153\) 0 0
\(154\) 3.88893 + 4.35372i 0.313379 + 0.350832i
\(155\) 10.4154 + 21.6279i 0.836588 + 1.73719i
\(156\) 0 0
\(157\) −10.5016 15.4031i −0.838123 1.22930i −0.971217 0.238197i \(-0.923444\pi\)
0.133094 0.991103i \(-0.457509\pi\)
\(158\) 2.54601 + 16.8917i 0.202550 + 1.34383i
\(159\) 0 0
\(160\) 2.25847 1.80107i 0.178548 0.142387i
\(161\) −2.31008 0.760738i −0.182060 0.0599546i
\(162\) 0 0
\(163\) 1.52653 + 20.3701i 0.119567 + 1.59551i 0.658116 + 0.752916i \(0.271354\pi\)
−0.538549 + 0.842594i \(0.681027\pi\)
\(164\) 1.10681 + 0.341405i 0.0864271 + 0.0266592i
\(165\) 0 0
\(166\) 10.3695 5.98686i 0.804833 0.464670i
\(167\) 2.32091 + 10.1686i 0.179598 + 0.786868i 0.981816 + 0.189837i \(0.0607960\pi\)
−0.802218 + 0.597031i \(0.796347\pi\)
\(168\) 0 0
\(169\) −1.57793 + 6.91338i −0.121379 + 0.531798i
\(170\) 1.38100 + 4.47710i 0.105918 + 0.343378i
\(171\) 0 0
\(172\) −0.205947 0.524745i −0.0157033 0.0400115i
\(173\) −8.09800 + 2.49790i −0.615679 + 0.189912i −0.586881 0.809673i \(-0.699644\pi\)
−0.0287985 + 0.999585i \(0.509168\pi\)
\(174\) 0 0
\(175\) −8.58810 2.13197i −0.649199 0.161162i
\(176\) 2.15112 0.490979i 0.162147 0.0370089i
\(177\) 0 0
\(178\) −6.85853 3.95977i −0.514068 0.296797i
\(179\) −4.54937 + 14.7487i −0.340036 + 1.10237i 0.610568 + 0.791964i \(0.290941\pi\)
−0.950604 + 0.310406i \(0.899535\pi\)
\(180\) 0 0
\(181\) −11.6926 9.32455i −0.869105 0.693088i 0.0837588 0.996486i \(-0.473307\pi\)
−0.952864 + 0.303398i \(0.901879\pi\)
\(182\) 2.01165 6.10861i 0.149113 0.452800i
\(183\) 0 0
\(184\) −0.673860 + 0.625250i −0.0496776 + 0.0460941i
\(185\) 10.8835 1.64042i 0.800168 0.120606i
\(186\) 0 0
\(187\) −0.533376 + 3.53872i −0.0390043 + 0.258777i
\(188\) −5.63169 + 2.71208i −0.410733 + 0.197799i
\(189\) 0 0
\(190\) 17.9180 + 8.62886i 1.29991 + 0.626003i
\(191\) −12.0798 + 17.7178i −0.874063 + 1.28202i 0.0842932 + 0.996441i \(0.473137\pi\)
−0.958357 + 0.285574i \(0.907816\pi\)
\(192\) 0 0
\(193\) 0.940672 12.5524i 0.0677110 0.903541i −0.855143 0.518392i \(-0.826531\pi\)
0.922854 0.385149i \(-0.125850\pi\)
\(194\) −3.40683 + 8.68045i −0.244596 + 0.623220i
\(195\) 0 0
\(196\) 2.80218 6.41465i 0.200156 0.458190i
\(197\) 9.06267i 0.645689i 0.946452 + 0.322844i \(0.104639\pi\)
−0.946452 + 0.322844i \(0.895361\pi\)
\(198\) 0 0
\(199\) 8.90305 + 0.667191i 0.631120 + 0.0472959i 0.386450 0.922310i \(-0.373701\pi\)
0.244670 + 0.969606i \(0.421320\pi\)
\(200\) −2.27485 + 2.45171i −0.160856 + 0.173362i
\(201\) 0 0
\(202\) 1.97465 4.10040i 0.138936 0.288503i
\(203\) 3.60024 8.68613i 0.252687 0.609647i
\(204\) 0 0
\(205\) −3.30850 0.498676i −0.231075 0.0348290i
\(206\) −9.36194 + 6.38286i −0.652277 + 0.444715i
\(207\) 0 0
\(208\) −1.65337 1.78191i −0.114641 0.123553i
\(209\) 9.47110 + 11.8764i 0.655130 + 0.821507i
\(210\) 0 0
\(211\) −1.65883 + 2.08011i −0.114199 + 0.143201i −0.835645 0.549269i \(-0.814906\pi\)
0.721447 + 0.692470i \(0.243478\pi\)
\(212\) 9.83271 0.736860i 0.675313 0.0506077i
\(213\) 0 0
\(214\) 8.55002 14.8091i 0.584467 1.01233i
\(215\) 0.814195 + 1.41023i 0.0555276 + 0.0961767i
\(216\) 0 0
\(217\) 19.9860 9.16286i 1.35674 0.622015i
\(218\) 9.67830 + 2.20901i 0.655497 + 0.149613i
\(219\) 0 0
\(220\) −5.93312 + 2.32858i −0.400011 + 0.156993i
\(221\) 3.67007 1.44040i 0.246876 0.0968915i
\(222\) 0 0
\(223\) 0.979634 + 0.223595i 0.0656012 + 0.0149730i 0.255196 0.966889i \(-0.417860\pi\)
−0.189594 + 0.981863i \(0.560717\pi\)
\(224\) −1.61015 2.09938i −0.107583 0.140271i
\(225\) 0 0
\(226\) −3.23644 5.60568i −0.215285 0.372884i
\(227\) 14.3011 24.7702i 0.949196 1.64406i 0.202073 0.979371i \(-0.435232\pi\)
0.747124 0.664685i \(-0.231434\pi\)
\(228\) 0 0
\(229\) 27.1801 2.03686i 1.79611 0.134600i 0.865569 0.500790i \(-0.166957\pi\)
0.930540 + 0.366190i \(0.119338\pi\)
\(230\) 1.65564 2.07610i 0.109169 0.136894i
\(231\) 0 0
\(232\) −2.21581 2.77854i −0.145475 0.182420i
\(233\) −17.5818 18.9487i −1.15182 1.24137i −0.965931 0.258801i \(-0.916673\pi\)
−0.185893 0.982570i \(-0.559518\pi\)
\(234\) 0 0
\(235\) 14.9189 10.1715i 0.973199 0.663516i
\(236\) −5.42285 0.817363i −0.352998 0.0532058i
\(237\) 0 0
\(238\) 4.12379 1.18702i 0.267305 0.0769432i
\(239\) −12.4119 + 25.7735i −0.802857 + 1.66715i −0.0595252 + 0.998227i \(0.518959\pi\)
−0.743332 + 0.668923i \(0.766756\pi\)
\(240\) 0 0
\(241\) −10.2543 + 11.0515i −0.660538 + 0.711891i −0.971103 0.238662i \(-0.923291\pi\)
0.310565 + 0.950552i \(0.399482\pi\)
\(242\) 6.11448 + 0.458217i 0.393054 + 0.0294553i
\(243\) 0 0
\(244\) 7.05005i 0.451333i
\(245\) −5.24247 + 19.5294i −0.334929 + 1.24769i
\(246\) 0 0
\(247\) 6.11405 15.5783i 0.389027 0.991226i
\(248\) 0.621010 8.28681i 0.0394342 0.526213i
\(249\) 0 0
\(250\) −2.69389 + 3.95121i −0.170376 + 0.249896i
\(251\) −0.388521 0.187102i −0.0245232 0.0118098i 0.421582 0.906790i \(-0.361475\pi\)
−0.446105 + 0.894981i \(0.647189\pi\)
\(252\) 0 0
\(253\) 1.82741 0.880035i 0.114888 0.0553273i
\(254\) 1.68941 11.2085i 0.106003 0.703285i
\(255\) 0 0
\(256\) −0.988831 + 0.149042i −0.0618019 + 0.00931514i
\(257\) 11.3266 10.5095i 0.706531 0.655565i −0.242716 0.970097i \(-0.578038\pi\)
0.949247 + 0.314533i \(0.101848\pi\)
\(258\) 0 0
\(259\) −1.31352 9.99482i −0.0816181 0.621048i
\(260\) 5.48990 + 4.37805i 0.340469 + 0.271515i
\(261\) 0 0
\(262\) 0.477101 1.54672i 0.0294754 0.0955569i
\(263\) 3.00757 + 1.73642i 0.185455 + 0.107072i 0.589853 0.807511i \(-0.299186\pi\)
−0.404398 + 0.914583i \(0.632519\pi\)
\(264\) 0 0
\(265\) −27.7691 + 6.33812i −1.70584 + 0.389348i
\(266\) 8.21238 16.2586i 0.503534 0.996878i
\(267\) 0 0
\(268\) −2.26445 + 0.698489i −0.138323 + 0.0426670i
\(269\) −5.05049 12.8684i −0.307934 0.784602i −0.998138 0.0609881i \(-0.980575\pi\)
0.690205 0.723614i \(-0.257520\pi\)
\(270\) 0 0
\(271\) 4.26138 + 13.8150i 0.258860 + 0.839204i 0.987948 + 0.154784i \(0.0494682\pi\)
−0.729088 + 0.684420i \(0.760056\pi\)
\(272\) 0.360914 1.58127i 0.0218836 0.0958784i
\(273\) 0 0
\(274\) 2.34513 + 10.2747i 0.141674 + 0.620716i
\(275\) 6.39082 3.68974i 0.385381 0.222500i
\(276\) 0 0
\(277\) −26.9887 8.32493i −1.62160 0.500196i −0.654813 0.755791i \(-0.727253\pi\)
−0.966784 + 0.255595i \(0.917729\pi\)
\(278\) −0.624609 8.33482i −0.0374615 0.499889i
\(279\) 0 0
\(280\) 5.50314 + 5.30350i 0.328875 + 0.316945i
\(281\) −8.99124 + 7.17028i −0.536372 + 0.427743i −0.853847 0.520524i \(-0.825737\pi\)
0.317475 + 0.948267i \(0.397165\pi\)
\(282\) 0 0
\(283\) −3.49644 23.1973i −0.207842 1.37894i −0.812735 0.582633i \(-0.802023\pi\)
0.604894 0.796306i \(-0.293216\pi\)
\(284\) −1.93346 2.83586i −0.114730 0.168278i
\(285\) 0 0
\(286\) 2.32711 + 4.83228i 0.137605 + 0.285739i
\(287\) −0.514011 + 3.02107i −0.0303411 + 0.178328i
\(288\) 0 0
\(289\) −11.8725 8.09454i −0.698383 0.476149i
\(290\) 7.52556 + 6.98270i 0.441916 + 0.410038i
\(291\) 0 0
\(292\) 9.86161 + 3.87040i 0.577107 + 0.226498i
\(293\) −15.2997 −0.893819 −0.446909 0.894579i \(-0.647475\pi\)
−0.446909 + 0.894579i \(0.647475\pi\)
\(294\) 0 0
\(295\) 15.8419 0.922349
\(296\) −3.54679 1.39201i −0.206153 0.0809091i
\(297\) 0 0
\(298\) −15.5681 14.4451i −0.901836 0.836782i
\(299\) −1.84625 1.25875i −0.106772 0.0727956i
\(300\) 0 0
\(301\) 1.30551 0.721141i 0.0752484 0.0415659i
\(302\) 6.02230 + 12.5054i 0.346544 + 0.719607i
\(303\) 0 0
\(304\) −3.87824 5.68833i −0.222432 0.326248i
\(305\) −3.03530 20.1379i −0.173801 1.15309i
\(306\) 0 0
\(307\) −10.5332 + 8.39991i −0.601159 + 0.479408i −0.876150 0.482039i \(-0.839897\pi\)
0.274991 + 0.961447i \(0.411325\pi\)
\(308\) 2.02951 + 5.47354i 0.115642 + 0.311884i
\(309\) 0 0
\(310\) 1.79391 + 23.9380i 0.101887 + 1.35959i
\(311\) 22.5086 + 6.94297i 1.27634 + 0.393700i 0.857559 0.514386i \(-0.171980\pi\)
0.418785 + 0.908086i \(0.362456\pi\)
\(312\) 0 0
\(313\) 4.73189 2.73196i 0.267462 0.154419i −0.360272 0.932847i \(-0.617316\pi\)
0.627734 + 0.778428i \(0.283983\pi\)
\(314\) −4.14833 18.1750i −0.234104 1.02568i
\(315\) 0 0
\(316\) −3.80121 + 16.6542i −0.213835 + 0.936872i
\(317\) 4.05840 + 13.1570i 0.227943 + 0.738972i 0.995220 + 0.0976567i \(0.0311347\pi\)
−0.767278 + 0.641315i \(0.778389\pi\)
\(318\) 0 0
\(319\) 2.86479 + 7.29938i 0.160398 + 0.408687i
\(320\) 2.76035 0.851456i 0.154308 0.0475978i
\(321\) 0 0
\(322\) −1.87246 1.55212i −0.104348 0.0864961i
\(323\) 10.8864 2.48475i 0.605736 0.138255i
\(324\) 0 0
\(325\) −7.04069 4.06495i −0.390547 0.225483i
\(326\) −6.02103 + 19.5197i −0.333474 + 1.08110i
\(327\) 0 0
\(328\) 0.905568 + 0.722167i 0.0500016 + 0.0398750i
\(329\) −9.05578 13.8381i −0.499262 0.762917i
\(330\) 0 0
\(331\) −1.72926 + 1.60452i −0.0950487 + 0.0881923i −0.726266 0.687414i \(-0.758746\pi\)
0.631217 + 0.775606i \(0.282556\pi\)
\(332\) 11.8400 1.78459i 0.649803 0.0979421i
\(333\) 0 0
\(334\) −1.55452 + 10.3136i −0.0850597 + 0.564335i
\(335\) 6.16750 2.97011i 0.336966 0.162274i
\(336\) 0 0
\(337\) 24.8098 + 11.9478i 1.35148 + 0.650837i 0.962719 0.270503i \(-0.0871901\pi\)
0.388757 + 0.921340i \(0.372904\pi\)
\(338\) −3.99460 + 5.85900i −0.217277 + 0.318687i
\(339\) 0 0
\(340\) −0.350130 + 4.67215i −0.0189884 + 0.253383i
\(341\) −6.69875 + 17.0681i −0.362757 + 0.924291i
\(342\) 0 0
\(343\) 17.7929 + 5.13927i 0.960727 + 0.277495i
\(344\) 0.563713i 0.0303933i
\(345\) 0 0
\(346\) −8.45080 0.633300i −0.454318 0.0340464i
\(347\) −4.30125 + 4.63565i −0.230903 + 0.248855i −0.837866 0.545876i \(-0.816197\pi\)
0.606963 + 0.794730i \(0.292388\pi\)
\(348\) 0 0
\(349\) −14.2203 + 29.5287i −0.761194 + 1.58063i 0.0520040 + 0.998647i \(0.483439\pi\)
−0.813198 + 0.581988i \(0.802275\pi\)
\(350\) −7.21554 5.12218i −0.385687 0.273792i
\(351\) 0 0
\(352\) 2.18179 + 0.328853i 0.116290 + 0.0175279i
\(353\) −25.7717 + 17.5709i −1.37169 + 0.935203i −0.371714 + 0.928347i \(0.621230\pi\)
−0.999977 + 0.00685549i \(0.997818\pi\)
\(354\) 0 0
\(355\) 6.74373 + 7.26801i 0.357920 + 0.385746i
\(356\) −4.93776 6.19175i −0.261700 0.328162i
\(357\) 0 0
\(358\) −9.62320 + 12.0671i −0.508602 + 0.637766i
\(359\) −33.5255 + 2.51239i −1.76941 + 0.132599i −0.919185 0.393826i \(-0.871151\pi\)
−0.850222 + 0.526425i \(0.823532\pi\)
\(360\) 0 0
\(361\) 14.1989 24.5933i 0.747312 1.29438i
\(362\) −7.47771 12.9518i −0.393020 0.680730i
\(363\) 0 0
\(364\) 4.10431 4.95141i 0.215124 0.259524i
\(365\) −29.8353 6.80971i −1.56165 0.356437i
\(366\) 0 0
\(367\) −3.87006 + 1.51889i −0.202016 + 0.0792853i −0.464192 0.885735i \(-0.653655\pi\)
0.262176 + 0.965020i \(0.415560\pi\)
\(368\) −0.855708 + 0.335841i −0.0446069 + 0.0175069i
\(369\) 0 0
\(370\) 10.7304 + 2.44915i 0.557849 + 0.127325i
\(371\) 5.32265 + 25.5391i 0.276338 + 1.32592i
\(372\) 0 0
\(373\) −10.9954 19.0446i −0.569321 0.986093i −0.996633 0.0819889i \(-0.973873\pi\)
0.427312 0.904104i \(-0.359461\pi\)
\(374\) −1.78935 + 3.09924i −0.0925249 + 0.160258i
\(375\) 0 0
\(376\) −6.23323 + 0.467116i −0.321454 + 0.0240897i
\(377\) 5.38621 6.75410i 0.277404 0.347854i
\(378\) 0 0
\(379\) −1.33280 1.67128i −0.0684615 0.0858480i 0.746422 0.665473i \(-0.231770\pi\)
−0.814883 + 0.579625i \(0.803199\pi\)
\(380\) 13.5269 + 14.5786i 0.693917 + 0.747865i
\(381\) 0 0
\(382\) −17.7178 + 12.0798i −0.906522 + 0.618056i
\(383\) 2.21136 + 0.333309i 0.112995 + 0.0170313i 0.205296 0.978700i \(-0.434184\pi\)
−0.0923012 + 0.995731i \(0.529422\pi\)
\(384\) 0 0
\(385\) −8.15370 14.7610i −0.415551 0.752289i
\(386\) 5.46155 11.3410i 0.277986 0.577243i
\(387\) 0 0
\(388\) −6.34265 + 6.83575i −0.321999 + 0.347033i
\(389\) 7.18426 + 0.538386i 0.364256 + 0.0272972i 0.255601 0.966782i \(-0.417727\pi\)
0.108655 + 0.994080i \(0.465346\pi\)
\(390\) 0 0
\(391\) 1.49096i 0.0754013i
\(392\) 4.95201 4.94748i 0.250114 0.249886i
\(393\) 0 0
\(394\) −3.31097 + 8.43620i −0.166804 + 0.425010i
\(395\) 3.68763 49.2080i 0.185545 2.47592i
\(396\) 0 0
\(397\) −14.2445 + 20.8929i −0.714912 + 1.04858i 0.281127 + 0.959671i \(0.409292\pi\)
−0.996039 + 0.0889132i \(0.971661\pi\)
\(398\) 8.04386 + 3.87372i 0.403202 + 0.194172i
\(399\) 0 0
\(400\) −3.01331 + 1.45113i −0.150665 + 0.0725567i
\(401\) 3.27574 21.7331i 0.163582 1.08530i −0.744839 0.667244i \(-0.767474\pi\)
0.908422 0.418055i \(-0.137288\pi\)
\(402\) 0 0
\(403\) 19.9745 3.01067i 0.995001 0.149972i
\(404\) 3.33619 3.09553i 0.165982 0.154009i
\(405\) 0 0
\(406\) 6.52477 6.77038i 0.323819 0.336008i
\(407\) 6.57279 + 5.24162i 0.325801 + 0.259818i
\(408\) 0 0
\(409\) 1.00386 3.25445i 0.0496379 0.160922i −0.927360 0.374170i \(-0.877928\pi\)
0.976998 + 0.213247i \(0.0684040\pi\)
\(410\) −2.89761 1.67293i −0.143103 0.0826203i
\(411\) 0 0
\(412\) −11.0467 + 2.52134i −0.544232 + 0.124217i
\(413\) 0.274630 14.5070i 0.0135137 0.713842i
\(414\) 0 0
\(415\) −33.0517 + 10.1951i −1.62244 + 0.500457i
\(416\) −0.888074 2.26278i −0.0435414 0.110942i
\(417\) 0 0
\(418\) 4.47747 + 14.5156i 0.219000 + 0.709981i
\(419\) −5.02232 + 22.0042i −0.245357 + 1.07498i 0.690704 + 0.723138i \(0.257301\pi\)
−0.936060 + 0.351840i \(0.885556\pi\)
\(420\) 0 0
\(421\) −6.26712 27.4580i −0.305441 1.33822i −0.861786 0.507272i \(-0.830654\pi\)
0.556345 0.830951i \(-0.312203\pi\)
\(422\) −2.30412 + 1.33028i −0.112163 + 0.0647571i
\(423\) 0 0
\(424\) 9.42221 + 2.90637i 0.457583 + 0.141146i
\(425\) −0.405380 5.40942i −0.0196638 0.262395i
\(426\) 0 0
\(427\) −18.4937 + 2.43043i −0.894971 + 0.117617i
\(428\) 13.3693 10.6617i 0.646232 0.515353i
\(429\) 0 0
\(430\) 0.242699 + 1.61020i 0.0117040 + 0.0776509i
\(431\) 6.66859 + 9.78102i 0.321214 + 0.471135i 0.952553 0.304372i \(-0.0984466\pi\)
−0.631339 + 0.775507i \(0.717494\pi\)
\(432\) 0 0
\(433\) −6.51552 13.5296i −0.313116 0.650192i 0.683714 0.729750i \(-0.260364\pi\)
−0.996830 + 0.0795577i \(0.974649\pi\)
\(434\) 21.9520 1.22776i 1.05373 0.0589345i
\(435\) 0 0
\(436\) 8.20224 + 5.59219i 0.392816 + 0.267817i
\(437\) −4.63926 4.30460i −0.221926 0.205917i
\(438\) 0 0
\(439\) −12.3769 4.85758i −0.590717 0.231840i 0.0511044 0.998693i \(-0.483726\pi\)
−0.641822 + 0.766854i \(0.721821\pi\)
\(440\) −6.37371 −0.303855
\(441\) 0 0
\(442\) 3.94261 0.187531
\(443\) −34.7595 13.6421i −1.65147 0.648155i −0.657071 0.753829i \(-0.728205\pi\)
−0.994401 + 0.105674i \(0.966300\pi\)
\(444\) 0 0
\(445\) 16.7701 + 15.5604i 0.794979 + 0.737633i
\(446\) 0.830227 + 0.566039i 0.0393124 + 0.0268027i
\(447\) 0 0
\(448\) −0.731856 2.54252i −0.0345770 0.120123i
\(449\) −15.4411 32.0637i −0.728709 1.51318i −0.853554 0.521004i \(-0.825558\pi\)
0.124845 0.992176i \(-0.460157\pi\)
\(450\) 0 0
\(451\) −1.43964 2.11157i −0.0677902 0.0994299i
\(452\) −0.964733 6.40058i −0.0453772 0.301058i
\(453\) 0 0
\(454\) 22.3621 17.8332i 1.04950 0.836951i
\(455\) −9.59190 + 15.9104i −0.449675 + 0.745890i
\(456\) 0 0
\(457\) 2.20373 + 29.4067i 0.103086 + 1.37559i 0.773593 + 0.633683i \(0.218458\pi\)
−0.670507 + 0.741904i \(0.733923\pi\)
\(458\) 26.0454 + 8.03393i 1.21702 + 0.375401i
\(459\) 0 0
\(460\) 2.29967 1.32772i 0.107223 0.0619051i
\(461\) −6.45020 28.2602i −0.300416 1.31621i −0.869502 0.493930i \(-0.835560\pi\)
0.569086 0.822278i \(-0.307297\pi\)
\(462\) 0 0
\(463\) −0.731933 + 3.20681i −0.0340158 + 0.149033i −0.989084 0.147354i \(-0.952925\pi\)
0.955068 + 0.296386i \(0.0957816\pi\)
\(464\) −1.04753 3.39599i −0.0486302 0.157655i
\(465\) 0 0
\(466\) −9.44372 24.0622i −0.437472 1.11466i
\(467\) −0.750691 + 0.231557i −0.0347378 + 0.0107152i −0.312075 0.950057i \(-0.601024\pi\)
0.277338 + 0.960773i \(0.410548\pi\)
\(468\) 0 0
\(469\) −2.61292 5.69929i −0.120653 0.263169i
\(470\) 17.6036 4.01791i 0.811995 0.185333i
\(471\) 0 0
\(472\) −4.74937 2.74205i −0.218608 0.126213i
\(473\) −0.366616 + 1.18854i −0.0168570 + 0.0546491i
\(474\) 0 0
\(475\) −18.0022 14.3563i −0.825999 0.658712i
\(476\) 4.27239 + 0.401622i 0.195825 + 0.0184083i
\(477\) 0 0
\(478\) −20.9700 + 19.4573i −0.959146 + 0.889957i
\(479\) 6.76616 1.01983i 0.309154 0.0465974i 0.00736689 0.999973i \(-0.497655\pi\)
0.301787 + 0.953375i \(0.402417\pi\)
\(480\) 0 0
\(481\) 1.38040 9.15835i 0.0629408 0.417585i
\(482\) −13.5830 + 6.54125i −0.618690 + 0.297946i
\(483\) 0 0
\(484\) 5.52441 + 2.66041i 0.251109 + 0.120928i
\(485\) 15.1743 22.2566i 0.689028 1.01062i
\(486\) 0 0
\(487\) −2.07419 + 27.6781i −0.0939905 + 1.25422i 0.728344 + 0.685212i \(0.240290\pi\)
−0.822335 + 0.569004i \(0.807329\pi\)
\(488\) −2.57567 + 6.56271i −0.116595 + 0.297080i
\(489\) 0 0
\(490\) −12.0150 + 16.2641i −0.542781 + 0.734739i
\(491\) 8.22726i 0.371291i 0.982617 + 0.185646i \(0.0594376\pi\)
−0.982617 + 0.185646i \(0.940562\pi\)
\(492\) 0 0
\(493\) 5.74804 + 0.430756i 0.258879 + 0.0194003i
\(494\) 11.3828 12.2678i 0.512137 0.551952i
\(495\) 0 0
\(496\) 3.60559 7.48709i 0.161896 0.336180i
\(497\) 6.77249 6.04948i 0.303788 0.271356i
\(498\) 0 0
\(499\) 17.5730 + 2.64870i 0.786675 + 0.118572i 0.530081 0.847947i \(-0.322162\pi\)
0.256594 + 0.966519i \(0.417400\pi\)
\(500\) −3.95121 + 2.69389i −0.176703 + 0.120474i
\(501\) 0 0
\(502\) −0.293308 0.316111i −0.0130910 0.0141087i
\(503\) 2.46327 + 3.08884i 0.109832 + 0.137724i 0.833709 0.552204i \(-0.186213\pi\)
−0.723877 + 0.689929i \(0.757642\pi\)
\(504\) 0 0
\(505\) −8.19684 + 10.2785i −0.364754 + 0.457388i
\(506\) 2.02260 0.151573i 0.0899156 0.00673825i
\(507\) 0 0
\(508\) 5.66756 9.81651i 0.251457 0.435537i
\(509\) 11.1990 + 19.3972i 0.496385 + 0.859765i 0.999991 0.00416876i \(-0.00132696\pi\)
−0.503606 + 0.863934i \(0.667994\pi\)
\(510\) 0 0
\(511\) −6.75312 + 27.2032i −0.298740 + 1.20340i
\(512\) −0.974928 0.222521i −0.0430861 0.00983413i
\(513\) 0 0
\(514\) 14.3831 5.64497i 0.634413 0.248989i
\(515\) 30.4685 11.9580i 1.34260 0.526933i
\(516\) 0 0
\(517\) 13.4460 + 3.06896i 0.591355 + 0.134973i
\(518\) 2.42880 9.78380i 0.106715 0.429876i
\(519\) 0 0
\(520\) 3.51093 + 6.08110i 0.153964 + 0.266674i
\(521\) 6.15804 10.6660i 0.269789 0.467288i −0.699018 0.715104i \(-0.746379\pi\)
0.968807 + 0.247816i \(0.0797128\pi\)
\(522\) 0 0
\(523\) −29.9702 + 2.24596i −1.31051 + 0.0982088i −0.711585 0.702600i \(-0.752022\pi\)
−0.598920 + 0.800809i \(0.704403\pi\)
\(524\) 1.00920 1.26550i 0.0440872 0.0552836i
\(525\) 0 0
\(526\) 2.16528 + 2.71518i 0.0944109 + 0.118388i
\(527\) 9.16759 + 9.88031i 0.399346 + 0.430393i
\(528\) 0 0
\(529\) 18.3053 12.4803i 0.795883 0.542624i
\(530\) −28.1651 4.24521i −1.22342 0.184400i
\(531\) 0 0
\(532\) 13.5846 12.1344i 0.588968 0.526092i
\(533\) −1.22161 + 2.53670i −0.0529138 + 0.109877i
\(534\) 0 0
\(535\) −33.5983 + 36.2103i −1.45258 + 1.56551i
\(536\) −2.36310 0.177090i −0.102070 0.00764912i
\(537\) 0 0
\(538\) 13.8240i 0.595997i
\(539\) −13.6585 + 7.21075i −0.588314 + 0.310589i
\(540\) 0 0
\(541\) −0.948212 + 2.41600i −0.0407668 + 0.103872i −0.949807 0.312836i \(-0.898721\pi\)
0.909040 + 0.416708i \(0.136816\pi\)
\(542\) −1.08040 + 14.4169i −0.0464071 + 0.619260i
\(543\) 0 0
\(544\) 0.913667 1.34010i 0.0391731 0.0574564i
\(545\) −25.8367 12.4423i −1.10672 0.532970i
\(546\) 0 0
\(547\) 9.80963 4.72407i 0.419430 0.201987i −0.212251 0.977215i \(-0.568080\pi\)
0.631681 + 0.775228i \(0.282365\pi\)
\(548\) −1.57074 + 10.4212i −0.0670988 + 0.445172i
\(549\) 0 0
\(550\) 7.29706 1.09985i 0.311148 0.0468979i
\(551\) 17.9357 16.6419i 0.764085 0.708967i
\(552\) 0 0
\(553\) −44.9977 4.22996i −1.91349 0.179876i
\(554\) −22.0817 17.6096i −0.938161 0.748158i
\(555\) 0 0
\(556\) 2.46362 7.98686i 0.104481 0.338718i
\(557\) −40.6865 23.4904i −1.72394 0.995318i −0.910297 0.413955i \(-0.864147\pi\)
−0.813644 0.581363i \(-0.802520\pi\)
\(558\) 0 0
\(559\) 1.33592 0.304916i 0.0565035 0.0128966i
\(560\) 3.18514 + 6.94741i 0.134597 + 0.293582i
\(561\) 0 0
\(562\) −10.9893 + 3.38975i −0.463556 + 0.142988i
\(563\) −12.4397 31.6959i −0.524272 1.33582i −0.910534 0.413433i \(-0.864329\pi\)
0.386263 0.922389i \(-0.373766\pi\)
\(564\) 0 0
\(565\) 5.51137 + 17.8674i 0.231865 + 0.751689i
\(566\) 5.22020 22.8712i 0.219421 0.961348i
\(567\) 0 0
\(568\) −0.763749 3.34620i −0.0320462 0.140404i
\(569\) −20.0233 + 11.5604i −0.839419 + 0.484639i −0.857067 0.515206i \(-0.827716\pi\)
0.0176479 + 0.999844i \(0.494382\pi\)
\(570\) 0 0
\(571\) −11.8276 3.64833i −0.494969 0.152678i 0.0372136 0.999307i \(-0.488152\pi\)
−0.532183 + 0.846630i \(0.678628\pi\)
\(572\) 0.400810 + 5.34843i 0.0167587 + 0.223629i
\(573\) 0 0
\(574\) −1.58220 + 2.62444i −0.0660397 + 0.109542i
\(575\) −2.40371 + 1.91689i −0.100242 + 0.0799400i
\(576\) 0 0
\(577\) −0.696374 4.62014i −0.0289904 0.192339i 0.969648 0.244505i \(-0.0786255\pi\)
−0.998638 + 0.0521663i \(0.983387\pi\)
\(578\) −8.09454 11.8725i −0.336688 0.493831i
\(579\) 0 0
\(580\) 4.45428 + 9.24940i 0.184954 + 0.384061i
\(581\) 8.76304 + 30.4434i 0.363552 + 1.26300i
\(582\) 0 0
\(583\) −17.9757 12.2556i −0.744479 0.507577i
\(584\) 7.76590 + 7.20570i 0.321355 + 0.298174i
\(585\) 0 0
\(586\) −14.2421 5.58961i −0.588336 0.230905i
\(587\) 5.99609 0.247485 0.123743 0.992314i \(-0.460510\pi\)
0.123743 + 0.992314i \(0.460510\pi\)
\(588\) 0 0
\(589\) 57.2114 2.35736
\(590\) 14.7468 + 5.78768i 0.607115 + 0.238275i
\(591\) 0 0
\(592\) −2.79305 2.59157i −0.114794 0.106513i
\(593\) 30.3298 + 20.6785i 1.24550 + 0.849166i 0.992963 0.118422i \(-0.0377836\pi\)
0.252534 + 0.967588i \(0.418736\pi\)
\(594\) 0 0
\(595\) −12.3767 + 0.692220i −0.507394 + 0.0283782i
\(596\) −9.21456 19.1342i −0.377443 0.783768i
\(597\) 0 0
\(598\) −1.25875 1.84625i −0.0514743 0.0754989i
\(599\) 6.80576 + 45.1533i 0.278076 + 1.84491i 0.495213 + 0.868772i \(0.335090\pi\)
−0.217137 + 0.976141i \(0.569672\pi\)
\(600\) 0 0
\(601\) −10.8950 + 8.68849i −0.444417 + 0.354411i −0.819986 0.572384i \(-0.806019\pi\)
0.375569 + 0.926795i \(0.377447\pi\)
\(602\) 1.47873 0.194334i 0.0602685 0.00792047i
\(603\) 0 0
\(604\) 1.03725 + 13.8412i 0.0422052 + 0.563189i
\(605\) −16.9255 5.22081i −0.688118 0.212256i
\(606\) 0 0
\(607\) −8.93876 + 5.16080i −0.362813 + 0.209470i −0.670314 0.742077i \(-0.733841\pi\)
0.307501 + 0.951548i \(0.400507\pi\)
\(608\) −1.53197 6.71200i −0.0621296 0.272207i
\(609\) 0 0
\(610\) 4.53173 19.8548i 0.183484 0.803897i
\(611\) −4.47859 14.5192i −0.181184 0.587385i
\(612\) 0 0
\(613\) −1.93898 4.94044i −0.0783147 0.199543i 0.886354 0.463008i \(-0.153230\pi\)
−0.964669 + 0.263465i \(0.915135\pi\)
\(614\) −12.8739 + 3.97106i −0.519547 + 0.160259i
\(615\) 0 0
\(616\) −0.110493 + 5.83664i −0.00445189 + 0.235165i
\(617\) −10.7670 + 2.45750i −0.433464 + 0.0989354i −0.433685 0.901065i \(-0.642787\pi\)
0.000220713 1.00000i \(0.499930\pi\)
\(618\) 0 0
\(619\) 12.9000 + 7.44781i 0.518494 + 0.299353i 0.736318 0.676635i \(-0.236563\pi\)
−0.217824 + 0.975988i \(0.569896\pi\)
\(620\) −7.07564 + 22.9386i −0.284164 + 0.921238i
\(621\) 0 0
\(622\) 18.4161 + 14.6863i 0.738417 + 0.588868i
\(623\) 14.5399 15.0872i 0.582530 0.604458i
\(624\) 0 0
\(625\) 22.3850 20.7703i 0.895402 0.830812i
\(626\) 5.40289 0.814354i 0.215943 0.0325481i
\(627\) 0 0
\(628\) 2.77851 18.4342i 0.110875 0.735605i
\(629\) 5.56784 2.68133i 0.222004 0.106912i
\(630\) 0 0
\(631\) −23.4614 11.2984i −0.933982 0.449782i −0.0959397 0.995387i \(-0.530586\pi\)
−0.838042 + 0.545605i \(0.816300\pi\)
\(632\) −9.62291 + 14.1142i −0.382779 + 0.561434i
\(633\) 0 0
\(634\) −1.02894 + 13.7302i −0.0408644 + 0.545297i
\(635\) −11.9626 + 30.4802i −0.474721 + 1.20957i
\(636\) 0 0
\(637\) 14.4034 + 9.05947i 0.570685 + 0.358949i
\(638\) 7.84143i 0.310445i
\(639\) 0 0
\(640\) 2.88061 + 0.215872i 0.113866 + 0.00853309i
\(641\) −6.01746 + 6.48528i −0.237676 + 0.256153i −0.840614 0.541634i \(-0.817806\pi\)
0.602939 + 0.797787i \(0.293996\pi\)
\(642\) 0 0
\(643\) 7.76728 16.1289i 0.306311 0.636062i −0.689816 0.723985i \(-0.742309\pi\)
0.996127 + 0.0879226i \(0.0280228\pi\)
\(644\) −1.17597 2.12891i −0.0463398 0.0838909i
\(645\) 0 0
\(646\) 11.0416 + 1.66426i 0.434428 + 0.0654795i
\(647\) −26.1690 + 17.8417i −1.02881 + 0.701430i −0.955232 0.295859i \(-0.904394\pi\)
−0.0735779 + 0.997289i \(0.523442\pi\)
\(648\) 0 0
\(649\) 8.23032 + 8.87017i 0.323068 + 0.348185i
\(650\) −5.06891 6.35621i −0.198819 0.249311i
\(651\) 0 0
\(652\) −12.7362 + 15.9707i −0.498787 + 0.625459i
\(653\) 46.5483 3.48832i 1.82158 0.136508i 0.880359 0.474307i \(-0.157301\pi\)
0.941218 + 0.337799i \(0.109682\pi\)
\(654\) 0 0
\(655\) −2.33787 + 4.04930i −0.0913479 + 0.158219i
\(656\) 0.579133 + 1.00309i 0.0226113 + 0.0391640i
\(657\) 0 0
\(658\) −3.37418 16.1899i −0.131539 0.631150i
\(659\) −6.41994 1.46531i −0.250085 0.0570804i 0.0956404 0.995416i \(-0.469510\pi\)
−0.345726 + 0.938336i \(0.612367\pi\)
\(660\) 0 0
\(661\) 19.2811 7.56727i 0.749947 0.294333i 0.0405843 0.999176i \(-0.487078\pi\)
0.709363 + 0.704844i \(0.248983\pi\)
\(662\) −2.19592 + 0.861835i −0.0853468 + 0.0334962i
\(663\) 0 0
\(664\) 11.6735 + 2.66440i 0.453020 + 0.103399i
\(665\) −33.5791 + 40.5096i −1.30214 + 1.57089i
\(666\) 0 0
\(667\) −1.63346 2.82923i −0.0632478 0.109548i
\(668\) −5.21504 + 9.03272i −0.201776 + 0.349486i
\(669\) 0 0
\(670\) 6.82626 0.511558i 0.263722 0.0197632i
\(671\) 9.69869 12.1618i 0.374414 0.469500i
\(672\) 0 0
\(673\) −3.89279 4.88141i −0.150056 0.188164i 0.701122 0.713041i \(-0.252683\pi\)
−0.851178 + 0.524877i \(0.824111\pi\)
\(674\) 18.7298 + 20.1859i 0.721444 + 0.777532i
\(675\) 0 0
\(676\) −5.85900 + 3.99460i −0.225346 + 0.153638i
\(677\) 24.4692 + 3.68814i 0.940428 + 0.141747i 0.601327 0.799003i \(-0.294639\pi\)
0.339101 + 0.940750i \(0.389877\pi\)
\(678\) 0 0
\(679\) −20.1181 14.2815i −0.772061 0.548072i
\(680\) −2.03286 + 4.22127i −0.0779565 + 0.161878i
\(681\) 0 0
\(682\) −12.4714 + 13.4409i −0.477554 + 0.514680i
\(683\) 4.98131 + 0.373298i 0.190605 + 0.0142838i 0.169690 0.985497i \(-0.445723\pi\)
0.0209142 + 0.999781i \(0.493342\pi\)
\(684\) 0 0
\(685\) 30.4436i 1.16319i
\(686\) 14.6854 + 11.2845i 0.560690 + 0.430844i
\(687\) 0 0
\(688\) 0.205947 0.524745i 0.00785167 0.0200057i
\(689\) −1.79117 + 23.9014i −0.0682380 + 0.910572i
\(690\) 0 0
\(691\) −0.811774 + 1.19065i −0.0308813 + 0.0452946i −0.841369 0.540461i \(-0.818250\pi\)
0.810488 + 0.585756i \(0.199202\pi\)
\(692\) −7.63526 3.67695i −0.290249 0.139777i
\(693\) 0 0
\(694\) −5.69751 + 2.74378i −0.216275 + 0.104152i
\(695\) −3.59851 + 23.8745i −0.136499 + 0.905613i
\(696\) 0 0
\(697\) −1.85764 + 0.279995i −0.0703633 + 0.0106056i
\(698\) −24.0253 + 22.2922i −0.909372 + 0.843774i
\(699\) 0 0
\(700\) −4.84541 7.40424i −0.183139 0.279854i
\(701\) −22.9620 18.3116i −0.867265 0.691620i 0.0851691 0.996367i \(-0.472857\pi\)
−0.952434 + 0.304746i \(0.901428\pi\)
\(702\) 0 0
\(703\) 7.73188 25.0661i 0.291613 0.945388i
\(704\) 1.91083 + 1.10322i 0.0720172 + 0.0415791i
\(705\) 0 0
\(706\) −30.4096 + 6.94079i −1.14448 + 0.261220i
\(707\) 9.27031 + 7.68433i 0.348646 + 0.288999i
\(708\) 0 0
\(709\) 10.2245 3.15386i 0.383991 0.118446i −0.0967488 0.995309i \(-0.530844\pi\)
0.480740 + 0.876863i \(0.340368\pi\)
\(710\) 3.62226 + 9.22936i 0.135941 + 0.346372i
\(711\) 0 0
\(712\) −2.33433 7.56770i −0.0874826 0.283612i
\(713\) 1.69984 7.44750i 0.0636596 0.278911i
\(714\) 0 0
\(715\) −3.44758 15.1048i −0.128932 0.564889i
\(716\) −13.3666 + 7.71720i −0.499533 + 0.288405i
\(717\) 0 0
\(718\) −32.1259 9.90951i −1.19893 0.369820i
\(719\) 1.35449 + 18.0744i 0.0505139 + 0.674061i 0.963780 + 0.266698i \(0.0859326\pi\)
−0.913266 + 0.407363i \(0.866448\pi\)
\(720\) 0 0
\(721\) −10.4222 28.1085i −0.388143 1.04681i
\(722\) 22.2023 17.7058i 0.826285 0.658940i
\(723\) 0 0
\(724\) −2.22899 14.7884i −0.0828397 0.549606i
\(725\) −6.69564 9.82071i −0.248670 0.364732i
\(726\) 0 0
\(727\) 15.7402 + 32.6849i 0.583773 + 1.21222i 0.958503 + 0.285083i \(0.0920213\pi\)
−0.374730 + 0.927134i \(0.622264\pi\)
\(728\) 5.62955 3.10966i 0.208645 0.115252i
\(729\) 0 0
\(730\) −25.2850 17.2390i −0.935841 0.638045i
\(731\) 0.670232 + 0.621884i 0.0247894 + 0.0230012i
\(732\) 0 0
\(733\) 1.15885 + 0.454815i 0.0428031 + 0.0167990i 0.386646 0.922228i \(-0.373634\pi\)
−0.343843 + 0.939027i \(0.611729\pi\)
\(734\) −4.15745 −0.153454
\(735\) 0 0
\(736\) −0.919252 −0.0338841
\(737\) 4.86722 + 1.91024i 0.179286 + 0.0703647i
\(738\) 0 0
\(739\) 23.8144 + 22.0965i 0.876027 + 0.812834i 0.983412 0.181383i \(-0.0580574\pi\)
−0.107386 + 0.994217i \(0.534248\pi\)
\(740\) 9.09391 + 6.20013i 0.334299 + 0.227921i
\(741\) 0 0
\(742\) −4.37576 + 25.7183i −0.160639 + 0.944147i
\(743\) −4.46963 9.28128i −0.163975 0.340497i 0.802750 0.596316i \(-0.203369\pi\)
−0.966725 + 0.255819i \(0.917655\pi\)
\(744\) 0 0
\(745\) 34.5587 + 50.6883i 1.26613 + 1.85707i
\(746\) −3.27756 21.7452i −0.120000 0.796149i
\(747\) 0 0
\(748\) −2.79793 + 2.23128i −0.102303 + 0.0815836i
\(749\) 32.5767 + 31.3949i 1.19033 + 1.14714i
\(750\) 0 0
\(751\) −1.82292 24.3251i −0.0665191 0.887636i −0.926255 0.376897i \(-0.876991\pi\)
0.859736 0.510739i \(-0.170628\pi\)
\(752\) −5.97300 1.84243i −0.217813 0.0671864i
\(753\) 0 0
\(754\) 7.48143 4.31941i 0.272458 0.157304i
\(755\) −8.92197 39.0897i −0.324704 1.42262i
\(756\) 0 0
\(757\) 4.57454 20.0424i 0.166264 0.728452i −0.821204 0.570635i \(-0.806697\pi\)
0.987468 0.157817i \(-0.0504456\pi\)
\(758\) −0.630084 2.04268i −0.0228857 0.0741935i
\(759\) 0 0
\(760\) 7.26572 + 18.5127i 0.263555 + 0.671528i
\(761\) 8.53133 2.63157i 0.309260 0.0953942i −0.136240 0.990676i \(-0.543502\pi\)
0.445501 + 0.895282i \(0.353026\pi\)
\(762\) 0 0
\(763\) −11.8418 + 23.4439i −0.428701 + 0.848727i
\(764\) −20.9063 + 4.77172i −0.756363 + 0.172635i
\(765\) 0 0
\(766\) 1.93672 + 1.11817i 0.0699767 + 0.0404011i
\(767\) 3.92933 12.7386i 0.141880 0.459963i
\(768\) 0 0
\(769\) −22.7614 18.1516i −0.820798 0.654565i 0.120285 0.992739i \(-0.461619\pi\)
−0.941083 + 0.338175i \(0.890190\pi\)
\(770\) −2.19727 16.7195i −0.0791842 0.602529i
\(771\) 0 0
\(772\) 9.22735 8.56173i 0.332100 0.308144i
\(773\) −3.89537 + 0.587132i −0.140107 + 0.0211177i −0.218721 0.975787i \(-0.570188\pi\)
0.0786145 + 0.996905i \(0.474950\pi\)
\(774\) 0 0
\(775\) 4.14235 27.4827i 0.148798 0.987207i
\(776\) −8.40159 + 4.04599i −0.301599 + 0.145243i
\(777\) 0 0
\(778\) 6.49094 + 3.12587i 0.232712 + 0.112068i
\(779\) −4.49203 + 6.58860i −0.160944 + 0.236061i
\(780\) 0 0
\(781\) −0.565936 + 7.55189i −0.0202508 + 0.270228i
\(782\) 0.544711 1.38790i 0.0194788 0.0496312i
\(783\) 0 0
\(784\) 6.41722 2.79631i 0.229186 0.0998682i
\(785\) 53.8521i 1.92207i
\(786\) 0 0
\(787\) 18.9430 + 1.41958i 0.675245 + 0.0506026i 0.407939 0.913009i \(-0.366248\pi\)
0.267306 + 0.963612i \(0.413867\pi\)
\(788\) −6.16418 + 6.64341i −0.219590 + 0.236662i
\(789\) 0 0
\(790\) 21.4104 44.4592i 0.761749 1.58179i
\(791\) 16.4574 4.73722i 0.585158 0.168436i
\(792\) 0 0
\(793\) −16.9459 2.55419i −0.601767 0.0907018i
\(794\) −20.8929 + 14.2445i −0.741461 + 0.505519i
\(795\) 0 0
\(796\) 6.07259 + 6.54470i 0.215237 + 0.231971i
\(797\) 20.8228 + 26.1109i 0.737580 + 0.924896i 0.999189 0.0402782i \(-0.0128244\pi\)
−0.261609 + 0.965174i \(0.584253\pi\)
\(798\) 0 0
\(799\) 6.32108 7.92638i 0.223624 0.280415i
\(800\) −3.33517 + 0.249936i −0.117916 + 0.00883658i
\(801\) 0 0
\(802\) 10.9893 19.0340i 0.388045 0.672114i
\(803\) −11.6874 20.2432i −0.412440 0.714368i
\(804\) 0 0
\(805\) 4.27565 + 5.57477i 0.150697 + 0.196485i
\(806\) 19.6937 + 4.49495i 0.693680 + 0.158328i
\(807\) 0 0
\(808\) 4.23650 1.66270i 0.149039 0.0584937i
\(809\) 5.62977 2.20952i 0.197932 0.0776827i −0.264304 0.964439i \(-0.585142\pi\)
0.462237 + 0.886757i \(0.347047\pi\)
\(810\) 0 0
\(811\) 31.8646 + 7.27290i 1.11892 + 0.255386i 0.741696 0.670736i \(-0.234022\pi\)
0.377223 + 0.926122i \(0.376879\pi\)
\(812\) 8.54723 3.91860i 0.299949 0.137516i
\(813\) 0 0
\(814\) 4.20345 + 7.28060i 0.147331 + 0.255185i
\(815\) 29.5040 51.1024i 1.03348 1.79004i
\(816\) 0 0
\(817\) 3.87009 0.290023i 0.135397 0.0101466i
\(818\) 2.12346 2.66273i 0.0742449 0.0931001i
\(819\) 0 0
\(820\) −2.08611 2.61590i −0.0728503 0.0913513i
\(821\) 23.6513 + 25.4900i 0.825434 + 0.889607i 0.995396 0.0958438i \(-0.0305549\pi\)
−0.169962 + 0.985451i \(0.554364\pi\)
\(822\) 0 0
\(823\) 10.9948 7.49613i 0.383255 0.261299i −0.356333 0.934359i \(-0.615973\pi\)
0.739588 + 0.673060i \(0.235021\pi\)
\(824\) −11.2042 1.68877i −0.390318 0.0588310i
\(825\) 0 0
\(826\) 5.55564 13.4038i 0.193305 0.466379i
\(827\) 11.5348 23.9522i 0.401103 0.832899i −0.598394 0.801202i \(-0.704194\pi\)
0.999498 0.0316975i \(-0.0100913\pi\)
\(828\) 0 0
\(829\) −0.432672 + 0.466309i −0.0150273 + 0.0161956i −0.740521 0.672033i \(-0.765421\pi\)
0.725493 + 0.688229i \(0.241612\pi\)
\(830\) −34.4916 2.58479i −1.19722 0.0897194i
\(831\) 0 0
\(832\) 2.43081i 0.0842732i
\(833\) 0.419332 + 11.3458i 0.0145290 + 0.393108i
\(834\) 0 0
\(835\) 11.0075 28.0465i 0.380929 0.970591i
\(836\) −1.13518 + 15.1480i −0.0392612 + 0.523904i
\(837\) 0 0
\(838\) −12.7142 + 18.6483i −0.439205 + 0.644195i
\(839\) −4.31941 2.08012i −0.149123 0.0718137i 0.357834 0.933785i \(-0.383515\pi\)
−0.506957 + 0.861971i \(0.669230\pi\)
\(840\) 0 0
\(841\) −14.7488 + 7.10264i −0.508579 + 0.244919i
\(842\) 4.19765 27.8496i 0.144661 0.959761i
\(843\) 0 0
\(844\) −2.63085 + 0.396537i −0.0905575 + 0.0136494i
\(845\) 15.0160 13.9328i 0.516565 0.479302i
\(846\) 0 0
\(847\) −5.07430 + 15.4088i −0.174355 + 0.529451i
\(848\) 7.70908 + 6.14778i 0.264731 + 0.211116i
\(849\) 0 0
\(850\) 1.59892 5.18359i 0.0548427 0.177796i
\(851\) −3.03326 1.75125i −0.103979 0.0600322i
\(852\) 0 0
\(853\) 23.4549 5.35343i 0.803081 0.183298i 0.198770 0.980046i \(-0.436305\pi\)
0.604311 + 0.796748i \(0.293448\pi\)
\(854\) −18.1032 4.49406i −0.619479 0.153784i
\(855\) 0 0
\(856\) 16.3403 5.04032i 0.558501 0.172275i
\(857\) 14.5463 + 37.0634i 0.496893 + 1.26606i 0.930940 + 0.365172i \(0.118990\pi\)
−0.434048 + 0.900890i \(0.642915\pi\)
\(858\) 0 0
\(859\) 3.96915 + 12.8677i 0.135426 + 0.439039i 0.997729 0.0673524i \(-0.0214552\pi\)
−0.862304 + 0.506392i \(0.830979\pi\)
\(860\) −0.362351 + 1.58756i −0.0123561 + 0.0541354i
\(861\) 0 0
\(862\) 2.63420 + 11.5412i 0.0897213 + 0.393095i
\(863\) 7.99328 4.61492i 0.272095 0.157094i −0.357745 0.933819i \(-0.616454\pi\)
0.629839 + 0.776726i \(0.283121\pi\)
\(864\) 0 0
\(865\) 23.3926 + 7.21566i 0.795372 + 0.245340i
\(866\) −1.12220 14.9748i −0.0381340 0.508863i
\(867\) 0 0
\(868\) 20.8831 + 6.87708i 0.708818 + 0.233423i
\(869\) 29.4684 23.5002i 0.999646 0.797191i
\(870\) 0 0
\(871\) −0.858537 5.69602i −0.0290904 0.193002i
\(872\) 5.59219 + 8.20224i 0.189375 + 0.277763i
\(873\) 0 0
\(874\) −2.74592 5.70196i −0.0928820 0.192872i
\(875\) −8.42874 9.43610i −0.284943 0.318998i
\(876\) 0 0
\(877\) 10.9955 + 7.49662i 0.371293 + 0.253143i 0.734563 0.678541i \(-0.237387\pi\)
−0.363270 + 0.931684i \(0.618340\pi\)
\(878\) −9.74666 9.04358i −0.328934 0.305206i
\(879\) 0 0
\(880\) −5.93312 2.32858i −0.200005 0.0784964i
\(881\) 25.2528 0.850788 0.425394 0.905008i \(-0.360136\pi\)
0.425394 + 0.905008i \(0.360136\pi\)
\(882\) 0 0
\(883\) 45.1695 1.52007 0.760037 0.649880i \(-0.225181\pi\)
0.760037 + 0.649880i \(0.225181\pi\)
\(884\) 3.67007 + 1.44040i 0.123438 + 0.0484458i
\(885\) 0 0
\(886\) −27.3727 25.3981i −0.919602 0.853266i
\(887\) 28.5418 + 19.4595i 0.958339 + 0.653385i 0.938083 0.346410i \(-0.112599\pi\)
0.0202560 + 0.999795i \(0.493552\pi\)
\(888\) 0 0
\(889\) 27.7044 + 11.4830i 0.929177 + 0.385127i
\(890\) 9.92600 + 20.6116i 0.332720 + 0.690901i
\(891\) 0 0
\(892\) 0.566039 + 0.830227i 0.0189524 + 0.0277981i
\(893\) −6.41384 42.5530i −0.214631 1.42398i
\(894\) 0 0
\(895\) 34.8581 27.7984i 1.16518 0.929199i
\(896\) 0.247619 2.63414i 0.00827238 0.0880004i
\(897\) 0 0
\(898\) −2.65950 35.4885i −0.0887486 1.18427i
\(899\) 28.2209 + 8.70499i 0.941219 + 0.290328i
\(900\) 0 0
\(901\) −13.8501 + 7.99635i −0.461413 + 0.266397i
\(902\) −0.568684 2.49157i −0.0189351 0.0829601i
\(903\) 0 0
\(904\) 1.44035 6.31059i 0.0479054 0.209887i
\(905\) 12.7339 + 41.2822i 0.423288 + 1.37227i
\(906\) 0 0
\(907\) 5.50874 + 14.0360i 0.182915 + 0.466059i 0.992692 0.120679i \(-0.0385071\pi\)
−0.809777 + 0.586738i \(0.800412\pi\)
\(908\) 27.3314 8.43063i 0.907026 0.279780i
\(909\) 0 0
\(910\) −14.7416 + 11.3062i −0.488678 + 0.374798i
\(911\) 45.3971 10.3616i 1.50407 0.343295i 0.610429 0.792071i \(-0.290997\pi\)
0.893644 + 0.448776i \(0.148140\pi\)
\(912\) 0 0
\(913\) −22.8798 13.2096i −0.757210 0.437175i
\(914\) −8.69208 + 28.1790i −0.287508 + 0.932079i
\(915\) 0 0
\(916\) 21.3098 + 16.9940i 0.704096 + 0.561498i
\(917\) 3.66756 + 2.21107i 0.121114 + 0.0730158i
\(918\) 0 0
\(919\) 21.7532 20.1840i 0.717571 0.665809i −0.234350 0.972152i \(-0.575296\pi\)
0.951921 + 0.306344i \(0.0991056\pi\)
\(920\) 2.62577 0.395772i 0.0865692 0.0130482i
\(921\) 0 0
\(922\) 4.32028 28.6632i 0.142281 0.943972i
\(923\) 7.51693 3.61996i 0.247423 0.119153i
\(924\) 0 0
\(925\) −11.4812 5.52907i −0.377500 0.181795i
\(926\) −1.85292 + 2.71773i −0.0608906 + 0.0893101i
\(927\) 0 0
\(928\) 0.265582 3.54395i 0.00871816 0.116336i
\(929\) 11.9753 30.5125i 0.392896 1.00108i −0.588399 0.808571i \(-0.700241\pi\)
0.981295 0.192512i \(-0.0616634\pi\)
\(930\) 0 0
\(931\) 36.5140 + 31.4519i 1.19670 + 1.03079i
\(932\) 25.8491i 0.846714i
\(933\) 0 0
\(934\) −0.783396 0.0587074i −0.0256335 0.00192096i
\(935\) 7.03144 7.57809i 0.229953 0.247830i
\(936\) 0 0
\(937\) −19.7208 + 40.9506i −0.644249 + 1.33780i 0.281464 + 0.959572i \(0.409180\pi\)
−0.925713 + 0.378226i \(0.876534\pi\)
\(938\) −0.350114 6.25993i −0.0114316 0.204394i
\(939\) 0 0
\(940\) 17.8547 + 2.69116i 0.582355 + 0.0877759i
\(941\) 18.6220 12.6963i 0.607060 0.413887i −0.220401 0.975409i \(-0.570737\pi\)
0.827461 + 0.561523i \(0.189784\pi\)
\(942\) 0 0
\(943\) 0.724206 + 0.780508i 0.0235834 + 0.0254168i
\(944\) −3.41928 4.28765i −0.111288 0.139551i
\(945\) 0 0
\(946\) −0.775495 + 0.972440i −0.0252135 + 0.0316167i
\(947\) −35.4916 + 2.65972i −1.15332 + 0.0864294i −0.637628 0.770344i \(-0.720084\pi\)
−0.515693 + 0.856774i \(0.672465\pi\)
\(948\) 0 0
\(949\) −12.8759 + 22.3017i −0.417970 + 0.723945i
\(950\) −11.5129 19.9409i −0.373527 0.646967i
\(951\) 0 0
\(952\) 3.83033 + 1.93474i 0.124142 + 0.0627053i
\(953\) −1.38869 0.316960i −0.0449842 0.0102673i 0.199970 0.979802i \(-0.435916\pi\)
−0.244954 + 0.969535i \(0.578773\pi\)
\(954\) 0 0
\(955\) 57.6628 22.6310i 1.86592 0.732322i
\(956\) −26.6290 + 10.4511i −0.861243 + 0.338013i
\(957\) 0 0
\(958\) 6.67103 + 1.52262i 0.215531 + 0.0491936i
\(959\) −27.8784 0.527763i −0.900239 0.0170423i
\(960\) 0 0
\(961\) 19.0284 + 32.9582i 0.613820 + 1.06317i
\(962\) 4.63090 8.02095i 0.149306 0.258606i
\(963\) 0 0
\(964\) −15.0339 + 1.12663i −0.484209 + 0.0362864i
\(965\) −22.6711 + 28.4287i −0.729808 + 0.915151i
\(966\) 0 0
\(967\) −35.7858 44.8739i −1.15079 1.44305i −0.876500 0.481401i \(-0.840128\pi\)
−0.274292 0.961646i \(-0.588443\pi\)
\(968\) 4.17057 + 4.49480i 0.134047 + 0.144468i
\(969\) 0 0
\(970\) 22.2566 15.1743i 0.714615 0.487216i
\(971\) −12.0028 1.80914i −0.385189 0.0580579i −0.0464066 0.998923i \(-0.514777\pi\)
−0.338783 + 0.940865i \(0.610015\pi\)
\(972\) 0 0
\(973\) 21.8004 + 3.70917i 0.698889 + 0.118910i
\(974\) −12.0428 + 25.0071i −0.385875 + 0.801278i
\(975\) 0 0
\(976\) −4.79525 + 5.16805i −0.153492 + 0.165425i
\(977\) 46.2334 + 3.46471i 1.47914 + 0.110846i 0.789697 0.613496i \(-0.210238\pi\)
0.689440 + 0.724343i \(0.257857\pi\)
\(978\) 0 0
\(979\) 17.4740i 0.558471i
\(980\) −17.1264 + 10.7503i −0.547082 + 0.343405i
\(981\) 0 0
\(982\) −3.00576 + 7.65854i −0.0959175 + 0.244394i
\(983\) −1.64512 + 21.9527i −0.0524713 + 0.700181i 0.907494 + 0.420064i \(0.137992\pi\)
−0.959966 + 0.280117i \(0.909627\pi\)
\(984\) 0 0
\(985\) 14.7473 21.6303i 0.469888 0.689199i
\(986\) 5.19333 + 2.50097i 0.165389 + 0.0796472i
\(987\) 0 0
\(988\) 15.0779 7.26112i 0.479691 0.231007i
\(989\) 0.0772328 0.512406i 0.00245586 0.0162936i
\(990\) 0 0
\(991\) −57.6911 + 8.69554i −1.83262 + 0.276223i −0.972335 0.233592i \(-0.924952\pi\)
−0.860284 + 0.509815i \(0.829714\pi\)
\(992\) 6.09169 5.65227i 0.193411 0.179460i
\(993\) 0 0
\(994\) 8.51445 3.15703i 0.270062 0.100135i
\(995\) −20.1636 16.0800i −0.639230 0.509769i
\(996\) 0 0
\(997\) 1.46738 4.75712i 0.0464723 0.150660i −0.929363 0.369168i \(-0.879643\pi\)
0.975835 + 0.218508i \(0.0701190\pi\)
\(998\) 15.3905 + 8.88574i 0.487179 + 0.281273i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.2.bl.a.395.12 yes 240
3.2 odd 2 inner 882.2.bl.a.395.9 240
49.33 odd 42 inner 882.2.bl.a.719.9 yes 240
147.131 even 42 inner 882.2.bl.a.719.12 yes 240
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
882.2.bl.a.395.9 240 3.2 odd 2 inner
882.2.bl.a.395.12 yes 240 1.1 even 1 trivial
882.2.bl.a.719.9 yes 240 49.33 odd 42 inner
882.2.bl.a.719.12 yes 240 147.131 even 42 inner