Properties

Label 882.2.bl.a.395.14
Level $882$
Weight $2$
Character 882.395
Analytic conductor $7.043$
Analytic rank $0$
Dimension $240$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,2,Mod(17,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(42))
 
chi = DirichletCharacter(H, H._module([21, 25]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 882.bl (of order \(42\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.04280545828\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(20\) over \(\Q(\zeta_{42})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{42}]$

Embedding invariants

Embedding label 395.14
Character \(\chi\) \(=\) 882.395
Dual form 882.2.bl.a.719.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.930874 + 0.365341i) q^{2} +(0.733052 + 0.680173i) q^{4} +(-1.34171 - 0.914763i) q^{5} +(2.55989 + 0.668535i) q^{7} +(0.433884 + 0.900969i) q^{8} +(-0.914763 - 1.34171i) q^{10} +(0.648044 + 4.29949i) q^{11} +(1.49142 - 1.18937i) q^{13} +(2.13870 + 1.55756i) q^{14} +(0.0747301 + 0.997204i) q^{16} +(-0.908745 - 0.280311i) q^{17} +(2.29692 - 1.32613i) q^{19} +(-0.361347 - 1.58316i) q^{20} +(-0.967534 + 4.23904i) q^{22} +(1.27855 + 4.14496i) q^{23} +(-0.863309 - 2.19967i) q^{25} +(1.82285 - 0.562276i) q^{26} +(1.42182 + 2.23124i) q^{28} +(1.57164 - 0.358717i) q^{29} +(7.66784 + 4.42703i) q^{31} +(-0.294755 + 0.955573i) q^{32} +(-0.743518 - 0.592936i) q^{34} +(-2.82309 - 3.23868i) q^{35} +(-3.30398 + 3.06565i) q^{37} +(2.62263 - 0.395298i) q^{38} +(0.242026 - 1.60574i) q^{40} +(2.95143 - 1.42134i) q^{41} +(6.58296 + 3.17019i) q^{43} +(-2.44935 + 3.59253i) q^{44} +(-0.324154 + 4.32554i) q^{46} +(1.85342 - 4.72244i) q^{47} +(6.10612 + 3.42276i) q^{49} -2.36302i q^{50} +(1.90227 + 0.142555i) q^{52} +(-2.33205 + 2.51335i) q^{53} +(3.06353 - 6.36148i) q^{55} +(0.508368 + 2.59645i) q^{56} +(1.59405 + 0.240265i) q^{58} +(-3.96539 + 2.70356i) q^{59} +(-6.01356 - 6.48108i) q^{61} +(5.52042 + 6.92239i) q^{62} +(-0.623490 + 0.781831i) q^{64} +(-3.08905 + 0.231492i) q^{65} +(-2.38545 + 4.13172i) q^{67} +(-0.475497 - 0.823586i) q^{68} +(-1.44472 - 4.04619i) q^{70} +(-8.72361 - 1.99111i) q^{71} +(7.10809 - 2.78972i) q^{73} +(-4.19560 + 1.64665i) q^{74} +(2.58575 + 0.590181i) q^{76} +(-1.21544 + 11.4395i) q^{77} +(-6.01655 - 10.4210i) q^{79} +(0.811939 - 1.40632i) q^{80} +(3.26668 - 0.244804i) q^{82} +(-5.11368 + 6.41235i) q^{83} +(0.962855 + 1.20738i) q^{85} +(4.96970 + 5.35607i) q^{86} +(-3.59253 + 2.44935i) q^{88} +(-5.36628 - 0.808837i) q^{89} +(4.61302 - 2.04759i) q^{91} +(-1.88204 + 3.90810i) q^{92} +(3.45060 - 3.71887i) q^{94} +(-4.29489 - 0.321857i) q^{95} -10.8504i q^{97} +(4.43356 + 5.41697i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240 q - 20 q^{4} - 4 q^{7} - 12 q^{10} + 20 q^{16} + 24 q^{19} - 20 q^{22} + 24 q^{25} + 4 q^{28} + 12 q^{31} - 32 q^{37} + 44 q^{40} - 48 q^{43} + 204 q^{49} + 140 q^{55} + 136 q^{58} + 88 q^{61} + 40 q^{64}+ \cdots + 80 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(e\left(\frac{1}{42}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.930874 + 0.365341i 0.658227 + 0.258335i
\(3\) 0 0
\(4\) 0.733052 + 0.680173i 0.366526 + 0.340086i
\(5\) −1.34171 0.914763i −0.600031 0.409094i 0.224856 0.974392i \(-0.427809\pi\)
−0.824887 + 0.565298i \(0.808761\pi\)
\(6\) 0 0
\(7\) 2.55989 + 0.668535i 0.967549 + 0.252682i
\(8\) 0.433884 + 0.900969i 0.153401 + 0.318541i
\(9\) 0 0
\(10\) −0.914763 1.34171i −0.289273 0.424286i
\(11\) 0.648044 + 4.29949i 0.195393 + 1.29635i 0.844461 + 0.535616i \(0.179921\pi\)
−0.649069 + 0.760730i \(0.724841\pi\)
\(12\) 0 0
\(13\) 1.49142 1.18937i 0.413646 0.329872i −0.394455 0.918915i \(-0.629067\pi\)
0.808102 + 0.589043i \(0.200495\pi\)
\(14\) 2.13870 + 1.55756i 0.571590 + 0.416274i
\(15\) 0 0
\(16\) 0.0747301 + 0.997204i 0.0186825 + 0.249301i
\(17\) −0.908745 0.280311i −0.220403 0.0679853i 0.182587 0.983190i \(-0.441553\pi\)
−0.402990 + 0.915204i \(0.632029\pi\)
\(18\) 0 0
\(19\) 2.29692 1.32613i 0.526949 0.304234i −0.212824 0.977091i \(-0.568266\pi\)
0.739773 + 0.672856i \(0.234933\pi\)
\(20\) −0.361347 1.58316i −0.0807996 0.354006i
\(21\) 0 0
\(22\) −0.967534 + 4.23904i −0.206279 + 0.903767i
\(23\) 1.27855 + 4.14496i 0.266596 + 0.864283i 0.985573 + 0.169250i \(0.0541344\pi\)
−0.718977 + 0.695034i \(0.755389\pi\)
\(24\) 0 0
\(25\) −0.863309 2.19967i −0.172662 0.439935i
\(26\) 1.82285 0.562276i 0.357491 0.110271i
\(27\) 0 0
\(28\) 1.42182 + 2.23124i 0.268698 + 0.421665i
\(29\) 1.57164 0.358717i 0.291846 0.0666120i −0.0740911 0.997251i \(-0.523606\pi\)
0.365937 + 0.930639i \(0.380748\pi\)
\(30\) 0 0
\(31\) 7.66784 + 4.42703i 1.37719 + 0.795118i 0.991820 0.127646i \(-0.0407420\pi\)
0.385366 + 0.922764i \(0.374075\pi\)
\(32\) −0.294755 + 0.955573i −0.0521058 + 0.168923i
\(33\) 0 0
\(34\) −0.743518 0.592936i −0.127512 0.101688i
\(35\) −2.82309 3.23868i −0.477189 0.547436i
\(36\) 0 0
\(37\) −3.30398 + 3.06565i −0.543171 + 0.503989i −0.903356 0.428892i \(-0.858904\pi\)
0.360185 + 0.932881i \(0.382714\pi\)
\(38\) 2.62263 0.395298i 0.425446 0.0641257i
\(39\) 0 0
\(40\) 0.242026 1.60574i 0.0382677 0.253890i
\(41\) 2.95143 1.42134i 0.460936 0.221975i −0.188980 0.981981i \(-0.560518\pi\)
0.649916 + 0.760006i \(0.274804\pi\)
\(42\) 0 0
\(43\) 6.58296 + 3.17019i 1.00389 + 0.483449i 0.862257 0.506470i \(-0.169050\pi\)
0.141634 + 0.989919i \(0.454764\pi\)
\(44\) −2.44935 + 3.59253i −0.369253 + 0.541595i
\(45\) 0 0
\(46\) −0.324154 + 4.32554i −0.0477939 + 0.637766i
\(47\) 1.85342 4.72244i 0.270349 0.688839i −0.729638 0.683833i \(-0.760311\pi\)
0.999987 0.00500539i \(-0.00159327\pi\)
\(48\) 0 0
\(49\) 6.10612 + 3.42276i 0.872303 + 0.488965i
\(50\) 2.36302i 0.334182i
\(51\) 0 0
\(52\) 1.90227 + 0.142555i 0.263797 + 0.0197689i
\(53\) −2.33205 + 2.51335i −0.320331 + 0.345235i −0.872604 0.488429i \(-0.837570\pi\)
0.552273 + 0.833664i \(0.313761\pi\)
\(54\) 0 0
\(55\) 3.06353 6.36148i 0.413086 0.857782i
\(56\) 0.508368 + 2.59645i 0.0679335 + 0.346965i
\(57\) 0 0
\(58\) 1.59405 + 0.240265i 0.209309 + 0.0315483i
\(59\) −3.96539 + 2.70356i −0.516250 + 0.351973i −0.793250 0.608897i \(-0.791612\pi\)
0.276999 + 0.960870i \(0.410660\pi\)
\(60\) 0 0
\(61\) −6.01356 6.48108i −0.769957 0.829817i 0.219352 0.975646i \(-0.429606\pi\)
−0.989310 + 0.145829i \(0.953415\pi\)
\(62\) 5.52042 + 6.92239i 0.701094 + 0.879144i
\(63\) 0 0
\(64\) −0.623490 + 0.781831i −0.0779362 + 0.0977289i
\(65\) −3.08905 + 0.231492i −0.383150 + 0.0287131i
\(66\) 0 0
\(67\) −2.38545 + 4.13172i −0.291429 + 0.504770i −0.974148 0.225911i \(-0.927464\pi\)
0.682719 + 0.730681i \(0.260797\pi\)
\(68\) −0.475497 0.823586i −0.0576625 0.0998744i
\(69\) 0 0
\(70\) −1.44472 4.04619i −0.172677 0.483612i
\(71\) −8.72361 1.99111i −1.03530 0.236301i −0.329088 0.944299i \(-0.606741\pi\)
−0.706214 + 0.707998i \(0.749598\pi\)
\(72\) 0 0
\(73\) 7.10809 2.78972i 0.831939 0.326512i 0.0891336 0.996020i \(-0.471590\pi\)
0.742805 + 0.669508i \(0.233495\pi\)
\(74\) −4.19560 + 1.64665i −0.487728 + 0.191419i
\(75\) 0 0
\(76\) 2.58575 + 0.590181i 0.296606 + 0.0676985i
\(77\) −1.21544 + 11.4395i −0.138512 + 1.30365i
\(78\) 0 0
\(79\) −6.01655 10.4210i −0.676914 1.17245i −0.975905 0.218194i \(-0.929983\pi\)
0.298991 0.954256i \(-0.403350\pi\)
\(80\) 0.811939 1.40632i 0.0907775 0.157231i
\(81\) 0 0
\(82\) 3.26668 0.244804i 0.360745 0.0270341i
\(83\) −5.11368 + 6.41235i −0.561299 + 0.703847i −0.978797 0.204831i \(-0.934336\pi\)
0.417498 + 0.908678i \(0.362907\pi\)
\(84\) 0 0
\(85\) 0.962855 + 1.20738i 0.104436 + 0.130959i
\(86\) 4.96970 + 5.35607i 0.535897 + 0.577560i
\(87\) 0 0
\(88\) −3.59253 + 2.44935i −0.382965 + 0.261101i
\(89\) −5.36628 0.808837i −0.568825 0.0857366i −0.141668 0.989914i \(-0.545247\pi\)
−0.427157 + 0.904178i \(0.640485\pi\)
\(90\) 0 0
\(91\) 4.61302 2.04759i 0.483576 0.214646i
\(92\) −1.88204 + 3.90810i −0.196217 + 0.407448i
\(93\) 0 0
\(94\) 3.45060 3.71887i 0.355903 0.383572i
\(95\) −4.29489 0.321857i −0.440646 0.0330219i
\(96\) 0 0
\(97\) 10.8504i 1.10169i −0.834607 0.550845i \(-0.814305\pi\)
0.834607 0.550845i \(-0.185695\pi\)
\(98\) 4.43356 + 5.41697i 0.447857 + 0.547197i
\(99\) 0 0
\(100\) 0.863309 2.19967i 0.0863309 0.219967i
\(101\) 0.759129 10.1299i 0.0755361 1.00796i −0.822708 0.568464i \(-0.807538\pi\)
0.898245 0.439496i \(-0.144843\pi\)
\(102\) 0 0
\(103\) −8.23006 + 12.0713i −0.810932 + 1.18942i 0.168111 + 0.985768i \(0.446233\pi\)
−0.979044 + 0.203651i \(0.934719\pi\)
\(104\) 1.71869 + 0.827678i 0.168531 + 0.0811605i
\(105\) 0 0
\(106\) −3.08907 + 1.48762i −0.300037 + 0.144490i
\(107\) 2.21826 14.7172i 0.214447 1.42276i −0.579596 0.814904i \(-0.696790\pi\)
0.794044 0.607861i \(-0.207972\pi\)
\(108\) 0 0
\(109\) −6.83146 + 1.02968i −0.654335 + 0.0986252i −0.467816 0.883826i \(-0.654959\pi\)
−0.186520 + 0.982451i \(0.559721\pi\)
\(110\) 5.17587 4.80250i 0.493500 0.457901i
\(111\) 0 0
\(112\) −0.475364 + 2.60270i −0.0449177 + 0.245932i
\(113\) −10.5416 8.40667i −0.991673 0.790833i −0.0137728 0.999905i \(-0.504384\pi\)
−0.977900 + 0.209072i \(0.932956\pi\)
\(114\) 0 0
\(115\) 2.07621 6.73090i 0.193607 0.627660i
\(116\) 1.39608 + 0.806029i 0.129623 + 0.0748379i
\(117\) 0 0
\(118\) −4.67900 + 1.06795i −0.430737 + 0.0983129i
\(119\) −2.13889 1.32509i −0.196072 0.121471i
\(120\) 0 0
\(121\) −7.55438 + 2.33022i −0.686762 + 0.211838i
\(122\) −3.23006 8.23006i −0.292436 0.745115i
\(123\) 0 0
\(124\) 2.60978 + 8.46070i 0.234365 + 0.759794i
\(125\) −2.66060 + 11.6569i −0.237972 + 1.04262i
\(126\) 0 0
\(127\) −3.53956 15.5078i −0.314085 1.37610i −0.847747 0.530400i \(-0.822042\pi\)
0.533662 0.845698i \(-0.320815\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) −2.96009 0.913067i −0.259617 0.0800813i
\(131\) −0.825650 11.0175i −0.0721374 0.962606i −0.909432 0.415854i \(-0.863483\pi\)
0.837294 0.546753i \(-0.184136\pi\)
\(132\) 0 0
\(133\) 6.76643 1.85917i 0.586724 0.161211i
\(134\) −3.73004 + 2.97461i −0.322226 + 0.256967i
\(135\) 0 0
\(136\) −0.141738 0.940373i −0.0121540 0.0806363i
\(137\) 1.65642 + 2.42952i 0.141518 + 0.207568i 0.890453 0.455074i \(-0.150387\pi\)
−0.748936 + 0.662642i \(0.769435\pi\)
\(138\) 0 0
\(139\) −1.71324 3.55757i −0.145315 0.301749i 0.815589 0.578631i \(-0.196413\pi\)
−0.960904 + 0.276882i \(0.910699\pi\)
\(140\) 0.133390 4.29431i 0.0112735 0.362935i
\(141\) 0 0
\(142\) −7.39315 5.04056i −0.620419 0.422995i
\(143\) 6.08020 + 5.64160i 0.508452 + 0.471774i
\(144\) 0 0
\(145\) −2.43683 0.956385i −0.202368 0.0794234i
\(146\) 7.63593 0.631954
\(147\) 0 0
\(148\) −4.50716 −0.370486
\(149\) 7.19151 + 2.82246i 0.589152 + 0.231225i 0.641142 0.767423i \(-0.278461\pi\)
−0.0519900 + 0.998648i \(0.516556\pi\)
\(150\) 0 0
\(151\) 6.70446 + 6.22083i 0.545601 + 0.506244i 0.904120 0.427279i \(-0.140528\pi\)
−0.358519 + 0.933522i \(0.616718\pi\)
\(152\) 2.19139 + 1.49407i 0.177745 + 0.121185i
\(153\) 0 0
\(154\) −5.31073 + 10.2047i −0.427951 + 0.822316i
\(155\) −6.23834 12.9541i −0.501076 1.04049i
\(156\) 0 0
\(157\) −1.11591 1.63674i −0.0890596 0.130626i 0.779123 0.626870i \(-0.215664\pi\)
−0.868183 + 0.496244i \(0.834712\pi\)
\(158\) −1.79344 11.8987i −0.142678 0.946609i
\(159\) 0 0
\(160\) 1.26960 1.01247i 0.100371 0.0800429i
\(161\) 0.501905 + 11.4654i 0.0395557 + 0.903601i
\(162\) 0 0
\(163\) 0.421350 + 5.62253i 0.0330027 + 0.440390i 0.989090 + 0.147310i \(0.0470614\pi\)
−0.956088 + 0.293081i \(0.905320\pi\)
\(164\) 3.13031 + 0.965572i 0.244436 + 0.0753985i
\(165\) 0 0
\(166\) −7.10288 + 4.10085i −0.551291 + 0.318288i
\(167\) −3.81465 16.7131i −0.295186 1.29330i −0.877203 0.480119i \(-0.840594\pi\)
0.582017 0.813176i \(-0.302264\pi\)
\(168\) 0 0
\(169\) −2.08303 + 9.12635i −0.160233 + 0.702027i
\(170\) 0.455190 + 1.47569i 0.0349115 + 0.113180i
\(171\) 0 0
\(172\) 2.66938 + 6.80146i 0.203538 + 0.518606i
\(173\) 16.6347 5.13111i 1.26471 0.390111i 0.411371 0.911468i \(-0.365050\pi\)
0.853339 + 0.521357i \(0.174574\pi\)
\(174\) 0 0
\(175\) −0.739420 6.20809i −0.0558949 0.469287i
\(176\) −4.23904 + 0.967534i −0.319530 + 0.0729306i
\(177\) 0 0
\(178\) −4.69983 2.71345i −0.352267 0.203382i
\(179\) −6.08774 + 19.7360i −0.455019 + 1.47514i 0.380037 + 0.924971i \(0.375911\pi\)
−0.835056 + 0.550164i \(0.814565\pi\)
\(180\) 0 0
\(181\) −18.7741 14.9718i −1.39547 1.11285i −0.979038 0.203679i \(-0.934710\pi\)
−0.416429 0.909168i \(-0.636718\pi\)
\(182\) 5.04221 0.220726i 0.373754 0.0163613i
\(183\) 0 0
\(184\) −3.17974 + 2.95036i −0.234413 + 0.217504i
\(185\) 7.23733 1.09085i 0.532099 0.0802010i
\(186\) 0 0
\(187\) 0.616287 4.08880i 0.0450674 0.299002i
\(188\) 4.57073 2.20115i 0.333355 0.160535i
\(189\) 0 0
\(190\) −3.88041 1.86871i −0.281515 0.135570i
\(191\) 14.6498 21.4874i 1.06002 1.55477i 0.250115 0.968216i \(-0.419532\pi\)
0.809910 0.586554i \(-0.199516\pi\)
\(192\) 0 0
\(193\) −1.02211 + 13.6391i −0.0735730 + 0.981763i 0.831229 + 0.555930i \(0.187638\pi\)
−0.904802 + 0.425833i \(0.859981\pi\)
\(194\) 3.96409 10.1003i 0.284605 0.725162i
\(195\) 0 0
\(196\) 2.14804 + 6.66228i 0.153431 + 0.475877i
\(197\) 1.72423i 0.122846i −0.998112 0.0614231i \(-0.980436\pi\)
0.998112 0.0614231i \(-0.0195639\pi\)
\(198\) 0 0
\(199\) 15.2005 + 1.13912i 1.07754 + 0.0807502i 0.601653 0.798758i \(-0.294509\pi\)
0.475884 + 0.879508i \(0.342128\pi\)
\(200\) 1.60726 1.73222i 0.113651 0.122486i
\(201\) 0 0
\(202\) 4.40751 9.15229i 0.310111 0.643953i
\(203\) 4.26305 + 0.132420i 0.299207 + 0.00929403i
\(204\) 0 0
\(205\) −5.26015 0.792841i −0.367385 0.0553744i
\(206\) −12.0713 + 8.23006i −0.841046 + 0.573416i
\(207\) 0 0
\(208\) 1.29750 + 1.39837i 0.0899654 + 0.0969596i
\(209\) 7.19017 + 9.01619i 0.497355 + 0.623663i
\(210\) 0 0
\(211\) −10.4970 + 13.1628i −0.722643 + 0.906166i −0.998484 0.0550374i \(-0.982472\pi\)
0.275841 + 0.961203i \(0.411044\pi\)
\(212\) −3.41902 + 0.256220i −0.234819 + 0.0175973i
\(213\) 0 0
\(214\) 7.44171 12.8894i 0.508705 0.881103i
\(215\) −5.93246 10.2753i −0.404590 0.700771i
\(216\) 0 0
\(217\) 16.6692 + 16.4590i 1.13158 + 1.11731i
\(218\) −6.73541 1.53731i −0.456180 0.104120i
\(219\) 0 0
\(220\) 6.57263 2.57957i 0.443127 0.173914i
\(221\) −1.68872 + 0.662772i −0.113595 + 0.0445829i
\(222\) 0 0
\(223\) 2.87058 + 0.655191i 0.192228 + 0.0438748i 0.317551 0.948241i \(-0.397140\pi\)
−0.125323 + 0.992116i \(0.539997\pi\)
\(224\) −1.39338 + 2.24911i −0.0930988 + 0.150275i
\(225\) 0 0
\(226\) −6.74162 11.6768i −0.448446 0.776732i
\(227\) 2.78755 4.82818i 0.185016 0.320457i −0.758566 0.651596i \(-0.774100\pi\)
0.943582 + 0.331139i \(0.107433\pi\)
\(228\) 0 0
\(229\) −27.6962 + 2.07555i −1.83022 + 0.137156i −0.944802 0.327641i \(-0.893746\pi\)
−0.885417 + 0.464797i \(0.846127\pi\)
\(230\) 4.39176 5.50710i 0.289584 0.363127i
\(231\) 0 0
\(232\) 1.00510 + 1.26036i 0.0659882 + 0.0827466i
\(233\) 16.3610 + 17.6330i 1.07184 + 1.15517i 0.987318 + 0.158752i \(0.0507471\pi\)
0.0845261 + 0.996421i \(0.473062\pi\)
\(234\) 0 0
\(235\) −6.80667 + 4.64071i −0.444018 + 0.302726i
\(236\) −4.74573 0.715303i −0.308920 0.0465623i
\(237\) 0 0
\(238\) −1.50693 2.01492i −0.0976797 0.130608i
\(239\) 6.87773 14.2818i 0.444884 0.923810i −0.551114 0.834430i \(-0.685797\pi\)
0.995998 0.0893802i \(-0.0284886\pi\)
\(240\) 0 0
\(241\) −12.8852 + 13.8869i −0.830006 + 0.894534i −0.995793 0.0916277i \(-0.970793\pi\)
0.165787 + 0.986162i \(0.446984\pi\)
\(242\) −7.88350 0.590787i −0.506770 0.0379772i
\(243\) 0 0
\(244\) 8.84122i 0.566001i
\(245\) −5.06164 10.1780i −0.323376 0.650249i
\(246\) 0 0
\(247\) 1.84842 4.70970i 0.117612 0.299671i
\(248\) −0.661665 + 8.82931i −0.0420158 + 0.560661i
\(249\) 0 0
\(250\) −6.73542 + 9.87904i −0.425985 + 0.624806i
\(251\) −13.3145 6.41192i −0.840402 0.404716i −0.0363963 0.999337i \(-0.511588\pi\)
−0.804006 + 0.594621i \(0.797302\pi\)
\(252\) 0 0
\(253\) −16.9927 + 8.18323i −1.06832 + 0.514475i
\(254\) 2.37076 15.7290i 0.148755 0.986924i
\(255\) 0 0
\(256\) −0.988831 + 0.149042i −0.0618019 + 0.00931514i
\(257\) 3.43748 3.18952i 0.214424 0.198957i −0.565647 0.824648i \(-0.691373\pi\)
0.780071 + 0.625691i \(0.215183\pi\)
\(258\) 0 0
\(259\) −10.5073 + 5.63891i −0.652894 + 0.350385i
\(260\) −2.42189 1.93139i −0.150199 0.119780i
\(261\) 0 0
\(262\) 3.25658 10.5576i 0.201192 0.652249i
\(263\) −24.2357 13.9925i −1.49444 0.862815i −0.494459 0.869201i \(-0.664634\pi\)
−0.999980 + 0.00638598i \(0.997967\pi\)
\(264\) 0 0
\(265\) 5.42805 1.23892i 0.333442 0.0761060i
\(266\) 6.97792 + 0.741398i 0.427844 + 0.0454580i
\(267\) 0 0
\(268\) −4.55894 + 1.40625i −0.278482 + 0.0859002i
\(269\) 9.27112 + 23.6224i 0.565270 + 1.44028i 0.872483 + 0.488644i \(0.162508\pi\)
−0.307214 + 0.951641i \(0.599397\pi\)
\(270\) 0 0
\(271\) −6.48974 21.0392i −0.394224 1.27804i −0.907585 0.419869i \(-0.862076\pi\)
0.513361 0.858173i \(-0.328400\pi\)
\(272\) 0.211616 0.927151i 0.0128311 0.0562168i
\(273\) 0 0
\(274\) 0.654314 + 2.86674i 0.0395286 + 0.173186i
\(275\) 8.89802 5.13728i 0.536571 0.309789i
\(276\) 0 0
\(277\) 4.07244 + 1.25618i 0.244689 + 0.0754767i 0.414674 0.909970i \(-0.363896\pi\)
−0.169985 + 0.985447i \(0.554372\pi\)
\(278\) −0.295080 3.93756i −0.0176977 0.236159i
\(279\) 0 0
\(280\) 1.69306 3.94872i 0.101179 0.235981i
\(281\) 2.83257 2.25890i 0.168977 0.134755i −0.535350 0.844630i \(-0.679820\pi\)
0.704327 + 0.709876i \(0.251249\pi\)
\(282\) 0 0
\(283\) −1.45338 9.64252i −0.0863943 0.573188i −0.989585 0.143949i \(-0.954020\pi\)
0.903191 0.429239i \(-0.141218\pi\)
\(284\) −5.04056 7.39315i −0.299102 0.438703i
\(285\) 0 0
\(286\) 3.59879 + 7.47296i 0.212801 + 0.441886i
\(287\) 8.50557 1.66533i 0.502068 0.0983015i
\(288\) 0 0
\(289\) −13.2988 9.06698i −0.782283 0.533352i
\(290\) −1.91897 1.78055i −0.112686 0.104557i
\(291\) 0 0
\(292\) 7.10809 + 2.78972i 0.415969 + 0.163256i
\(293\) −10.8206 −0.632146 −0.316073 0.948735i \(-0.602364\pi\)
−0.316073 + 0.948735i \(0.602364\pi\)
\(294\) 0 0
\(295\) 7.79353 0.453757
\(296\) −4.19560 1.64665i −0.243864 0.0957096i
\(297\) 0 0
\(298\) 5.66323 + 5.25471i 0.328062 + 0.304397i
\(299\) 6.83675 + 4.66122i 0.395379 + 0.269565i
\(300\) 0 0
\(301\) 14.7323 + 12.5163i 0.849156 + 0.721426i
\(302\) 3.96828 + 8.24022i 0.228349 + 0.474171i
\(303\) 0 0
\(304\) 1.49407 + 2.19139i 0.0856906 + 0.125685i
\(305\) 2.13981 + 14.1967i 0.122525 + 0.812901i
\(306\) 0 0
\(307\) 1.86039 1.48361i 0.106178 0.0846744i −0.568962 0.822364i \(-0.692655\pi\)
0.675140 + 0.737690i \(0.264083\pi\)
\(308\) −8.67181 + 7.55903i −0.494122 + 0.430716i
\(309\) 0 0
\(310\) −1.07446 14.3377i −0.0610254 0.814327i
\(311\) 31.0901 + 9.59002i 1.76296 + 0.543800i 0.995281 0.0970380i \(-0.0309368\pi\)
0.767676 + 0.640838i \(0.221413\pi\)
\(312\) 0 0
\(313\) −5.52052 + 3.18727i −0.312038 + 0.180155i −0.647838 0.761778i \(-0.724327\pi\)
0.335800 + 0.941933i \(0.390993\pi\)
\(314\) −0.440804 1.93129i −0.0248760 0.108989i
\(315\) 0 0
\(316\) 2.67762 11.7314i 0.150628 0.659943i
\(317\) 1.55148 + 5.02977i 0.0871398 + 0.282500i 0.988645 0.150267i \(-0.0480133\pi\)
−0.901506 + 0.432767i \(0.857537\pi\)
\(318\) 0 0
\(319\) 2.56079 + 6.52480i 0.143377 + 0.365318i
\(320\) 1.55173 0.478646i 0.0867445 0.0267571i
\(321\) 0 0
\(322\) −3.72157 + 10.8562i −0.207395 + 0.604993i
\(323\) −2.45904 + 0.561259i −0.136825 + 0.0312293i
\(324\) 0 0
\(325\) −3.90379 2.25385i −0.216543 0.125021i
\(326\) −1.66192 + 5.38780i −0.0920450 + 0.298403i
\(327\) 0 0
\(328\) 2.56116 + 2.04246i 0.141416 + 0.112776i
\(329\) 7.90168 10.8499i 0.435634 0.598173i
\(330\) 0 0
\(331\) 2.82757 2.62360i 0.155417 0.144206i −0.598632 0.801025i \(-0.704289\pi\)
0.754049 + 0.656818i \(0.228098\pi\)
\(332\) −8.11009 + 1.22240i −0.445099 + 0.0670879i
\(333\) 0 0
\(334\) 2.55501 16.9514i 0.139804 0.927539i
\(335\) 6.98013 3.36145i 0.381365 0.183656i
\(336\) 0 0
\(337\) −2.27361 1.09491i −0.123851 0.0596436i 0.370932 0.928660i \(-0.379038\pi\)
−0.494783 + 0.869016i \(0.664753\pi\)
\(338\) −5.27327 + 7.73447i −0.286828 + 0.420699i
\(339\) 0 0
\(340\) −0.115406 + 1.53998i −0.00625875 + 0.0835172i
\(341\) −14.0649 + 35.8368i −0.761657 + 1.94067i
\(342\) 0 0
\(343\) 13.3428 + 12.8441i 0.720443 + 0.693514i
\(344\) 7.30653i 0.393942i
\(345\) 0 0
\(346\) 17.3594 + 1.30091i 0.933246 + 0.0699371i
\(347\) −11.9977 + 12.9304i −0.644069 + 0.694142i −0.967718 0.252036i \(-0.918900\pi\)
0.323649 + 0.946177i \(0.395090\pi\)
\(348\) 0 0
\(349\) 9.77114 20.2900i 0.523037 1.08610i −0.457399 0.889262i \(-0.651219\pi\)
0.980436 0.196837i \(-0.0630668\pi\)
\(350\) 1.57976 6.04909i 0.0844418 0.323337i
\(351\) 0 0
\(352\) −4.29949 0.648044i −0.229164 0.0345409i
\(353\) −16.9246 + 11.5390i −0.900806 + 0.614159i −0.922665 0.385602i \(-0.873994\pi\)
0.0218595 + 0.999761i \(0.493041\pi\)
\(354\) 0 0
\(355\) 9.88317 + 10.6515i 0.524544 + 0.565324i
\(356\) −3.38361 4.24292i −0.179331 0.224874i
\(357\) 0 0
\(358\) −12.8773 + 16.1476i −0.680585 + 0.853427i
\(359\) 30.6677 2.29823i 1.61858 0.121296i 0.765628 0.643283i \(-0.222428\pi\)
0.852953 + 0.521988i \(0.174809\pi\)
\(360\) 0 0
\(361\) −5.98278 + 10.3625i −0.314883 + 0.545394i
\(362\) −12.0065 20.7958i −0.631046 1.09300i
\(363\) 0 0
\(364\) 4.77430 + 1.63666i 0.250241 + 0.0857842i
\(365\) −12.0889 2.75922i −0.632763 0.144424i
\(366\) 0 0
\(367\) 29.7416 11.6727i 1.55250 0.609311i 0.574609 0.818428i \(-0.305154\pi\)
0.977891 + 0.209117i \(0.0670588\pi\)
\(368\) −4.03782 + 1.58473i −0.210486 + 0.0826097i
\(369\) 0 0
\(370\) 7.13557 + 1.62865i 0.370961 + 0.0846694i
\(371\) −7.65005 + 4.87485i −0.397171 + 0.253090i
\(372\) 0 0
\(373\) 9.19831 + 15.9319i 0.476271 + 0.824925i 0.999630 0.0271870i \(-0.00865495\pi\)
−0.523360 + 0.852112i \(0.675322\pi\)
\(374\) 2.06749 3.58100i 0.106907 0.185169i
\(375\) 0 0
\(376\) 5.05894 0.379115i 0.260895 0.0195514i
\(377\) 1.91733 2.40426i 0.0987478 0.123826i
\(378\) 0 0
\(379\) −0.104337 0.130835i −0.00535945 0.00672053i 0.779145 0.626844i \(-0.215654\pi\)
−0.784504 + 0.620124i \(0.787082\pi\)
\(380\) −2.92946 3.15720i −0.150278 0.161961i
\(381\) 0 0
\(382\) 21.4874 14.6498i 1.09939 0.749551i
\(383\) −6.74017 1.01592i −0.344407 0.0519109i −0.0254385 0.999676i \(-0.508098\pi\)
−0.318968 + 0.947765i \(0.603336\pi\)
\(384\) 0 0
\(385\) 12.0952 14.2367i 0.616428 0.725567i
\(386\) −5.93437 + 12.3229i −0.302052 + 0.627217i
\(387\) 0 0
\(388\) 7.38014 7.95390i 0.374670 0.403798i
\(389\) 34.0283 + 2.55007i 1.72531 + 0.129294i 0.900141 0.435599i \(-0.143463\pi\)
0.825164 + 0.564893i \(0.191082\pi\)
\(390\) 0 0
\(391\) 4.12510i 0.208615i
\(392\) −0.434451 + 6.98651i −0.0219431 + 0.352872i
\(393\) 0 0
\(394\) 0.629931 1.60504i 0.0317355 0.0808607i
\(395\) −1.46025 + 19.4856i −0.0734730 + 0.980429i
\(396\) 0 0
\(397\) −11.0894 + 16.2651i −0.556559 + 0.816322i −0.996663 0.0816249i \(-0.973989\pi\)
0.440104 + 0.897947i \(0.354941\pi\)
\(398\) 13.7336 + 6.61376i 0.688403 + 0.331518i
\(399\) 0 0
\(400\) 2.12901 1.02528i 0.106450 0.0512638i
\(401\) 3.12229 20.7150i 0.155919 1.03446i −0.764810 0.644256i \(-0.777167\pi\)
0.920729 0.390202i \(-0.127595\pi\)
\(402\) 0 0
\(403\) 16.7014 2.51733i 0.831955 0.125397i
\(404\) 7.44654 6.90938i 0.370479 0.343754i
\(405\) 0 0
\(406\) 3.91998 + 1.68073i 0.194545 + 0.0834134i
\(407\) −15.3219 12.2188i −0.759476 0.605662i
\(408\) 0 0
\(409\) 3.95904 12.8349i 0.195762 0.634644i −0.803466 0.595351i \(-0.797013\pi\)
0.999228 0.0392935i \(-0.0125107\pi\)
\(410\) −4.60688 2.65978i −0.227518 0.131357i
\(411\) 0 0
\(412\) −14.2436 + 3.25101i −0.701733 + 0.160166i
\(413\) −11.9584 + 4.26982i −0.588435 + 0.210104i
\(414\) 0 0
\(415\) 12.7269 3.92571i 0.624737 0.192706i
\(416\) 0.696925 + 1.77574i 0.0341696 + 0.0870627i
\(417\) 0 0
\(418\) 3.39916 + 11.0198i 0.166258 + 0.538996i
\(419\) −0.595876 + 2.61070i −0.0291105 + 0.127541i −0.987395 0.158274i \(-0.949407\pi\)
0.958285 + 0.285815i \(0.0922643\pi\)
\(420\) 0 0
\(421\) 2.97734 + 13.0446i 0.145107 + 0.635754i 0.994203 + 0.107517i \(0.0342899\pi\)
−0.849097 + 0.528238i \(0.822853\pi\)
\(422\) −14.5803 + 8.41794i −0.709758 + 0.409779i
\(423\) 0 0
\(424\) −3.27629 1.01060i −0.159110 0.0490791i
\(425\) 0.167935 + 2.24094i 0.00814604 + 0.108701i
\(426\) 0 0
\(427\) −11.0613 20.6111i −0.535292 0.997443i
\(428\) 11.6363 9.27966i 0.562463 0.448550i
\(429\) 0 0
\(430\) −1.76837 11.7324i −0.0852785 0.565786i
\(431\) −1.75324 2.57153i −0.0844506 0.123866i 0.781689 0.623668i \(-0.214358\pi\)
−0.866140 + 0.499802i \(0.833406\pi\)
\(432\) 0 0
\(433\) −6.54701 13.5950i −0.314629 0.653335i 0.682348 0.731027i \(-0.260959\pi\)
−0.996977 + 0.0776930i \(0.975245\pi\)
\(434\) 9.50383 + 21.4112i 0.456199 + 1.02777i
\(435\) 0 0
\(436\) −5.70817 3.89177i −0.273372 0.186382i
\(437\) 8.43346 + 7.82510i 0.403427 + 0.374326i
\(438\) 0 0
\(439\) −18.2432 7.15992i −0.870700 0.341725i −0.112426 0.993660i \(-0.535862\pi\)
−0.758274 + 0.651936i \(0.773957\pi\)
\(440\) 7.06071 0.336606
\(441\) 0 0
\(442\) −1.81412 −0.0862889
\(443\) −21.9633 8.61997i −1.04351 0.409547i −0.219195 0.975681i \(-0.570343\pi\)
−0.824313 + 0.566134i \(0.808438\pi\)
\(444\) 0 0
\(445\) 6.46011 + 5.99410i 0.306238 + 0.284148i
\(446\) 2.43278 + 1.65864i 0.115195 + 0.0785389i
\(447\) 0 0
\(448\) −2.11875 + 1.58458i −0.100102 + 0.0748644i
\(449\) 3.75137 + 7.78981i 0.177038 + 0.367624i 0.970538 0.240946i \(-0.0774577\pi\)
−0.793500 + 0.608570i \(0.791743\pi\)
\(450\) 0 0
\(451\) 8.02368 + 11.7686i 0.377820 + 0.554161i
\(452\) −2.00957 13.3327i −0.0945224 0.627115i
\(453\) 0 0
\(454\) 4.35879 3.47602i 0.204568 0.163138i
\(455\) −8.06241 1.47254i −0.377971 0.0690338i
\(456\) 0 0
\(457\) 0.0941673 + 1.25658i 0.00440496 + 0.0587801i 0.998973 0.0453076i \(-0.0144268\pi\)
−0.994568 + 0.104088i \(0.966808\pi\)
\(458\) −26.5400 8.18650i −1.24013 0.382530i
\(459\) 0 0
\(460\) 6.10015 3.52192i 0.284421 0.164210i
\(461\) 1.71118 + 7.49715i 0.0796974 + 0.349177i 0.999017 0.0443352i \(-0.0141170\pi\)
−0.919319 + 0.393512i \(0.871260\pi\)
\(462\) 0 0
\(463\) −5.74310 + 25.1622i −0.266904 + 1.16938i 0.646689 + 0.762754i \(0.276153\pi\)
−0.913593 + 0.406630i \(0.866704\pi\)
\(464\) 0.475163 + 1.54044i 0.0220589 + 0.0715131i
\(465\) 0 0
\(466\) 8.78798 + 22.3914i 0.407095 + 1.03726i
\(467\) −27.1797 + 8.38382i −1.25773 + 0.387957i −0.850793 0.525501i \(-0.823878\pi\)
−0.406933 + 0.913458i \(0.633402\pi\)
\(468\) 0 0
\(469\) −8.86870 + 8.98201i −0.409518 + 0.414751i
\(470\) −8.03159 + 1.83316i −0.370470 + 0.0845573i
\(471\) 0 0
\(472\) −4.15634 2.39967i −0.191311 0.110454i
\(473\) −9.36414 + 30.3578i −0.430564 + 1.39585i
\(474\) 0 0
\(475\) −4.89999 3.90761i −0.224827 0.179294i
\(476\) −0.666628 2.42618i −0.0305548 0.111204i
\(477\) 0 0
\(478\) 11.6200 10.7818i 0.531487 0.493148i
\(479\) 23.2533 3.50487i 1.06247 0.160142i 0.405528 0.914083i \(-0.367088\pi\)
0.656942 + 0.753941i \(0.271850\pi\)
\(480\) 0 0
\(481\) −1.28145 + 8.50184i −0.0584289 + 0.387650i
\(482\) −17.0679 + 8.21947i −0.777422 + 0.374387i
\(483\) 0 0
\(484\) −7.12270 3.43011i −0.323759 0.155914i
\(485\) −9.92554 + 14.5581i −0.450695 + 0.661049i
\(486\) 0 0
\(487\) −2.19340 + 29.2689i −0.0993925 + 1.32630i 0.695050 + 0.718961i \(0.255382\pi\)
−0.794442 + 0.607339i \(0.792237\pi\)
\(488\) 3.23006 8.23006i 0.146218 0.372557i
\(489\) 0 0
\(490\) −0.993303 11.3237i −0.0448729 0.511551i
\(491\) 12.3451i 0.557127i 0.960418 + 0.278564i \(0.0898583\pi\)
−0.960418 + 0.278564i \(0.910142\pi\)
\(492\) 0 0
\(493\) −1.52877 0.114566i −0.0688525 0.00515978i
\(494\) 3.44129 3.70883i 0.154831 0.166868i
\(495\) 0 0
\(496\) −3.84163 + 7.97724i −0.172494 + 0.358188i
\(497\) −21.0004 10.9291i −0.941997 0.490236i
\(498\) 0 0
\(499\) −0.739393 0.111446i −0.0330998 0.00498899i 0.132472 0.991187i \(-0.457709\pi\)
−0.165571 + 0.986198i \(0.552947\pi\)
\(500\) −9.87904 + 6.73542i −0.441804 + 0.301217i
\(501\) 0 0
\(502\) −10.0516 10.8330i −0.448623 0.483501i
\(503\) 21.4587 + 26.9083i 0.956796 + 1.19978i 0.979786 + 0.200048i \(0.0641098\pi\)
−0.0229906 + 0.999736i \(0.507319\pi\)
\(504\) 0 0
\(505\) −10.2850 + 12.8969i −0.457675 + 0.573906i
\(506\) −18.8077 + 1.40944i −0.836104 + 0.0626573i
\(507\) 0 0
\(508\) 7.95332 13.7756i 0.352872 0.611192i
\(509\) 5.51608 + 9.55414i 0.244496 + 0.423480i 0.961990 0.273085i \(-0.0880441\pi\)
−0.717494 + 0.696565i \(0.754711\pi\)
\(510\) 0 0
\(511\) 20.0610 2.38938i 0.887445 0.105700i
\(512\) −0.974928 0.222521i −0.0430861 0.00983413i
\(513\) 0 0
\(514\) 4.36512 1.71318i 0.192537 0.0755653i
\(515\) 22.0847 8.66762i 0.973169 0.381941i
\(516\) 0 0
\(517\) 21.5052 + 4.90842i 0.945798 + 0.215872i
\(518\) −11.8411 + 1.41035i −0.520269 + 0.0619672i
\(519\) 0 0
\(520\) −1.54886 2.68270i −0.0679218 0.117644i
\(521\) 11.5969 20.0864i 0.508070 0.880003i −0.491887 0.870659i \(-0.663693\pi\)
0.999956 0.00934346i \(-0.00297416\pi\)
\(522\) 0 0
\(523\) 2.58564 0.193767i 0.113062 0.00847285i −0.0180788 0.999837i \(-0.505755\pi\)
0.131141 + 0.991364i \(0.458136\pi\)
\(524\) 6.88858 8.63801i 0.300929 0.377353i
\(525\) 0 0
\(526\) −17.4484 21.8796i −0.760785 0.953994i
\(527\) −5.72717 6.17242i −0.249479 0.268875i
\(528\) 0 0
\(529\) 3.45751 2.35729i 0.150327 0.102491i
\(530\) 5.50546 + 0.829814i 0.239142 + 0.0360448i
\(531\) 0 0
\(532\) 6.22470 + 3.23947i 0.269875 + 0.140449i
\(533\) 2.71134 5.63016i 0.117441 0.243869i
\(534\) 0 0
\(535\) −16.4390 + 17.7170i −0.710720 + 0.765974i
\(536\) −4.75756 0.356530i −0.205495 0.0153997i
\(537\) 0 0
\(538\) 25.3766i 1.09406i
\(539\) −10.7591 + 28.4713i −0.463427 + 1.22635i
\(540\) 0 0
\(541\) 13.8981 35.4117i 0.597525 1.52247i −0.237006 0.971508i \(-0.576166\pi\)
0.834531 0.550961i \(-0.185739\pi\)
\(542\) 1.64536 21.9558i 0.0706743 0.943083i
\(543\) 0 0
\(544\) 0.535714 0.785749i 0.0229686 0.0336887i
\(545\) 10.1078 + 4.86764i 0.432969 + 0.208507i
\(546\) 0 0
\(547\) 26.1700 12.6028i 1.11895 0.538857i 0.219381 0.975639i \(-0.429596\pi\)
0.899567 + 0.436782i \(0.143882\pi\)
\(548\) −0.438253 + 2.90762i −0.0187212 + 0.124207i
\(549\) 0 0
\(550\) 10.1598 1.53134i 0.433215 0.0652967i
\(551\) 3.13423 2.90814i 0.133522 0.123891i
\(552\) 0 0
\(553\) −8.43495 30.6988i −0.358690 1.30545i
\(554\) 3.33200 + 2.65718i 0.141563 + 0.112893i
\(555\) 0 0
\(556\) 1.16387 3.77318i 0.0493591 0.160018i
\(557\) −12.8654 7.42782i −0.545123 0.314727i 0.202030 0.979379i \(-0.435246\pi\)
−0.747153 + 0.664653i \(0.768580\pi\)
\(558\) 0 0
\(559\) 13.5885 3.10149i 0.574732 0.131179i
\(560\) 3.01865 3.05722i 0.127561 0.129191i
\(561\) 0 0
\(562\) 3.46203 1.06789i 0.146037 0.0450464i
\(563\) 3.34839 + 8.53157i 0.141118 + 0.359563i 0.983907 0.178681i \(-0.0571831\pi\)
−0.842789 + 0.538244i \(0.819088\pi\)
\(564\) 0 0
\(565\) 6.45371 + 20.9224i 0.271510 + 0.880212i
\(566\) 2.16990 9.50695i 0.0912077 0.399607i
\(567\) 0 0
\(568\) −1.99111 8.72361i −0.0835450 0.366035i
\(569\) 11.7066 6.75881i 0.490766 0.283344i −0.234126 0.972206i \(-0.575223\pi\)
0.724892 + 0.688862i \(0.241890\pi\)
\(570\) 0 0
\(571\) −36.0564 11.1219i −1.50891 0.465439i −0.573564 0.819161i \(-0.694440\pi\)
−0.935351 + 0.353722i \(0.884916\pi\)
\(572\) 0.619839 + 8.27117i 0.0259168 + 0.345835i
\(573\) 0 0
\(574\) 8.52603 + 1.55722i 0.355869 + 0.0649971i
\(575\) 8.01377 6.39077i 0.334197 0.266514i
\(576\) 0 0
\(577\) 4.37965 + 29.0570i 0.182327 + 1.20966i 0.873446 + 0.486920i \(0.161880\pi\)
−0.691119 + 0.722741i \(0.742882\pi\)
\(578\) −9.06698 13.2988i −0.377137 0.553158i
\(579\) 0 0
\(580\) −1.13581 2.35854i −0.0471621 0.0979332i
\(581\) −17.3774 + 12.9963i −0.720934 + 0.539176i
\(582\) 0 0
\(583\) −12.3174 8.39786i −0.510134 0.347804i
\(584\) 5.59753 + 5.19375i 0.231628 + 0.214919i
\(585\) 0 0
\(586\) −10.0726 3.95321i −0.416096 0.163306i
\(587\) 12.9063 0.532700 0.266350 0.963876i \(-0.414182\pi\)
0.266350 + 0.963876i \(0.414182\pi\)
\(588\) 0 0
\(589\) 23.4832 0.967608
\(590\) 7.25479 + 2.84729i 0.298675 + 0.117221i
\(591\) 0 0
\(592\) −3.30398 3.06565i −0.135793 0.125997i
\(593\) −1.19492 0.814685i −0.0490696 0.0334551i 0.538537 0.842602i \(-0.318977\pi\)
−0.587606 + 0.809147i \(0.699930\pi\)
\(594\) 0 0
\(595\) 1.65763 + 3.73447i 0.0679562 + 0.153098i
\(596\) 3.35199 + 6.96048i 0.137303 + 0.285112i
\(597\) 0 0
\(598\) 4.66122 + 6.83675i 0.190611 + 0.279575i
\(599\) 0.250504 + 1.66199i 0.0102353 + 0.0679070i 0.993365 0.115001i \(-0.0366871\pi\)
−0.983130 + 0.182908i \(0.941449\pi\)
\(600\) 0 0
\(601\) 14.9484 11.9210i 0.609759 0.486266i −0.269251 0.963070i \(-0.586776\pi\)
0.879010 + 0.476804i \(0.158205\pi\)
\(602\) 9.14120 + 17.0334i 0.372568 + 0.694229i
\(603\) 0 0
\(604\) 0.683478 + 9.12038i 0.0278103 + 0.371103i
\(605\) 12.2674 + 3.78399i 0.498740 + 0.153841i
\(606\) 0 0
\(607\) 12.6602 7.30934i 0.513860 0.296677i −0.220559 0.975374i \(-0.570788\pi\)
0.734419 + 0.678697i \(0.237455\pi\)
\(608\) 0.590181 + 2.58575i 0.0239350 + 0.104866i
\(609\) 0 0
\(610\) −3.19475 + 13.9971i −0.129352 + 0.566726i
\(611\) −2.85250 9.24756i −0.115400 0.374116i
\(612\) 0 0
\(613\) 9.00331 + 22.9401i 0.363640 + 0.926540i 0.989228 + 0.146386i \(0.0467642\pi\)
−0.625587 + 0.780154i \(0.715141\pi\)
\(614\) 2.27382 0.701380i 0.0917638 0.0283054i
\(615\) 0 0
\(616\) −10.8340 + 3.86834i −0.436514 + 0.155860i
\(617\) 44.5663 10.1720i 1.79417 0.409508i 0.809959 0.586487i \(-0.199489\pi\)
0.984215 + 0.176978i \(0.0566323\pi\)
\(618\) 0 0
\(619\) −18.2253 10.5224i −0.732538 0.422931i 0.0868122 0.996225i \(-0.472332\pi\)
−0.819350 + 0.573294i \(0.805665\pi\)
\(620\) 4.23797 13.7391i 0.170201 0.551777i
\(621\) 0 0
\(622\) 25.4373 + 20.2856i 1.01994 + 0.813378i
\(623\) −13.1964 5.65808i −0.528702 0.226686i
\(624\) 0 0
\(625\) 5.57195 5.17001i 0.222878 0.206800i
\(626\) −6.30335 + 0.950077i −0.251933 + 0.0379727i
\(627\) 0 0
\(628\) 0.295246 1.95883i 0.0117816 0.0781659i
\(629\) 3.86181 1.85975i 0.153980 0.0741531i
\(630\) 0 0
\(631\) 26.0923 + 12.5654i 1.03872 + 0.500220i 0.873901 0.486105i \(-0.161583\pi\)
0.164816 + 0.986324i \(0.447297\pi\)
\(632\) 6.77848 9.94221i 0.269634 0.395480i
\(633\) 0 0
\(634\) −0.393351 + 5.24890i −0.0156220 + 0.208461i
\(635\) −9.43692 + 24.0449i −0.374493 + 0.954192i
\(636\) 0 0
\(637\) 13.1777 2.15766i 0.522121 0.0854896i
\(638\) 7.00932i 0.277502i
\(639\) 0 0
\(640\) 1.61934 + 0.121353i 0.0640099 + 0.00479688i
\(641\) 20.5700 22.1692i 0.812465 0.875630i −0.181716 0.983351i \(-0.558165\pi\)
0.994181 + 0.107722i \(0.0343555\pi\)
\(642\) 0 0
\(643\) −19.6635 + 40.8316i −0.775452 + 1.61024i 0.0166569 + 0.999861i \(0.494698\pi\)
−0.792108 + 0.610380i \(0.791017\pi\)
\(644\) −7.43054 + 8.74612i −0.292804 + 0.344645i
\(645\) 0 0
\(646\) −2.49411 0.375926i −0.0981293 0.0147906i
\(647\) −13.2272 + 9.01816i −0.520015 + 0.354540i −0.794708 0.606992i \(-0.792376\pi\)
0.274693 + 0.961532i \(0.411424\pi\)
\(648\) 0 0
\(649\) −14.1937 15.2972i −0.557151 0.600466i
\(650\) −2.81051 3.52427i −0.110237 0.138233i
\(651\) 0 0
\(652\) −3.51542 + 4.40820i −0.137674 + 0.172638i
\(653\) 15.2548 1.14319i 0.596965 0.0447363i 0.227179 0.973853i \(-0.427050\pi\)
0.369786 + 0.929117i \(0.379431\pi\)
\(654\) 0 0
\(655\) −8.97064 + 15.5376i −0.350512 + 0.607105i
\(656\) 1.63792 + 2.83696i 0.0639501 + 0.110765i
\(657\) 0 0
\(658\) 11.3194 7.21306i 0.441275 0.281194i
\(659\) −3.31217 0.755980i −0.129024 0.0294488i 0.157521 0.987516i \(-0.449650\pi\)
−0.286545 + 0.958067i \(0.592507\pi\)
\(660\) 0 0
\(661\) 24.2723 9.52616i 0.944082 0.370525i 0.157157 0.987574i \(-0.449767\pi\)
0.786925 + 0.617049i \(0.211672\pi\)
\(662\) 3.59062 1.40922i 0.139553 0.0547707i
\(663\) 0 0
\(664\) −7.99607 1.82505i −0.310308 0.0708257i
\(665\) −10.7793 3.69520i −0.418003 0.143294i
\(666\) 0 0
\(667\) 3.49629 + 6.05575i 0.135377 + 0.234479i
\(668\) 8.57143 14.8462i 0.331639 0.574415i
\(669\) 0 0
\(670\) 7.72569 0.578961i 0.298470 0.0223672i
\(671\) 23.9683 30.0553i 0.925286 1.16027i
\(672\) 0 0
\(673\) −5.24624 6.57858i −0.202228 0.253586i 0.670368 0.742029i \(-0.266136\pi\)
−0.872596 + 0.488443i \(0.837565\pi\)
\(674\) −1.71642 1.84986i −0.0661142 0.0712541i
\(675\) 0 0
\(676\) −7.73447 + 5.27327i −0.297479 + 0.202818i
\(677\) −9.20202 1.38698i −0.353662 0.0533060i −0.0301914 0.999544i \(-0.509612\pi\)
−0.323471 + 0.946238i \(0.604850\pi\)
\(678\) 0 0
\(679\) 7.25386 27.7759i 0.278378 1.06594i
\(680\) −0.670046 + 1.39137i −0.0256951 + 0.0533564i
\(681\) 0 0
\(682\) −26.1853 + 28.2210i −1.00269 + 1.08064i
\(683\) 7.75184 + 0.580920i 0.296616 + 0.0222283i 0.222207 0.975000i \(-0.428674\pi\)
0.0744089 + 0.997228i \(0.476293\pi\)
\(684\) 0 0
\(685\) 4.77495i 0.182442i
\(686\) 7.72800 + 16.8309i 0.295056 + 0.642605i
\(687\) 0 0
\(688\) −2.66938 + 6.80146i −0.101769 + 0.259303i
\(689\) −0.488766 + 6.52213i −0.0186205 + 0.248473i
\(690\) 0 0
\(691\) 11.0559 16.2161i 0.420587 0.616888i −0.556214 0.831039i \(-0.687746\pi\)
0.976800 + 0.214152i \(0.0686987\pi\)
\(692\) 15.6841 + 7.55307i 0.596220 + 0.287125i
\(693\) 0 0
\(694\) −15.8923 + 7.65335i −0.603265 + 0.290517i
\(695\) −0.955666 + 6.34043i −0.0362505 + 0.240506i
\(696\) 0 0
\(697\) −3.08051 + 0.464313i −0.116683 + 0.0175871i
\(698\) 16.5085 15.3176i 0.624855 0.579780i
\(699\) 0 0
\(700\) 3.68054 5.05378i 0.139111 0.191015i
\(701\) 12.0423 + 9.60341i 0.454831 + 0.362716i 0.823946 0.566668i \(-0.191768\pi\)
−0.369115 + 0.929384i \(0.620339\pi\)
\(702\) 0 0
\(703\) −3.52354 + 11.4230i −0.132893 + 0.430828i
\(704\) −3.76553 2.17403i −0.141919 0.0819368i
\(705\) 0 0
\(706\) −19.9703 + 4.55810i −0.751594 + 0.171546i
\(707\) 8.71546 25.4239i 0.327779 0.956164i
\(708\) 0 0
\(709\) −6.07678 + 1.87444i −0.228218 + 0.0703960i −0.406755 0.913537i \(-0.633340\pi\)
0.178537 + 0.983933i \(0.442864\pi\)
\(710\) 5.30855 + 13.5260i 0.199226 + 0.507620i
\(711\) 0 0
\(712\) −1.59961 5.18580i −0.0599478 0.194346i
\(713\) −8.54614 + 37.4431i −0.320055 + 1.40225i
\(714\) 0 0
\(715\) −2.99714 13.1313i −0.112087 0.491084i
\(716\) −17.8865 + 10.3268i −0.668450 + 0.385930i
\(717\) 0 0
\(718\) 29.3874 + 9.06482i 1.09673 + 0.338296i
\(719\) −3.31405 44.2229i −0.123593 1.64923i −0.622529 0.782596i \(-0.713895\pi\)
0.498936 0.866639i \(-0.333724\pi\)
\(720\) 0 0
\(721\) −29.1382 + 25.3991i −1.08516 + 0.945913i
\(722\) −9.35505 + 7.46041i −0.348159 + 0.277648i
\(723\) 0 0
\(724\) −3.57894 23.7447i −0.133010 0.882467i
\(725\) −2.14587 3.14741i −0.0796957 0.116892i
\(726\) 0 0
\(727\) 0.503576 + 1.04569i 0.0186766 + 0.0387823i 0.910098 0.414392i \(-0.136006\pi\)
−0.891422 + 0.453174i \(0.850291\pi\)
\(728\) 3.84633 + 3.26777i 0.142555 + 0.121112i
\(729\) 0 0
\(730\) −10.2452 6.98507i −0.379192 0.258529i
\(731\) −5.09359 4.72616i −0.188393 0.174803i
\(732\) 0 0
\(733\) −37.2505 14.6197i −1.37588 0.539993i −0.441818 0.897105i \(-0.645666\pi\)
−0.934062 + 0.357112i \(0.883761\pi\)
\(734\) 31.9502 1.17930
\(735\) 0 0
\(736\) −4.33767 −0.159889
\(737\) −19.3102 7.57869i −0.711299 0.279164i
\(738\) 0 0
\(739\) −18.1209 16.8137i −0.666587 0.618503i 0.272510 0.962153i \(-0.412146\pi\)
−0.939098 + 0.343650i \(0.888337\pi\)
\(740\) 6.04730 + 4.12298i 0.222303 + 0.151564i
\(741\) 0 0
\(742\) −8.90222 + 1.74299i −0.326811 + 0.0639873i
\(743\) −14.4587 30.0237i −0.530437 1.10146i −0.978268 0.207346i \(-0.933517\pi\)
0.447831 0.894118i \(-0.352197\pi\)
\(744\) 0 0
\(745\) −7.06705 10.3655i −0.258917 0.379761i
\(746\) 2.74187 + 18.1911i 0.100387 + 0.666025i
\(747\) 0 0
\(748\) 3.23286 2.57812i 0.118205 0.0942653i
\(749\) 15.5175 36.1915i 0.566996 1.32241i
\(750\) 0 0
\(751\) 3.61879 + 48.2894i 0.132052 + 1.76211i 0.533103 + 0.846050i \(0.321026\pi\)
−0.401052 + 0.916055i \(0.631355\pi\)
\(752\) 4.84774 + 1.49533i 0.176779 + 0.0545291i
\(753\) 0 0
\(754\) 2.66317 1.53758i 0.0969870 0.0559955i
\(755\) −3.30486 14.4795i −0.120276 0.526965i
\(756\) 0 0
\(757\) −3.68140 + 16.1292i −0.133803 + 0.586227i 0.862921 + 0.505339i \(0.168633\pi\)
−0.996723 + 0.0808879i \(0.974224\pi\)
\(758\) −0.0493255 0.159909i −0.00179158 0.00580817i
\(759\) 0 0
\(760\) −1.57350 4.00921i −0.0570768 0.145429i
\(761\) −34.3827 + 10.6057i −1.24637 + 0.384455i −0.846635 0.532174i \(-0.821375\pi\)
−0.399738 + 0.916629i \(0.630899\pi\)
\(762\) 0 0
\(763\) −18.1762 1.93121i −0.658023 0.0699143i
\(764\) 25.3542 5.78693i 0.917283 0.209364i
\(765\) 0 0
\(766\) −5.90309 3.40815i −0.213287 0.123142i
\(767\) −2.69855 + 8.74847i −0.0974389 + 0.315889i
\(768\) 0 0
\(769\) −37.5445 29.9408i −1.35389 1.07969i −0.988884 0.148687i \(-0.952495\pi\)
−0.365006 0.931005i \(-0.618933\pi\)
\(770\) 16.4603 8.83366i 0.593189 0.318343i
\(771\) 0 0
\(772\) −10.0262 + 9.30295i −0.360851 + 0.334820i
\(773\) −6.36699 + 0.959670i −0.229005 + 0.0345169i −0.262542 0.964921i \(-0.584561\pi\)
0.0335373 + 0.999437i \(0.489323\pi\)
\(774\) 0 0
\(775\) 3.11831 20.6887i 0.112013 0.743158i
\(776\) 9.77586 4.70781i 0.350933 0.169000i
\(777\) 0 0
\(778\) 30.7444 + 14.8057i 1.10224 + 0.530812i
\(779\) 4.89433 7.17866i 0.175357 0.257202i
\(780\) 0 0
\(781\) 2.90747 38.7974i 0.104037 1.38828i
\(782\) 1.50707 3.83995i 0.0538926 0.137316i
\(783\) 0 0
\(784\) −2.95688 + 6.34483i −0.105603 + 0.226601i
\(785\) 3.21683i 0.114814i
\(786\) 0 0
\(787\) −33.8379 2.53580i −1.20619 0.0903916i −0.543582 0.839356i \(-0.682932\pi\)
−0.662610 + 0.748964i \(0.730551\pi\)
\(788\) 1.17277 1.26395i 0.0417783 0.0450263i
\(789\) 0 0
\(790\) −8.47821 + 17.6052i −0.301641 + 0.626364i
\(791\) −21.3653 28.5676i −0.759663 1.01575i
\(792\) 0 0
\(793\) −16.6772 2.51368i −0.592224 0.0892633i
\(794\) −16.2651 + 11.0894i −0.577227 + 0.393546i
\(795\) 0 0
\(796\) 10.3680 + 11.1740i 0.367483 + 0.396053i
\(797\) −31.9868 40.1101i −1.13303 1.42077i −0.893028 0.450001i \(-0.851424\pi\)
−0.240001 0.970773i \(-0.577148\pi\)
\(798\) 0 0
\(799\) −3.00804 + 3.77196i −0.106417 + 0.133442i
\(800\) 2.35641 0.176589i 0.0833118 0.00624336i
\(801\) 0 0
\(802\) 10.4745 18.1424i 0.369867 0.640629i
\(803\) 16.6007 + 28.7533i 0.585827 + 1.01468i
\(804\) 0 0
\(805\) 9.81472 15.8424i 0.345923 0.558371i
\(806\) 16.4666 + 3.75839i 0.580010 + 0.132383i
\(807\) 0 0
\(808\) 9.45607 3.71123i 0.332663 0.130561i
\(809\) 7.61156 2.98732i 0.267608 0.105028i −0.227743 0.973721i \(-0.573135\pi\)
0.495351 + 0.868693i \(0.335039\pi\)
\(810\) 0 0
\(811\) 35.3228 + 8.06219i 1.24035 + 0.283102i 0.791869 0.610690i \(-0.209108\pi\)
0.448481 + 0.893792i \(0.351965\pi\)
\(812\) 3.03497 + 2.99668i 0.106507 + 0.105163i
\(813\) 0 0
\(814\) −9.79869 16.9718i −0.343444 0.594863i
\(815\) 4.57795 7.92924i 0.160359 0.277749i
\(816\) 0 0
\(817\) 19.3246 1.44818i 0.676081 0.0506653i
\(818\) 8.37448 10.5013i 0.292807 0.367168i
\(819\) 0 0
\(820\) −3.31670 4.15901i −0.115824 0.145239i
\(821\) −25.6977 27.6955i −0.896856 0.966581i 0.102748 0.994707i \(-0.467236\pi\)
−0.999604 + 0.0281263i \(0.991046\pi\)
\(822\) 0 0
\(823\) 6.09735 4.15710i 0.212540 0.144908i −0.452371 0.891830i \(-0.649422\pi\)
0.664911 + 0.746922i \(0.268469\pi\)
\(824\) −14.4467 2.17750i −0.503276 0.0758567i
\(825\) 0 0
\(826\) −12.6917 0.394232i −0.441601 0.0137171i
\(827\) −14.4161 + 29.9353i −0.501297 + 1.04095i 0.484776 + 0.874638i \(0.338901\pi\)
−0.986073 + 0.166315i \(0.946813\pi\)
\(828\) 0 0
\(829\) −32.1937 + 34.6966i −1.11813 + 1.20506i −0.141549 + 0.989931i \(0.545208\pi\)
−0.976585 + 0.215131i \(0.930982\pi\)
\(830\) 13.2813 + 0.995297i 0.461001 + 0.0345473i
\(831\) 0 0
\(832\) 1.90760i 0.0661342i
\(833\) −4.58947 4.82202i −0.159016 0.167073i
\(834\) 0 0
\(835\) −10.1703 + 25.9136i −0.351959 + 0.896777i
\(836\) −0.861798 + 11.4999i −0.0298059 + 0.397732i
\(837\) 0 0
\(838\) −1.50848 + 2.21254i −0.0521097 + 0.0764308i
\(839\) −15.7328 7.57653i −0.543157 0.261571i 0.142125 0.989849i \(-0.454607\pi\)
−0.685282 + 0.728278i \(0.740321\pi\)
\(840\) 0 0
\(841\) −23.7867 + 11.4551i −0.820232 + 0.395003i
\(842\) −1.99419 + 13.2306i −0.0687244 + 0.455957i
\(843\) 0 0
\(844\) −16.6478 + 2.50926i −0.573042 + 0.0863722i
\(845\) 11.1433 10.3394i 0.383340 0.355688i
\(846\) 0 0
\(847\) −20.8962 + 0.914746i −0.718004 + 0.0314310i
\(848\) −2.68059 2.13770i −0.0920520 0.0734090i
\(849\) 0 0
\(850\) −0.662380 + 2.14738i −0.0227194 + 0.0736546i
\(851\) −16.9313 9.77528i −0.580397 0.335092i
\(852\) 0 0
\(853\) −45.7346 + 10.4386i −1.56592 + 0.357412i −0.915551 0.402203i \(-0.868245\pi\)
−0.650373 + 0.759615i \(0.725387\pi\)
\(854\) −2.76653 23.2275i −0.0946689 0.794829i
\(855\) 0 0
\(856\) 14.2222 4.38697i 0.486105 0.149943i
\(857\) −15.3478 39.1056i −0.524272 1.33582i −0.910534 0.413434i \(-0.864329\pi\)
0.386262 0.922389i \(-0.373766\pi\)
\(858\) 0 0
\(859\) −10.2255 33.1502i −0.348889 1.13107i −0.944697 0.327944i \(-0.893644\pi\)
0.595808 0.803127i \(-0.296832\pi\)
\(860\) 2.64019 11.5674i 0.0900298 0.394446i
\(861\) 0 0
\(862\) −0.692560 3.03430i −0.0235887 0.103349i
\(863\) 33.9801 19.6184i 1.15670 0.667819i 0.206187 0.978513i \(-0.433895\pi\)
0.950510 + 0.310693i \(0.100561\pi\)
\(864\) 0 0
\(865\) −27.0127 8.33230i −0.918458 0.283307i
\(866\) −1.12763 15.0471i −0.0383183 0.511322i
\(867\) 0 0
\(868\) 1.02449 + 23.4032i 0.0347735 + 0.794358i
\(869\) 40.9059 32.6213i 1.38764 1.10660i
\(870\) 0 0
\(871\) 1.35643 + 8.99933i 0.0459609 + 0.304931i
\(872\) −3.89177 5.70817i −0.131792 0.193303i
\(873\) 0 0
\(874\) 4.99165 + 10.3653i 0.168845 + 0.350611i
\(875\) −14.6039 + 28.0616i −0.493702 + 0.948657i
\(876\) 0 0
\(877\) 25.0087 + 17.0506i 0.844483 + 0.575759i 0.906447 0.422319i \(-0.138784\pi\)
−0.0619636 + 0.998078i \(0.519736\pi\)
\(878\) −14.3663 13.3300i −0.484839 0.449865i
\(879\) 0 0
\(880\) 6.57263 + 2.57957i 0.221563 + 0.0869572i
\(881\) −31.8194 −1.07202 −0.536011 0.844211i \(-0.680069\pi\)
−0.536011 + 0.844211i \(0.680069\pi\)
\(882\) 0 0
\(883\) 41.9292 1.41103 0.705516 0.708694i \(-0.250715\pi\)
0.705516 + 0.708694i \(0.250715\pi\)
\(884\) −1.68872 0.662772i −0.0567977 0.0222914i
\(885\) 0 0
\(886\) −17.2958 16.0482i −0.581065 0.539150i
\(887\) −3.79381 2.58658i −0.127384 0.0868487i 0.497952 0.867205i \(-0.334086\pi\)
−0.625336 + 0.780356i \(0.715038\pi\)
\(888\) 0 0
\(889\) 1.30662 42.0648i 0.0438227 1.41081i
\(890\) 3.82365 + 7.93989i 0.128169 + 0.266146i
\(891\) 0 0
\(892\) 1.65864 + 2.43278i 0.0555354 + 0.0814554i
\(893\) −2.00539 13.3049i −0.0671080 0.445232i
\(894\) 0 0
\(895\) 26.2217 20.9111i 0.876495 0.698982i
\(896\) −2.55120 + 0.700979i −0.0852297 + 0.0234181i
\(897\) 0 0
\(898\) 0.646119 + 8.62186i 0.0215613 + 0.287715i
\(899\) 13.6391 + 4.20712i 0.454891 + 0.140315i
\(900\) 0 0
\(901\) 2.82375 1.63029i 0.0940728 0.0543130i
\(902\) 3.16949 + 13.8864i 0.105532 + 0.462368i
\(903\) 0 0
\(904\) 3.00031 13.1452i 0.0997887 0.437203i
\(905\) 11.4937 + 37.2617i 0.382064 + 1.23862i
\(906\) 0 0
\(907\) −15.6548 39.8878i −0.519810 1.32445i −0.914108 0.405471i \(-0.867108\pi\)
0.394298 0.918983i \(-0.370988\pi\)
\(908\) 5.32741 1.64329i 0.176796 0.0545345i
\(909\) 0 0
\(910\) −6.96710 4.31628i −0.230957 0.143083i
\(911\) −18.5861 + 4.24216i −0.615785 + 0.140549i −0.519025 0.854759i \(-0.673705\pi\)
−0.0967596 + 0.995308i \(0.530848\pi\)
\(912\) 0 0
\(913\) −30.8837 17.8307i −1.02210 0.590111i
\(914\) −0.371421 + 1.20412i −0.0122855 + 0.0398286i
\(915\) 0 0
\(916\) −21.7145 17.3167i −0.717468 0.572162i
\(917\) 5.25203 28.7557i 0.173437 0.949597i
\(918\) 0 0
\(919\) 28.2970 26.2558i 0.933432 0.866099i −0.0577867 0.998329i \(-0.518404\pi\)
0.991219 + 0.132230i \(0.0422139\pi\)
\(920\) 6.96517 1.04983i 0.229635 0.0346119i
\(921\) 0 0
\(922\) −1.14613 + 7.60407i −0.0377457 + 0.250427i
\(923\) −15.3788 + 7.40602i −0.506198 + 0.243772i
\(924\) 0 0
\(925\) 9.59578 + 4.62108i 0.315507 + 0.151940i
\(926\) −14.5389 + 21.3246i −0.477777 + 0.700770i
\(927\) 0 0
\(928\) −0.120469 + 1.60755i −0.00395460 + 0.0527704i
\(929\) −18.6826 + 47.6025i −0.612956 + 1.56179i 0.200209 + 0.979753i \(0.435838\pi\)
−0.813165 + 0.582034i \(0.802257\pi\)
\(930\) 0 0
\(931\) 18.5643 0.235695i 0.608419 0.00772459i
\(932\) 24.0542i 0.787921i
\(933\) 0 0
\(934\) −28.3638 2.12557i −0.928092 0.0695509i
\(935\) −4.56716 + 4.92222i −0.149362 + 0.160974i
\(936\) 0 0
\(937\) −9.80260 + 20.3553i −0.320237 + 0.664979i −0.997493 0.0707686i \(-0.977455\pi\)
0.677256 + 0.735748i \(0.263169\pi\)
\(938\) −11.5371 + 5.12102i −0.376701 + 0.167207i
\(939\) 0 0
\(940\) −8.14613 1.22783i −0.265697 0.0400474i
\(941\) −32.1758 + 21.9371i −1.04890 + 0.715129i −0.959740 0.280888i \(-0.909371\pi\)
−0.0891610 + 0.996017i \(0.528419\pi\)
\(942\) 0 0
\(943\) 9.66493 + 10.4163i 0.314733 + 0.339202i
\(944\) −2.99233 3.75227i −0.0973922 0.122126i
\(945\) 0 0
\(946\) −19.8078 + 24.8382i −0.644007 + 0.807559i
\(947\) −26.3334 + 1.97342i −0.855721 + 0.0641274i −0.495362 0.868687i \(-0.664965\pi\)
−0.360358 + 0.932814i \(0.617346\pi\)
\(948\) 0 0
\(949\) 7.28316 12.6148i 0.236421 0.409494i
\(950\) −3.13366 5.42766i −0.101669 0.176097i
\(951\) 0 0
\(952\) 0.265837 2.50201i 0.00861582 0.0810907i
\(953\) 21.2664 + 4.85392i 0.688887 + 0.157234i 0.552614 0.833437i \(-0.313630\pi\)
0.136273 + 0.990671i \(0.456488\pi\)
\(954\) 0 0
\(955\) −39.3117 + 15.4287i −1.27210 + 0.499261i
\(956\) 14.7558 5.79122i 0.477237 0.187302i
\(957\) 0 0
\(958\) 22.9264 + 5.23279i 0.740717 + 0.169064i
\(959\) 2.61604 + 7.32670i 0.0844764 + 0.236592i
\(960\) 0 0
\(961\) 23.6972 + 41.0448i 0.764426 + 1.32403i
\(962\) −4.29893 + 7.44597i −0.138603 + 0.240068i
\(963\) 0 0
\(964\) −18.8910 + 1.41568i −0.608438 + 0.0455961i
\(965\) 13.8479 17.3647i 0.445780 0.558990i
\(966\) 0 0
\(967\) −18.9564 23.7706i −0.609598 0.764411i 0.377242 0.926115i \(-0.376873\pi\)
−0.986839 + 0.161704i \(0.948301\pi\)
\(968\) −5.37718 5.79522i −0.172829 0.186265i
\(969\) 0 0
\(970\) −14.5581 + 9.92554i −0.467432 + 0.318690i
\(971\) −27.5238 4.14855i −0.883281 0.133133i −0.308290 0.951293i \(-0.599757\pi\)
−0.574992 + 0.818159i \(0.694995\pi\)
\(972\) 0 0
\(973\) −2.00734 10.2524i −0.0643524 0.328676i
\(974\) −12.7349 + 26.4443i −0.408053 + 0.847331i
\(975\) 0 0
\(976\) 6.01356 6.48108i 0.192489 0.207454i
\(977\) −6.01387 0.450678i −0.192401 0.0144185i −0.0218189 0.999762i \(-0.506946\pi\)
−0.170582 + 0.985343i \(0.554565\pi\)
\(978\) 0 0
\(979\) 23.5965i 0.754146i
\(980\) 3.21236 10.9038i 0.102615 0.348309i
\(981\) 0 0
\(982\) −4.51018 + 11.4917i −0.143925 + 0.366716i
\(983\) −1.18800 + 15.8528i −0.0378914 + 0.505626i 0.945679 + 0.325101i \(0.105398\pi\)
−0.983571 + 0.180524i \(0.942221\pi\)
\(984\) 0 0
\(985\) −1.57726 + 2.31342i −0.0502557 + 0.0737115i
\(986\) −1.38124 0.665169i −0.0439876 0.0211833i
\(987\) 0 0
\(988\) 4.55840 2.19521i 0.145022 0.0698389i
\(989\) −4.72364 + 31.3393i −0.150203 + 0.996532i
\(990\) 0 0
\(991\) −8.42557 + 1.26995i −0.267647 + 0.0403413i −0.281495 0.959563i \(-0.590830\pi\)
0.0138476 + 0.999904i \(0.495592\pi\)
\(992\) −6.49049 + 6.02229i −0.206073 + 0.191208i
\(993\) 0 0
\(994\) −15.5559 17.8459i −0.493403 0.566037i
\(995\) −19.3527 15.4333i −0.613521 0.489267i
\(996\) 0 0
\(997\) 12.2236 39.6278i 0.387124 1.25503i −0.527095 0.849806i \(-0.676719\pi\)
0.914219 0.405219i \(-0.132805\pi\)
\(998\) −0.647566 0.373872i −0.0204983 0.0118347i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.2.bl.a.395.14 yes 240
3.2 odd 2 inner 882.2.bl.a.395.7 240
49.33 odd 42 inner 882.2.bl.a.719.7 yes 240
147.131 even 42 inner 882.2.bl.a.719.14 yes 240
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
882.2.bl.a.395.7 240 3.2 odd 2 inner
882.2.bl.a.395.14 yes 240 1.1 even 1 trivial
882.2.bl.a.719.7 yes 240 49.33 odd 42 inner
882.2.bl.a.719.14 yes 240 147.131 even 42 inner