Properties

Label 882.2.g.k.667.2
Level $882$
Weight $2$
Character 882.667
Analytic conductor $7.043$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,2,Mod(361,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 882.g (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.04280545828\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 667.2
Root \(0.707107 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 882.667
Dual form 882.2.g.k.361.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{4} +(0.707107 - 1.22474i) q^{5} +1.00000 q^{8} +(0.707107 + 1.22474i) q^{10} +(-2.00000 - 3.46410i) q^{11} -4.24264 q^{13} +(-0.500000 + 0.866025i) q^{16} +(-3.53553 - 6.12372i) q^{17} +(-2.82843 + 4.89898i) q^{19} -1.41421 q^{20} +4.00000 q^{22} +(-4.00000 + 6.92820i) q^{23} +(1.50000 + 2.59808i) q^{25} +(2.12132 - 3.67423i) q^{26} +2.00000 q^{29} +(-0.500000 - 0.866025i) q^{32} +7.07107 q^{34} +(-2.00000 + 3.46410i) q^{37} +(-2.82843 - 4.89898i) q^{38} +(0.707107 - 1.22474i) q^{40} -9.89949 q^{41} -4.00000 q^{43} +(-2.00000 + 3.46410i) q^{44} +(-4.00000 - 6.92820i) q^{46} +(2.82843 - 4.89898i) q^{47} -3.00000 q^{50} +(2.12132 + 3.67423i) q^{52} +(-2.00000 - 3.46410i) q^{53} -5.65685 q^{55} +(-1.00000 + 1.73205i) q^{58} +(-5.65685 - 9.79796i) q^{59} +(0.707107 - 1.22474i) q^{61} +1.00000 q^{64} +(-3.00000 + 5.19615i) q^{65} +(6.00000 + 10.3923i) q^{67} +(-3.53553 + 6.12372i) q^{68} +(-7.77817 - 13.4722i) q^{73} +(-2.00000 - 3.46410i) q^{74} +5.65685 q^{76} +(8.00000 - 13.8564i) q^{79} +(0.707107 + 1.22474i) q^{80} +(4.94975 - 8.57321i) q^{82} +5.65685 q^{83} -10.0000 q^{85} +(2.00000 - 3.46410i) q^{86} +(-2.00000 - 3.46410i) q^{88} +(3.53553 - 6.12372i) q^{89} +8.00000 q^{92} +(2.82843 + 4.89898i) q^{94} +(4.00000 + 6.92820i) q^{95} -7.07107 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - 2 q^{4} + 4 q^{8} - 8 q^{11} - 2 q^{16} + 16 q^{22} - 16 q^{23} + 6 q^{25} + 8 q^{29} - 2 q^{32} - 8 q^{37} - 16 q^{43} - 8 q^{44} - 16 q^{46} - 12 q^{50} - 8 q^{53} - 4 q^{58} + 4 q^{64}+ \cdots + 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) 0 0
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0.707107 1.22474i 0.316228 0.547723i −0.663470 0.748203i \(-0.730917\pi\)
0.979698 + 0.200480i \(0.0642503\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 0.707107 + 1.22474i 0.223607 + 0.387298i
\(11\) −2.00000 3.46410i −0.603023 1.04447i −0.992361 0.123371i \(-0.960630\pi\)
0.389338 0.921095i \(-0.372704\pi\)
\(12\) 0 0
\(13\) −4.24264 −1.17670 −0.588348 0.808608i \(-0.700222\pi\)
−0.588348 + 0.808608i \(0.700222\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −3.53553 6.12372i −0.857493 1.48522i −0.874313 0.485363i \(-0.838688\pi\)
0.0168199 0.999859i \(-0.494646\pi\)
\(18\) 0 0
\(19\) −2.82843 + 4.89898i −0.648886 + 1.12390i 0.334504 + 0.942394i \(0.391431\pi\)
−0.983389 + 0.181509i \(0.941902\pi\)
\(20\) −1.41421 −0.316228
\(21\) 0 0
\(22\) 4.00000 0.852803
\(23\) −4.00000 + 6.92820i −0.834058 + 1.44463i 0.0607377 + 0.998154i \(0.480655\pi\)
−0.894795 + 0.446476i \(0.852679\pi\)
\(24\) 0 0
\(25\) 1.50000 + 2.59808i 0.300000 + 0.519615i
\(26\) 2.12132 3.67423i 0.416025 0.720577i
\(27\) 0 0
\(28\) 0 0
\(29\) 2.00000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) 0 0
\(31\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 0 0
\(34\) 7.07107 1.21268
\(35\) 0 0
\(36\) 0 0
\(37\) −2.00000 + 3.46410i −0.328798 + 0.569495i −0.982274 0.187453i \(-0.939977\pi\)
0.653476 + 0.756948i \(0.273310\pi\)
\(38\) −2.82843 4.89898i −0.458831 0.794719i
\(39\) 0 0
\(40\) 0.707107 1.22474i 0.111803 0.193649i
\(41\) −9.89949 −1.54604 −0.773021 0.634381i \(-0.781255\pi\)
−0.773021 + 0.634381i \(0.781255\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) −2.00000 + 3.46410i −0.301511 + 0.522233i
\(45\) 0 0
\(46\) −4.00000 6.92820i −0.589768 1.02151i
\(47\) 2.82843 4.89898i 0.412568 0.714590i −0.582601 0.812758i \(-0.697965\pi\)
0.995170 + 0.0981685i \(0.0312984\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −3.00000 −0.424264
\(51\) 0 0
\(52\) 2.12132 + 3.67423i 0.294174 + 0.509525i
\(53\) −2.00000 3.46410i −0.274721 0.475831i 0.695344 0.718677i \(-0.255252\pi\)
−0.970065 + 0.242846i \(0.921919\pi\)
\(54\) 0 0
\(55\) −5.65685 −0.762770
\(56\) 0 0
\(57\) 0 0
\(58\) −1.00000 + 1.73205i −0.131306 + 0.227429i
\(59\) −5.65685 9.79796i −0.736460 1.27559i −0.954080 0.299552i \(-0.903163\pi\)
0.217620 0.976034i \(-0.430171\pi\)
\(60\) 0 0
\(61\) 0.707107 1.22474i 0.0905357 0.156813i −0.817201 0.576353i \(-0.804475\pi\)
0.907737 + 0.419540i \(0.137809\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −3.00000 + 5.19615i −0.372104 + 0.644503i
\(66\) 0 0
\(67\) 6.00000 + 10.3923i 0.733017 + 1.26962i 0.955588 + 0.294706i \(0.0952216\pi\)
−0.222571 + 0.974916i \(0.571445\pi\)
\(68\) −3.53553 + 6.12372i −0.428746 + 0.742611i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −7.77817 13.4722i −0.910366 1.57680i −0.813547 0.581499i \(-0.802466\pi\)
−0.0968194 0.995302i \(-0.530867\pi\)
\(74\) −2.00000 3.46410i −0.232495 0.402694i
\(75\) 0 0
\(76\) 5.65685 0.648886
\(77\) 0 0
\(78\) 0 0
\(79\) 8.00000 13.8564i 0.900070 1.55897i 0.0726692 0.997356i \(-0.476848\pi\)
0.827401 0.561611i \(-0.189818\pi\)
\(80\) 0.707107 + 1.22474i 0.0790569 + 0.136931i
\(81\) 0 0
\(82\) 4.94975 8.57321i 0.546608 0.946753i
\(83\) 5.65685 0.620920 0.310460 0.950586i \(-0.399517\pi\)
0.310460 + 0.950586i \(0.399517\pi\)
\(84\) 0 0
\(85\) −10.0000 −1.08465
\(86\) 2.00000 3.46410i 0.215666 0.373544i
\(87\) 0 0
\(88\) −2.00000 3.46410i −0.213201 0.369274i
\(89\) 3.53553 6.12372i 0.374766 0.649113i −0.615526 0.788116i \(-0.711056\pi\)
0.990292 + 0.139003i \(0.0443898\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 8.00000 0.834058
\(93\) 0 0
\(94\) 2.82843 + 4.89898i 0.291730 + 0.505291i
\(95\) 4.00000 + 6.92820i 0.410391 + 0.710819i
\(96\) 0 0
\(97\) −7.07107 −0.717958 −0.358979 0.933346i \(-0.616875\pi\)
−0.358979 + 0.933346i \(0.616875\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 1.50000 2.59808i 0.150000 0.259808i
\(101\) 6.36396 + 11.0227i 0.633238 + 1.09680i 0.986886 + 0.161421i \(0.0516078\pi\)
−0.353648 + 0.935379i \(0.615059\pi\)
\(102\) 0 0
\(103\) 2.82843 4.89898i 0.278693 0.482711i −0.692367 0.721545i \(-0.743432\pi\)
0.971060 + 0.238835i \(0.0767654\pi\)
\(104\) −4.24264 −0.416025
\(105\) 0 0
\(106\) 4.00000 0.388514
\(107\) 2.00000 3.46410i 0.193347 0.334887i −0.753010 0.658009i \(-0.771399\pi\)
0.946357 + 0.323122i \(0.104732\pi\)
\(108\) 0 0
\(109\) −2.00000 3.46410i −0.191565 0.331801i 0.754204 0.656640i \(-0.228023\pi\)
−0.945769 + 0.324840i \(0.894690\pi\)
\(110\) 2.82843 4.89898i 0.269680 0.467099i
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) 5.65685 + 9.79796i 0.527504 + 0.913664i
\(116\) −1.00000 1.73205i −0.0928477 0.160817i
\(117\) 0 0
\(118\) 11.3137 1.04151
\(119\) 0 0
\(120\) 0 0
\(121\) −2.50000 + 4.33013i −0.227273 + 0.393648i
\(122\) 0.707107 + 1.22474i 0.0640184 + 0.110883i
\(123\) 0 0
\(124\) 0 0
\(125\) 11.3137 1.01193
\(126\) 0 0
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) −3.00000 5.19615i −0.263117 0.455733i
\(131\) −8.48528 + 14.6969i −0.741362 + 1.28408i 0.210513 + 0.977591i \(0.432487\pi\)
−0.951875 + 0.306486i \(0.900847\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −12.0000 −1.03664
\(135\) 0 0
\(136\) −3.53553 6.12372i −0.303170 0.525105i
\(137\) −3.00000 5.19615i −0.256307 0.443937i 0.708942 0.705266i \(-0.249173\pi\)
−0.965250 + 0.261329i \(0.915839\pi\)
\(138\) 0 0
\(139\) 5.65685 0.479808 0.239904 0.970797i \(-0.422884\pi\)
0.239904 + 0.970797i \(0.422884\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 8.48528 + 14.6969i 0.709575 + 1.22902i
\(144\) 0 0
\(145\) 1.41421 2.44949i 0.117444 0.203419i
\(146\) 15.5563 1.28745
\(147\) 0 0
\(148\) 4.00000 0.328798
\(149\) 10.0000 17.3205i 0.819232 1.41895i −0.0870170 0.996207i \(-0.527733\pi\)
0.906249 0.422744i \(-0.138933\pi\)
\(150\) 0 0
\(151\) 8.00000 + 13.8564i 0.651031 + 1.12762i 0.982873 + 0.184284i \(0.0589965\pi\)
−0.331842 + 0.943335i \(0.607670\pi\)
\(152\) −2.82843 + 4.89898i −0.229416 + 0.397360i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −9.19239 15.9217i −0.733632 1.27069i −0.955321 0.295571i \(-0.904490\pi\)
0.221688 0.975118i \(-0.428843\pi\)
\(158\) 8.00000 + 13.8564i 0.636446 + 1.10236i
\(159\) 0 0
\(160\) −1.41421 −0.111803
\(161\) 0 0
\(162\) 0 0
\(163\) −2.00000 + 3.46410i −0.156652 + 0.271329i −0.933659 0.358162i \(-0.883403\pi\)
0.777007 + 0.629492i \(0.216737\pi\)
\(164\) 4.94975 + 8.57321i 0.386510 + 0.669456i
\(165\) 0 0
\(166\) −2.82843 + 4.89898i −0.219529 + 0.380235i
\(167\) −11.3137 −0.875481 −0.437741 0.899101i \(-0.644221\pi\)
−0.437741 + 0.899101i \(0.644221\pi\)
\(168\) 0 0
\(169\) 5.00000 0.384615
\(170\) 5.00000 8.66025i 0.383482 0.664211i
\(171\) 0 0
\(172\) 2.00000 + 3.46410i 0.152499 + 0.264135i
\(173\) −6.36396 + 11.0227i −0.483843 + 0.838041i −0.999828 0.0185571i \(-0.994093\pi\)
0.515985 + 0.856598i \(0.327426\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 4.00000 0.301511
\(177\) 0 0
\(178\) 3.53553 + 6.12372i 0.264999 + 0.458993i
\(179\) 6.00000 + 10.3923i 0.448461 + 0.776757i 0.998286 0.0585225i \(-0.0186389\pi\)
−0.549825 + 0.835280i \(0.685306\pi\)
\(180\) 0 0
\(181\) −12.7279 −0.946059 −0.473029 0.881047i \(-0.656840\pi\)
−0.473029 + 0.881047i \(0.656840\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −4.00000 + 6.92820i −0.294884 + 0.510754i
\(185\) 2.82843 + 4.89898i 0.207950 + 0.360180i
\(186\) 0 0
\(187\) −14.1421 + 24.4949i −1.03418 + 1.79124i
\(188\) −5.65685 −0.412568
\(189\) 0 0
\(190\) −8.00000 −0.580381
\(191\) 8.00000 13.8564i 0.578860 1.00261i −0.416751 0.909021i \(-0.636831\pi\)
0.995610 0.0935936i \(-0.0298354\pi\)
\(192\) 0 0
\(193\) −7.00000 12.1244i −0.503871 0.872730i −0.999990 0.00447566i \(-0.998575\pi\)
0.496119 0.868255i \(-0.334758\pi\)
\(194\) 3.53553 6.12372i 0.253837 0.439658i
\(195\) 0 0
\(196\) 0 0
\(197\) −4.00000 −0.284988 −0.142494 0.989796i \(-0.545512\pi\)
−0.142494 + 0.989796i \(0.545512\pi\)
\(198\) 0 0
\(199\) 8.48528 + 14.6969i 0.601506 + 1.04184i 0.992593 + 0.121485i \(0.0387656\pi\)
−0.391088 + 0.920353i \(0.627901\pi\)
\(200\) 1.50000 + 2.59808i 0.106066 + 0.183712i
\(201\) 0 0
\(202\) −12.7279 −0.895533
\(203\) 0 0
\(204\) 0 0
\(205\) −7.00000 + 12.1244i −0.488901 + 0.846802i
\(206\) 2.82843 + 4.89898i 0.197066 + 0.341328i
\(207\) 0 0
\(208\) 2.12132 3.67423i 0.147087 0.254762i
\(209\) 22.6274 1.56517
\(210\) 0 0
\(211\) 12.0000 0.826114 0.413057 0.910705i \(-0.364461\pi\)
0.413057 + 0.910705i \(0.364461\pi\)
\(212\) −2.00000 + 3.46410i −0.137361 + 0.237915i
\(213\) 0 0
\(214\) 2.00000 + 3.46410i 0.136717 + 0.236801i
\(215\) −2.82843 + 4.89898i −0.192897 + 0.334108i
\(216\) 0 0
\(217\) 0 0
\(218\) 4.00000 0.270914
\(219\) 0 0
\(220\) 2.82843 + 4.89898i 0.190693 + 0.330289i
\(221\) 15.0000 + 25.9808i 1.00901 + 1.74766i
\(222\) 0 0
\(223\) 16.9706 1.13643 0.568216 0.822879i \(-0.307634\pi\)
0.568216 + 0.822879i \(0.307634\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 8.48528 + 14.6969i 0.563188 + 0.975470i 0.997216 + 0.0745706i \(0.0237586\pi\)
−0.434028 + 0.900899i \(0.642908\pi\)
\(228\) 0 0
\(229\) 6.36396 11.0227i 0.420542 0.728401i −0.575450 0.817837i \(-0.695173\pi\)
0.995993 + 0.0894361i \(0.0285065\pi\)
\(230\) −11.3137 −0.746004
\(231\) 0 0
\(232\) 2.00000 0.131306
\(233\) 3.00000 5.19615i 0.196537 0.340411i −0.750867 0.660454i \(-0.770364\pi\)
0.947403 + 0.320043i \(0.103697\pi\)
\(234\) 0 0
\(235\) −4.00000 6.92820i −0.260931 0.451946i
\(236\) −5.65685 + 9.79796i −0.368230 + 0.637793i
\(237\) 0 0
\(238\) 0 0
\(239\) −24.0000 −1.55243 −0.776215 0.630468i \(-0.782863\pi\)
−0.776215 + 0.630468i \(0.782863\pi\)
\(240\) 0 0
\(241\) 2.12132 + 3.67423i 0.136646 + 0.236678i 0.926225 0.376971i \(-0.123034\pi\)
−0.789579 + 0.613649i \(0.789701\pi\)
\(242\) −2.50000 4.33013i −0.160706 0.278351i
\(243\) 0 0
\(244\) −1.41421 −0.0905357
\(245\) 0 0
\(246\) 0 0
\(247\) 12.0000 20.7846i 0.763542 1.32249i
\(248\) 0 0
\(249\) 0 0
\(250\) −5.65685 + 9.79796i −0.357771 + 0.619677i
\(251\) 5.65685 0.357057 0.178529 0.983935i \(-0.442866\pi\)
0.178529 + 0.983935i \(0.442866\pi\)
\(252\) 0 0
\(253\) 32.0000 2.01182
\(254\) 4.00000 6.92820i 0.250982 0.434714i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −6.36396 + 11.0227i −0.396973 + 0.687577i −0.993351 0.115126i \(-0.963273\pi\)
0.596378 + 0.802704i \(0.296606\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 6.00000 0.372104
\(261\) 0 0
\(262\) −8.48528 14.6969i −0.524222 0.907980i
\(263\) −12.0000 20.7846i −0.739952 1.28163i −0.952517 0.304487i \(-0.901515\pi\)
0.212565 0.977147i \(-0.431818\pi\)
\(264\) 0 0
\(265\) −5.65685 −0.347498
\(266\) 0 0
\(267\) 0 0
\(268\) 6.00000 10.3923i 0.366508 0.634811i
\(269\) −0.707107 1.22474i −0.0431131 0.0746740i 0.843664 0.536872i \(-0.180394\pi\)
−0.886777 + 0.462198i \(0.847061\pi\)
\(270\) 0 0
\(271\) −2.82843 + 4.89898i −0.171815 + 0.297592i −0.939054 0.343769i \(-0.888296\pi\)
0.767240 + 0.641361i \(0.221630\pi\)
\(272\) 7.07107 0.428746
\(273\) 0 0
\(274\) 6.00000 0.362473
\(275\) 6.00000 10.3923i 0.361814 0.626680i
\(276\) 0 0
\(277\) −5.00000 8.66025i −0.300421 0.520344i 0.675810 0.737075i \(-0.263794\pi\)
−0.976231 + 0.216731i \(0.930460\pi\)
\(278\) −2.82843 + 4.89898i −0.169638 + 0.293821i
\(279\) 0 0
\(280\) 0 0
\(281\) 10.0000 0.596550 0.298275 0.954480i \(-0.403589\pi\)
0.298275 + 0.954480i \(0.403589\pi\)
\(282\) 0 0
\(283\) 11.3137 + 19.5959i 0.672530 + 1.16486i 0.977184 + 0.212393i \(0.0681258\pi\)
−0.304654 + 0.952463i \(0.598541\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) −16.9706 −1.00349
\(287\) 0 0
\(288\) 0 0
\(289\) −16.5000 + 28.5788i −0.970588 + 1.68111i
\(290\) 1.41421 + 2.44949i 0.0830455 + 0.143839i
\(291\) 0 0
\(292\) −7.77817 + 13.4722i −0.455183 + 0.788400i
\(293\) −24.0416 −1.40453 −0.702264 0.711917i \(-0.747827\pi\)
−0.702264 + 0.711917i \(0.747827\pi\)
\(294\) 0 0
\(295\) −16.0000 −0.931556
\(296\) −2.00000 + 3.46410i −0.116248 + 0.201347i
\(297\) 0 0
\(298\) 10.0000 + 17.3205i 0.579284 + 1.00335i
\(299\) 16.9706 29.3939i 0.981433 1.69989i
\(300\) 0 0
\(301\) 0 0
\(302\) −16.0000 −0.920697
\(303\) 0 0
\(304\) −2.82843 4.89898i −0.162221 0.280976i
\(305\) −1.00000 1.73205i −0.0572598 0.0991769i
\(306\) 0 0
\(307\) −5.65685 −0.322854 −0.161427 0.986885i \(-0.551610\pi\)
−0.161427 + 0.986885i \(0.551610\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −2.82843 4.89898i −0.160385 0.277796i 0.774622 0.632425i \(-0.217940\pi\)
−0.935007 + 0.354629i \(0.884607\pi\)
\(312\) 0 0
\(313\) 10.6066 18.3712i 0.599521 1.03840i −0.393371 0.919380i \(-0.628691\pi\)
0.992892 0.119020i \(-0.0379754\pi\)
\(314\) 18.3848 1.03751
\(315\) 0 0
\(316\) −16.0000 −0.900070
\(317\) −14.0000 + 24.2487i −0.786318 + 1.36194i 0.141890 + 0.989882i \(0.454682\pi\)
−0.928208 + 0.372061i \(0.878651\pi\)
\(318\) 0 0
\(319\) −4.00000 6.92820i −0.223957 0.387905i
\(320\) 0.707107 1.22474i 0.0395285 0.0684653i
\(321\) 0 0
\(322\) 0 0
\(323\) 40.0000 2.22566
\(324\) 0 0
\(325\) −6.36396 11.0227i −0.353009 0.611430i
\(326\) −2.00000 3.46410i −0.110770 0.191859i
\(327\) 0 0
\(328\) −9.89949 −0.546608
\(329\) 0 0
\(330\) 0 0
\(331\) 10.0000 17.3205i 0.549650 0.952021i −0.448649 0.893708i \(-0.648095\pi\)
0.998298 0.0583130i \(-0.0185721\pi\)
\(332\) −2.82843 4.89898i −0.155230 0.268866i
\(333\) 0 0
\(334\) 5.65685 9.79796i 0.309529 0.536120i
\(335\) 16.9706 0.927201
\(336\) 0 0
\(337\) −16.0000 −0.871576 −0.435788 0.900049i \(-0.643530\pi\)
−0.435788 + 0.900049i \(0.643530\pi\)
\(338\) −2.50000 + 4.33013i −0.135982 + 0.235528i
\(339\) 0 0
\(340\) 5.00000 + 8.66025i 0.271163 + 0.469668i
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) −4.00000 −0.215666
\(345\) 0 0
\(346\) −6.36396 11.0227i −0.342129 0.592584i
\(347\) 6.00000 + 10.3923i 0.322097 + 0.557888i 0.980921 0.194409i \(-0.0622790\pi\)
−0.658824 + 0.752297i \(0.728946\pi\)
\(348\) 0 0
\(349\) 29.6985 1.58972 0.794862 0.606791i \(-0.207543\pi\)
0.794862 + 0.606791i \(0.207543\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −2.00000 + 3.46410i −0.106600 + 0.184637i
\(353\) 0.707107 + 1.22474i 0.0376355 + 0.0651866i 0.884230 0.467052i \(-0.154684\pi\)
−0.846594 + 0.532239i \(0.821351\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −7.07107 −0.374766
\(357\) 0 0
\(358\) −12.0000 −0.634220
\(359\) −8.00000 + 13.8564i −0.422224 + 0.731313i −0.996157 0.0875892i \(-0.972084\pi\)
0.573933 + 0.818902i \(0.305417\pi\)
\(360\) 0 0
\(361\) −6.50000 11.2583i −0.342105 0.592544i
\(362\) 6.36396 11.0227i 0.334482 0.579340i
\(363\) 0 0
\(364\) 0 0
\(365\) −22.0000 −1.15153
\(366\) 0 0
\(367\) 2.82843 + 4.89898i 0.147643 + 0.255725i 0.930356 0.366658i \(-0.119498\pi\)
−0.782713 + 0.622383i \(0.786165\pi\)
\(368\) −4.00000 6.92820i −0.208514 0.361158i
\(369\) 0 0
\(370\) −5.65685 −0.294086
\(371\) 0 0
\(372\) 0 0
\(373\) −5.00000 + 8.66025i −0.258890 + 0.448411i −0.965945 0.258748i \(-0.916690\pi\)
0.707055 + 0.707159i \(0.250023\pi\)
\(374\) −14.1421 24.4949i −0.731272 1.26660i
\(375\) 0 0
\(376\) 2.82843 4.89898i 0.145865 0.252646i
\(377\) −8.48528 −0.437014
\(378\) 0 0
\(379\) 28.0000 1.43826 0.719132 0.694874i \(-0.244540\pi\)
0.719132 + 0.694874i \(0.244540\pi\)
\(380\) 4.00000 6.92820i 0.205196 0.355409i
\(381\) 0 0
\(382\) 8.00000 + 13.8564i 0.409316 + 0.708955i
\(383\) −2.82843 + 4.89898i −0.144526 + 0.250326i −0.929196 0.369587i \(-0.879499\pi\)
0.784670 + 0.619914i \(0.212832\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 14.0000 0.712581
\(387\) 0 0
\(388\) 3.53553 + 6.12372i 0.179490 + 0.310885i
\(389\) −13.0000 22.5167i −0.659126 1.14164i −0.980842 0.194804i \(-0.937593\pi\)
0.321716 0.946836i \(-0.395740\pi\)
\(390\) 0 0
\(391\) 56.5685 2.86079
\(392\) 0 0
\(393\) 0 0
\(394\) 2.00000 3.46410i 0.100759 0.174519i
\(395\) −11.3137 19.5959i −0.569254 0.985978i
\(396\) 0 0
\(397\) 3.53553 6.12372i 0.177443 0.307341i −0.763561 0.645736i \(-0.776551\pi\)
0.941004 + 0.338395i \(0.109884\pi\)
\(398\) −16.9706 −0.850657
\(399\) 0 0
\(400\) −3.00000 −0.150000
\(401\) −9.00000 + 15.5885i −0.449439 + 0.778450i −0.998350 0.0574304i \(-0.981709\pi\)
0.548911 + 0.835881i \(0.315043\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 6.36396 11.0227i 0.316619 0.548400i
\(405\) 0 0
\(406\) 0 0
\(407\) 16.0000 0.793091
\(408\) 0 0
\(409\) −10.6066 18.3712i −0.524463 0.908396i −0.999594 0.0284813i \(-0.990933\pi\)
0.475132 0.879915i \(-0.342400\pi\)
\(410\) −7.00000 12.1244i −0.345705 0.598779i
\(411\) 0 0
\(412\) −5.65685 −0.278693
\(413\) 0 0
\(414\) 0 0
\(415\) 4.00000 6.92820i 0.196352 0.340092i
\(416\) 2.12132 + 3.67423i 0.104006 + 0.180144i
\(417\) 0 0
\(418\) −11.3137 + 19.5959i −0.553372 + 0.958468i
\(419\) −22.6274 −1.10542 −0.552711 0.833373i \(-0.686407\pi\)
−0.552711 + 0.833373i \(0.686407\pi\)
\(420\) 0 0
\(421\) −6.00000 −0.292422 −0.146211 0.989253i \(-0.546708\pi\)
−0.146211 + 0.989253i \(0.546708\pi\)
\(422\) −6.00000 + 10.3923i −0.292075 + 0.505889i
\(423\) 0 0
\(424\) −2.00000 3.46410i −0.0971286 0.168232i
\(425\) 10.6066 18.3712i 0.514496 0.891133i
\(426\) 0 0
\(427\) 0 0
\(428\) −4.00000 −0.193347
\(429\) 0 0
\(430\) −2.82843 4.89898i −0.136399 0.236250i
\(431\) −12.0000 20.7846i −0.578020 1.00116i −0.995706 0.0925683i \(-0.970492\pi\)
0.417687 0.908591i \(-0.362841\pi\)
\(432\) 0 0
\(433\) 4.24264 0.203888 0.101944 0.994790i \(-0.467494\pi\)
0.101944 + 0.994790i \(0.467494\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −2.00000 + 3.46410i −0.0957826 + 0.165900i
\(437\) −22.6274 39.1918i −1.08242 1.87480i
\(438\) 0 0
\(439\) 16.9706 29.3939i 0.809961 1.40289i −0.102930 0.994689i \(-0.532822\pi\)
0.912890 0.408205i \(-0.133845\pi\)
\(440\) −5.65685 −0.269680
\(441\) 0 0
\(442\) −30.0000 −1.42695
\(443\) −10.0000 + 17.3205i −0.475114 + 0.822922i −0.999594 0.0285009i \(-0.990927\pi\)
0.524479 + 0.851423i \(0.324260\pi\)
\(444\) 0 0
\(445\) −5.00000 8.66025i −0.237023 0.410535i
\(446\) −8.48528 + 14.6969i −0.401790 + 0.695920i
\(447\) 0 0
\(448\) 0 0
\(449\) −24.0000 −1.13263 −0.566315 0.824189i \(-0.691631\pi\)
−0.566315 + 0.824189i \(0.691631\pi\)
\(450\) 0 0
\(451\) 19.7990 + 34.2929i 0.932298 + 1.61479i
\(452\) 0 0
\(453\) 0 0
\(454\) −16.9706 −0.796468
\(455\) 0 0
\(456\) 0 0
\(457\) 3.00000 5.19615i 0.140334 0.243066i −0.787288 0.616585i \(-0.788516\pi\)
0.927622 + 0.373519i \(0.121849\pi\)
\(458\) 6.36396 + 11.0227i 0.297368 + 0.515057i
\(459\) 0 0
\(460\) 5.65685 9.79796i 0.263752 0.456832i
\(461\) 1.41421 0.0658665 0.0329332 0.999458i \(-0.489515\pi\)
0.0329332 + 0.999458i \(0.489515\pi\)
\(462\) 0 0
\(463\) −32.0000 −1.48717 −0.743583 0.668644i \(-0.766875\pi\)
−0.743583 + 0.668644i \(0.766875\pi\)
\(464\) −1.00000 + 1.73205i −0.0464238 + 0.0804084i
\(465\) 0 0
\(466\) 3.00000 + 5.19615i 0.138972 + 0.240707i
\(467\) 2.82843 4.89898i 0.130884 0.226698i −0.793134 0.609048i \(-0.791552\pi\)
0.924018 + 0.382350i \(0.124885\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 8.00000 0.369012
\(471\) 0 0
\(472\) −5.65685 9.79796i −0.260378 0.450988i
\(473\) 8.00000 + 13.8564i 0.367840 + 0.637118i
\(474\) 0 0
\(475\) −16.9706 −0.778663
\(476\) 0 0
\(477\) 0 0
\(478\) 12.0000 20.7846i 0.548867 0.950666i
\(479\) −14.1421 24.4949i −0.646171 1.11920i −0.984030 0.178004i \(-0.943036\pi\)
0.337859 0.941197i \(-0.390297\pi\)
\(480\) 0 0
\(481\) 8.48528 14.6969i 0.386896 0.670123i
\(482\) −4.24264 −0.193247
\(483\) 0 0
\(484\) 5.00000 0.227273
\(485\) −5.00000 + 8.66025i −0.227038 + 0.393242i
\(486\) 0 0
\(487\) 12.0000 + 20.7846i 0.543772 + 0.941841i 0.998683 + 0.0513038i \(0.0163377\pi\)
−0.454911 + 0.890537i \(0.650329\pi\)
\(488\) 0.707107 1.22474i 0.0320092 0.0554416i
\(489\) 0 0
\(490\) 0 0
\(491\) −12.0000 −0.541552 −0.270776 0.962642i \(-0.587280\pi\)
−0.270776 + 0.962642i \(0.587280\pi\)
\(492\) 0 0
\(493\) −7.07107 12.2474i −0.318465 0.551597i
\(494\) 12.0000 + 20.7846i 0.539906 + 0.935144i
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 2.00000 3.46410i 0.0895323 0.155074i −0.817781 0.575529i \(-0.804796\pi\)
0.907314 + 0.420455i \(0.138129\pi\)
\(500\) −5.65685 9.79796i −0.252982 0.438178i
\(501\) 0 0
\(502\) −2.82843 + 4.89898i −0.126239 + 0.218652i
\(503\) −28.2843 −1.26113 −0.630567 0.776135i \(-0.717177\pi\)
−0.630567 + 0.776135i \(0.717177\pi\)
\(504\) 0 0
\(505\) 18.0000 0.800989
\(506\) −16.0000 + 27.7128i −0.711287 + 1.23198i
\(507\) 0 0
\(508\) 4.00000 + 6.92820i 0.177471 + 0.307389i
\(509\) 16.2635 28.1691i 0.720865 1.24857i −0.239788 0.970825i \(-0.577078\pi\)
0.960653 0.277750i \(-0.0895886\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −6.36396 11.0227i −0.280702 0.486191i
\(515\) −4.00000 6.92820i −0.176261 0.305293i
\(516\) 0 0
\(517\) −22.6274 −0.995153
\(518\) 0 0
\(519\) 0 0
\(520\) −3.00000 + 5.19615i −0.131559 + 0.227866i
\(521\) 0.707107 + 1.22474i 0.0309789 + 0.0536570i 0.881099 0.472931i \(-0.156804\pi\)
−0.850120 + 0.526589i \(0.823471\pi\)
\(522\) 0 0
\(523\) −16.9706 + 29.3939i −0.742071 + 1.28530i 0.209480 + 0.977813i \(0.432823\pi\)
−0.951551 + 0.307492i \(0.900510\pi\)
\(524\) 16.9706 0.741362
\(525\) 0 0
\(526\) 24.0000 1.04645
\(527\) 0 0
\(528\) 0 0
\(529\) −20.5000 35.5070i −0.891304 1.54378i
\(530\) 2.82843 4.89898i 0.122859 0.212798i
\(531\) 0 0
\(532\) 0 0
\(533\) 42.0000 1.81922
\(534\) 0 0
\(535\) −2.82843 4.89898i −0.122284 0.211801i
\(536\) 6.00000 + 10.3923i 0.259161 + 0.448879i
\(537\) 0 0
\(538\) 1.41421 0.0609711
\(539\) 0 0
\(540\) 0 0
\(541\) 1.00000 1.73205i 0.0429934 0.0744667i −0.843728 0.536771i \(-0.819644\pi\)
0.886721 + 0.462304i \(0.152977\pi\)
\(542\) −2.82843 4.89898i −0.121491 0.210429i
\(543\) 0 0
\(544\) −3.53553 + 6.12372i −0.151585 + 0.262553i
\(545\) −5.65685 −0.242313
\(546\) 0 0
\(547\) 28.0000 1.19719 0.598597 0.801050i \(-0.295725\pi\)
0.598597 + 0.801050i \(0.295725\pi\)
\(548\) −3.00000 + 5.19615i −0.128154 + 0.221969i
\(549\) 0 0
\(550\) 6.00000 + 10.3923i 0.255841 + 0.443129i
\(551\) −5.65685 + 9.79796i −0.240990 + 0.417407i
\(552\) 0 0
\(553\) 0 0
\(554\) 10.0000 0.424859
\(555\) 0 0
\(556\) −2.82843 4.89898i −0.119952 0.207763i
\(557\) −18.0000 31.1769i −0.762684 1.32101i −0.941462 0.337119i \(-0.890548\pi\)
0.178778 0.983890i \(-0.442786\pi\)
\(558\) 0 0
\(559\) 16.9706 0.717778
\(560\) 0 0
\(561\) 0 0
\(562\) −5.00000 + 8.66025i −0.210912 + 0.365311i
\(563\) −5.65685 9.79796i −0.238408 0.412935i 0.721850 0.692050i \(-0.243292\pi\)
−0.960258 + 0.279115i \(0.909959\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −22.6274 −0.951101
\(567\) 0 0
\(568\) 0 0
\(569\) 13.0000 22.5167i 0.544988 0.943948i −0.453619 0.891196i \(-0.649867\pi\)
0.998608 0.0527519i \(-0.0167993\pi\)
\(570\) 0 0
\(571\) −2.00000 3.46410i −0.0836974 0.144968i 0.821138 0.570730i \(-0.193340\pi\)
−0.904835 + 0.425762i \(0.860006\pi\)
\(572\) 8.48528 14.6969i 0.354787 0.614510i
\(573\) 0 0
\(574\) 0 0
\(575\) −24.0000 −1.00087
\(576\) 0 0
\(577\) 6.36396 + 11.0227i 0.264935 + 0.458881i 0.967547 0.252693i \(-0.0813161\pi\)
−0.702611 + 0.711574i \(0.747983\pi\)
\(578\) −16.5000 28.5788i −0.686310 1.18872i
\(579\) 0 0
\(580\) −2.82843 −0.117444
\(581\) 0 0
\(582\) 0 0
\(583\) −8.00000 + 13.8564i −0.331326 + 0.573874i
\(584\) −7.77817 13.4722i −0.321863 0.557483i
\(585\) 0 0
\(586\) 12.0208 20.8207i 0.496575 0.860094i
\(587\) 16.9706 0.700450 0.350225 0.936666i \(-0.386105\pi\)
0.350225 + 0.936666i \(0.386105\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 8.00000 13.8564i 0.329355 0.570459i
\(591\) 0 0
\(592\) −2.00000 3.46410i −0.0821995 0.142374i
\(593\) −17.6777 + 30.6186i −0.725935 + 1.25736i 0.232653 + 0.972560i \(0.425259\pi\)
−0.958588 + 0.284796i \(0.908074\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −20.0000 −0.819232
\(597\) 0 0
\(598\) 16.9706 + 29.3939i 0.693978 + 1.20201i
\(599\) 8.00000 + 13.8564i 0.326871 + 0.566157i 0.981889 0.189456i \(-0.0606724\pi\)
−0.655018 + 0.755613i \(0.727339\pi\)
\(600\) 0 0
\(601\) −4.24264 −0.173061 −0.0865305 0.996249i \(-0.527578\pi\)
−0.0865305 + 0.996249i \(0.527578\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 8.00000 13.8564i 0.325515 0.563809i
\(605\) 3.53553 + 6.12372i 0.143740 + 0.248965i
\(606\) 0 0
\(607\) 8.48528 14.6969i 0.344407 0.596530i −0.640839 0.767675i \(-0.721413\pi\)
0.985246 + 0.171145i \(0.0547467\pi\)
\(608\) 5.65685 0.229416
\(609\) 0 0
\(610\) 2.00000 0.0809776
\(611\) −12.0000 + 20.7846i −0.485468 + 0.840855i
\(612\) 0 0
\(613\) −6.00000 10.3923i −0.242338 0.419741i 0.719042 0.694967i \(-0.244581\pi\)
−0.961380 + 0.275225i \(0.911248\pi\)
\(614\) 2.82843 4.89898i 0.114146 0.197707i
\(615\) 0 0
\(616\) 0 0
\(617\) 22.0000 0.885687 0.442843 0.896599i \(-0.353970\pi\)
0.442843 + 0.896599i \(0.353970\pi\)
\(618\) 0 0
\(619\) 5.65685 + 9.79796i 0.227368 + 0.393813i 0.957027 0.289998i \(-0.0936546\pi\)
−0.729659 + 0.683811i \(0.760321\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 5.65685 0.226819
\(623\) 0 0
\(624\) 0 0
\(625\) 0.500000 0.866025i 0.0200000 0.0346410i
\(626\) 10.6066 + 18.3712i 0.423925 + 0.734260i
\(627\) 0 0
\(628\) −9.19239 + 15.9217i −0.366816 + 0.635344i
\(629\) 28.2843 1.12777
\(630\) 0 0
\(631\) −16.0000 −0.636950 −0.318475 0.947931i \(-0.603171\pi\)
−0.318475 + 0.947931i \(0.603171\pi\)
\(632\) 8.00000 13.8564i 0.318223 0.551178i
\(633\) 0 0
\(634\) −14.0000 24.2487i −0.556011 0.963039i
\(635\) −5.65685 + 9.79796i −0.224485 + 0.388820i
\(636\) 0 0
\(637\) 0 0
\(638\) 8.00000 0.316723
\(639\) 0 0
\(640\) 0.707107 + 1.22474i 0.0279508 + 0.0484123i
\(641\) −1.00000 1.73205i −0.0394976 0.0684119i 0.845601 0.533816i \(-0.179242\pi\)
−0.885098 + 0.465404i \(0.845909\pi\)
\(642\) 0 0
\(643\) −11.3137 −0.446169 −0.223085 0.974799i \(-0.571613\pi\)
−0.223085 + 0.974799i \(0.571613\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −20.0000 + 34.6410i −0.786889 + 1.36293i
\(647\) 16.9706 + 29.3939i 0.667182 + 1.15559i 0.978689 + 0.205349i \(0.0658329\pi\)
−0.311507 + 0.950244i \(0.600834\pi\)
\(648\) 0 0
\(649\) −22.6274 + 39.1918i −0.888204 + 1.53841i
\(650\) 12.7279 0.499230
\(651\) 0 0
\(652\) 4.00000 0.156652
\(653\) −9.00000 + 15.5885i −0.352197 + 0.610023i −0.986634 0.162951i \(-0.947899\pi\)
0.634437 + 0.772975i \(0.281232\pi\)
\(654\) 0 0
\(655\) 12.0000 + 20.7846i 0.468879 + 0.812122i
\(656\) 4.94975 8.57321i 0.193255 0.334728i
\(657\) 0 0
\(658\) 0 0
\(659\) −36.0000 −1.40236 −0.701180 0.712984i \(-0.747343\pi\)
−0.701180 + 0.712984i \(0.747343\pi\)
\(660\) 0 0
\(661\) 2.12132 + 3.67423i 0.0825098 + 0.142911i 0.904327 0.426840i \(-0.140373\pi\)
−0.821818 + 0.569751i \(0.807040\pi\)
\(662\) 10.0000 + 17.3205i 0.388661 + 0.673181i
\(663\) 0 0
\(664\) 5.65685 0.219529
\(665\) 0 0
\(666\) 0 0
\(667\) −8.00000 + 13.8564i −0.309761 + 0.536522i
\(668\) 5.65685 + 9.79796i 0.218870 + 0.379094i
\(669\) 0 0
\(670\) −8.48528 + 14.6969i −0.327815 + 0.567792i
\(671\) −5.65685 −0.218380
\(672\) 0 0
\(673\) 24.0000 0.925132 0.462566 0.886585i \(-0.346929\pi\)
0.462566 + 0.886585i \(0.346929\pi\)
\(674\) 8.00000 13.8564i 0.308148 0.533729i
\(675\) 0 0
\(676\) −2.50000 4.33013i −0.0961538 0.166543i
\(677\) 2.12132 3.67423i 0.0815290 0.141212i −0.822378 0.568942i \(-0.807353\pi\)
0.903907 + 0.427729i \(0.140686\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −10.0000 −0.383482
\(681\) 0 0
\(682\) 0 0
\(683\) 6.00000 + 10.3923i 0.229584 + 0.397650i 0.957685 0.287819i \(-0.0929302\pi\)
−0.728101 + 0.685470i \(0.759597\pi\)
\(684\) 0 0
\(685\) −8.48528 −0.324206
\(686\) 0 0
\(687\) 0 0
\(688\) 2.00000 3.46410i 0.0762493 0.132068i
\(689\) 8.48528 + 14.6969i 0.323263 + 0.559909i
\(690\) 0 0
\(691\) −25.4558 + 44.0908i −0.968386 + 1.67729i −0.268157 + 0.963375i \(0.586415\pi\)
−0.700229 + 0.713918i \(0.746919\pi\)
\(692\) 12.7279 0.483843
\(693\) 0 0
\(694\) −12.0000 −0.455514
\(695\) 4.00000 6.92820i 0.151729 0.262802i
\(696\) 0 0
\(697\) 35.0000 + 60.6218i 1.32572 + 2.29621i
\(698\) −14.8492 + 25.7196i −0.562052 + 0.973503i
\(699\) 0 0
\(700\) 0 0
\(701\) 30.0000 1.13308 0.566542 0.824033i \(-0.308281\pi\)
0.566542 + 0.824033i \(0.308281\pi\)
\(702\) 0 0
\(703\) −11.3137 19.5959i −0.426705 0.739074i
\(704\) −2.00000 3.46410i −0.0753778 0.130558i
\(705\) 0 0
\(706\) −1.41421 −0.0532246
\(707\) 0 0
\(708\) 0 0
\(709\) −14.0000 + 24.2487i −0.525781 + 0.910679i 0.473768 + 0.880650i \(0.342894\pi\)
−0.999549 + 0.0300298i \(0.990440\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 3.53553 6.12372i 0.132500 0.229496i
\(713\) 0 0
\(714\) 0 0
\(715\) 24.0000 0.897549
\(716\) 6.00000 10.3923i 0.224231 0.388379i
\(717\) 0 0
\(718\) −8.00000 13.8564i −0.298557 0.517116i
\(719\) 19.7990 34.2929i 0.738378 1.27891i −0.214848 0.976648i \(-0.568926\pi\)
0.953225 0.302260i \(-0.0977411\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 13.0000 0.483810
\(723\) 0 0
\(724\) 6.36396 + 11.0227i 0.236515 + 0.409656i
\(725\) 3.00000 + 5.19615i 0.111417 + 0.192980i
\(726\) 0 0
\(727\) −28.2843 −1.04901 −0.524503 0.851409i \(-0.675749\pi\)
−0.524503 + 0.851409i \(0.675749\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 11.0000 19.0526i 0.407128 0.705167i
\(731\) 14.1421 + 24.4949i 0.523066 + 0.905977i
\(732\) 0 0
\(733\) 6.36396 11.0227i 0.235058 0.407133i −0.724231 0.689557i \(-0.757805\pi\)
0.959290 + 0.282424i \(0.0911386\pi\)
\(734\) −5.65685 −0.208798
\(735\) 0 0
\(736\) 8.00000 0.294884
\(737\) 24.0000 41.5692i 0.884051 1.53122i
\(738\) 0 0
\(739\) −6.00000 10.3923i −0.220714 0.382287i 0.734311 0.678813i \(-0.237505\pi\)
−0.955025 + 0.296526i \(0.904172\pi\)
\(740\) 2.82843 4.89898i 0.103975 0.180090i
\(741\) 0 0
\(742\) 0 0
\(743\) 16.0000 0.586983 0.293492 0.955962i \(-0.405183\pi\)
0.293492 + 0.955962i \(0.405183\pi\)
\(744\) 0 0
\(745\) −14.1421 24.4949i −0.518128 0.897424i
\(746\) −5.00000 8.66025i −0.183063 0.317074i
\(747\) 0 0
\(748\) 28.2843 1.03418
\(749\) 0 0
\(750\) 0 0
\(751\) 20.0000 34.6410i 0.729810 1.26407i −0.227153 0.973859i \(-0.572942\pi\)
0.956963 0.290209i \(-0.0937250\pi\)
\(752\) 2.82843 + 4.89898i 0.103142 + 0.178647i
\(753\) 0 0
\(754\) 4.24264 7.34847i 0.154508 0.267615i
\(755\) 22.6274 0.823496
\(756\) 0 0
\(757\) −28.0000 −1.01768 −0.508839 0.860862i \(-0.669925\pi\)
−0.508839 + 0.860862i \(0.669925\pi\)
\(758\) −14.0000 + 24.2487i −0.508503 + 0.880753i
\(759\) 0 0
\(760\) 4.00000 + 6.92820i 0.145095 + 0.251312i
\(761\) −4.94975 + 8.57321i −0.179428 + 0.310779i −0.941685 0.336496i \(-0.890758\pi\)
0.762257 + 0.647275i \(0.224091\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −16.0000 −0.578860
\(765\) 0 0
\(766\) −2.82843 4.89898i −0.102195 0.177007i
\(767\) 24.0000 + 41.5692i 0.866590 + 1.50098i
\(768\) 0 0
\(769\) 4.24264 0.152994 0.0764968 0.997070i \(-0.475627\pi\)
0.0764968 + 0.997070i \(0.475627\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −7.00000 + 12.1244i −0.251936 + 0.436365i
\(773\) 16.2635 + 28.1691i 0.584956 + 1.01317i 0.994881 + 0.101054i \(0.0322215\pi\)
−0.409925 + 0.912119i \(0.634445\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −7.07107 −0.253837
\(777\) 0 0
\(778\) 26.0000 0.932145
\(779\) 28.0000 48.4974i 1.00320 1.73760i
\(780\) 0 0
\(781\) 0 0
\(782\) −28.2843 + 48.9898i −1.01144 + 1.75187i
\(783\) 0 0
\(784\) 0 0
\(785\) −26.0000 −0.927980
\(786\) 0 0
\(787\) 2.82843 + 4.89898i 0.100823 + 0.174630i 0.912024 0.410137i \(-0.134519\pi\)
−0.811201 + 0.584767i \(0.801186\pi\)
\(788\) 2.00000 + 3.46410i 0.0712470 + 0.123404i
\(789\) 0 0
\(790\) 22.6274 0.805047
\(791\) 0 0
\(792\) 0 0
\(793\) −3.00000 + 5.19615i −0.106533 + 0.184521i
\(794\) 3.53553 + 6.12372i 0.125471 + 0.217323i
\(795\) 0 0
\(796\) 8.48528 14.6969i 0.300753 0.520919i
\(797\) −12.7279 −0.450846 −0.225423 0.974261i \(-0.572376\pi\)
−0.225423 + 0.974261i \(0.572376\pi\)
\(798\) 0 0
\(799\) −40.0000 −1.41510
\(800\) 1.50000 2.59808i 0.0530330 0.0918559i
\(801\) 0 0
\(802\) −9.00000 15.5885i −0.317801 0.550448i
\(803\) −31.1127 + 53.8888i −1.09794 + 1.90169i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 6.36396 + 11.0227i 0.223883 + 0.387777i
\(809\) 20.0000 + 34.6410i 0.703163 + 1.21791i 0.967351 + 0.253442i \(0.0815627\pi\)
−0.264188 + 0.964471i \(0.585104\pi\)
\(810\) 0 0
\(811\) −33.9411 −1.19183 −0.595917 0.803046i \(-0.703211\pi\)
−0.595917 + 0.803046i \(0.703211\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −8.00000 + 13.8564i −0.280400 + 0.485667i
\(815\) 2.82843 + 4.89898i 0.0990755 + 0.171604i
\(816\) 0 0
\(817\) 11.3137 19.5959i 0.395817 0.685574i
\(818\) 21.2132 0.741702
\(819\) 0 0
\(820\) 14.0000 0.488901
\(821\) 18.0000 31.1769i 0.628204 1.08808i −0.359708 0.933065i \(-0.617124\pi\)
0.987912 0.155017i \(-0.0495431\pi\)
\(822\) 0 0
\(823\) −20.0000 34.6410i −0.697156 1.20751i −0.969448 0.245295i \(-0.921115\pi\)
0.272292 0.962215i \(-0.412218\pi\)
\(824\) 2.82843 4.89898i 0.0985329 0.170664i
\(825\) 0 0
\(826\) 0 0
\(827\) −12.0000 −0.417281 −0.208640 0.977992i \(-0.566904\pi\)
−0.208640 + 0.977992i \(0.566904\pi\)
\(828\) 0 0
\(829\) 21.9203 + 37.9671i 0.761324 + 1.31865i 0.942168 + 0.335140i \(0.108784\pi\)
−0.180845 + 0.983512i \(0.557883\pi\)
\(830\) 4.00000 + 6.92820i 0.138842 + 0.240481i
\(831\) 0 0
\(832\) −4.24264 −0.147087
\(833\) 0 0
\(834\) 0 0
\(835\) −8.00000 + 13.8564i −0.276851 + 0.479521i
\(836\) −11.3137 19.5959i −0.391293 0.677739i
\(837\) 0 0
\(838\) 11.3137 19.5959i 0.390826 0.676930i
\(839\) 45.2548 1.56237 0.781185 0.624299i \(-0.214615\pi\)
0.781185 + 0.624299i \(0.214615\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 3.00000 5.19615i 0.103387 0.179071i
\(843\) 0 0
\(844\) −6.00000 10.3923i −0.206529 0.357718i
\(845\) 3.53553 6.12372i 0.121626 0.210663i
\(846\) 0 0
\(847\) 0 0
\(848\) 4.00000 0.137361
\(849\) 0 0
\(850\) 10.6066 + 18.3712i 0.363803 + 0.630126i
\(851\) −16.0000 27.7128i −0.548473 0.949983i
\(852\) 0 0
\(853\) −21.2132 −0.726326 −0.363163 0.931726i \(-0.618303\pi\)
−0.363163 + 0.931726i \(0.618303\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 2.00000 3.46410i 0.0683586 0.118401i
\(857\) 12.0208 + 20.8207i 0.410623 + 0.711220i 0.994958 0.100292i \(-0.0319778\pi\)
−0.584335 + 0.811513i \(0.698644\pi\)
\(858\) 0 0
\(859\) 2.82843 4.89898i 0.0965047 0.167151i −0.813731 0.581242i \(-0.802567\pi\)
0.910236 + 0.414091i \(0.135900\pi\)
\(860\) 5.65685 0.192897
\(861\) 0 0
\(862\) 24.0000 0.817443
\(863\) −4.00000 + 6.92820i −0.136162 + 0.235839i −0.926041 0.377424i \(-0.876810\pi\)
0.789879 + 0.613263i \(0.210143\pi\)
\(864\) 0 0
\(865\) 9.00000 + 15.5885i 0.306009 + 0.530023i
\(866\) −2.12132 + 3.67423i −0.0720854 + 0.124856i
\(867\) 0 0
\(868\) 0 0
\(869\) −64.0000 −2.17105
\(870\) 0 0
\(871\) −25.4558 44.0908i −0.862538 1.49396i
\(872\) −2.00000 3.46410i −0.0677285 0.117309i
\(873\) 0 0
\(874\) 45.2548 1.53077
\(875\) 0 0
\(876\) 0 0
\(877\) 14.0000 24.2487i 0.472746 0.818821i −0.526767 0.850010i \(-0.676596\pi\)
0.999514 + 0.0311889i \(0.00992933\pi\)
\(878\) 16.9706 + 29.3939i 0.572729 + 0.991995i
\(879\) 0 0
\(880\) 2.82843 4.89898i 0.0953463 0.165145i
\(881\) −21.2132 −0.714691 −0.357345 0.933972i \(-0.616318\pi\)
−0.357345 + 0.933972i \(0.616318\pi\)
\(882\) 0 0
\(883\) 20.0000 0.673054 0.336527 0.941674i \(-0.390748\pi\)
0.336527 + 0.941674i \(0.390748\pi\)
\(884\) 15.0000 25.9808i 0.504505 0.873828i
\(885\) 0 0
\(886\) −10.0000 17.3205i −0.335957 0.581894i
\(887\) −11.3137 + 19.5959i −0.379877 + 0.657967i −0.991044 0.133535i \(-0.957367\pi\)
0.611167 + 0.791502i \(0.290700\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 10.0000 0.335201
\(891\) 0 0
\(892\) −8.48528 14.6969i −0.284108 0.492090i
\(893\) 16.0000 + 27.7128i 0.535420 + 0.927374i
\(894\) 0 0
\(895\) 16.9706 0.567263
\(896\) 0 0
\(897\) 0 0
\(898\) 12.0000 20.7846i 0.400445 0.693591i
\(899\) 0 0
\(900\) 0 0
\(901\) −14.1421 + 24.4949i −0.471143 + 0.816043i
\(902\) −39.5980 −1.31847
\(903\) 0 0
\(904\) 0 0
\(905\) −9.00000 + 15.5885i −0.299170 + 0.518178i
\(906\) 0 0
\(907\) 10.0000 + 17.3205i 0.332045 + 0.575118i 0.982913 0.184073i \(-0.0589282\pi\)
−0.650868 + 0.759191i \(0.725595\pi\)
\(908\) 8.48528 14.6969i 0.281594 0.487735i
\(909\) 0 0
\(910\) 0 0
\(911\) 56.0000 1.85536 0.927681 0.373373i \(-0.121799\pi\)
0.927681 + 0.373373i \(0.121799\pi\)
\(912\) 0 0
\(913\) −11.3137 19.5959i −0.374429 0.648530i
\(914\) 3.00000 + 5.19615i 0.0992312 + 0.171873i
\(915\) 0 0
\(916\) −12.7279 −0.420542
\(917\) 0 0
\(918\) 0 0
\(919\) 28.0000 48.4974i 0.923635 1.59978i 0.129893 0.991528i \(-0.458537\pi\)
0.793742 0.608254i \(-0.208130\pi\)
\(920\) 5.65685 + 9.79796i 0.186501 + 0.323029i
\(921\) 0 0
\(922\) −0.707107 + 1.22474i −0.0232873 + 0.0403348i
\(923\) 0 0
\(924\) 0 0
\(925\) −12.0000 −0.394558
\(926\) 16.0000 27.7128i 0.525793 0.910700i
\(927\) 0 0
\(928\) −1.00000 1.73205i −0.0328266 0.0568574i
\(929\) 9.19239 15.9217i 0.301592 0.522373i −0.674904 0.737905i \(-0.735815\pi\)
0.976497 + 0.215532i \(0.0691485\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −6.00000 −0.196537
\(933\) 0 0
\(934\) 2.82843 + 4.89898i 0.0925490 + 0.160300i
\(935\) 20.0000 + 34.6410i 0.654070 + 1.13288i
\(936\) 0 0
\(937\) −15.5563 −0.508204 −0.254102 0.967177i \(-0.581780\pi\)
−0.254102 + 0.967177i \(0.581780\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −4.00000 + 6.92820i −0.130466 + 0.225973i
\(941\) 13.4350 + 23.2702i 0.437969 + 0.758585i 0.997533 0.0702023i \(-0.0223645\pi\)
−0.559563 + 0.828788i \(0.689031\pi\)
\(942\) 0 0
\(943\) 39.5980 68.5857i 1.28949 2.23346i
\(944\) 11.3137 0.368230
\(945\) 0 0
\(946\) −16.0000 −0.520205
\(947\) −6.00000 + 10.3923i −0.194974 + 0.337705i −0.946892 0.321552i \(-0.895796\pi\)
0.751918 + 0.659256i \(0.229129\pi\)
\(948\) 0 0
\(949\) 33.0000 + 57.1577i 1.07123 + 1.85542i
\(950\) 8.48528 14.6969i 0.275299 0.476832i
\(951\) 0 0
\(952\) 0 0
\(953\) −8.00000 −0.259145 −0.129573 0.991570i \(-0.541361\pi\)
−0.129573 + 0.991570i \(0.541361\pi\)
\(954\) 0 0
\(955\) −11.3137 19.5959i −0.366103 0.634109i
\(956\) 12.0000 + 20.7846i 0.388108 + 0.672222i
\(957\) 0 0
\(958\) 28.2843 0.913823
\(959\) 0 0
\(960\) 0 0
\(961\) 15.5000 26.8468i 0.500000 0.866025i
\(962\) 8.48528 + 14.6969i 0.273576 + 0.473848i
\(963\) 0 0
\(964\) 2.12132 3.67423i 0.0683231 0.118339i
\(965\) −19.7990 −0.637352
\(966\) 0 0
\(967\) −48.0000 −1.54358 −0.771788 0.635880i \(-0.780637\pi\)
−0.771788 + 0.635880i \(0.780637\pi\)
\(968\) −2.50000 + 4.33013i −0.0803530 + 0.139176i
\(969\) 0 0
\(970\) −5.00000 8.66025i −0.160540 0.278064i
\(971\) −5.65685 + 9.79796i −0.181537 + 0.314431i −0.942404 0.334476i \(-0.891441\pi\)
0.760867 + 0.648908i \(0.224774\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −24.0000 −0.769010
\(975\) 0 0
\(976\) 0.707107 + 1.22474i 0.0226339 + 0.0392031i
\(977\) −15.0000 25.9808i −0.479893 0.831198i 0.519841 0.854263i \(-0.325991\pi\)
−0.999734 + 0.0230645i \(0.992658\pi\)
\(978\) 0 0
\(979\) −28.2843 −0.903969
\(980\) 0 0
\(981\) 0 0
\(982\) 6.00000 10.3923i 0.191468 0.331632i
\(983\) 5.65685 + 9.79796i 0.180426 + 0.312506i 0.942026 0.335541i \(-0.108919\pi\)
−0.761600 + 0.648047i \(0.775586\pi\)
\(984\) 0 0
\(985\) −2.82843 + 4.89898i −0.0901212 + 0.156094i
\(986\) 14.1421 0.450377
\(987\) 0 0
\(988\) −24.0000 −0.763542
\(989\) 16.0000 27.7128i 0.508770 0.881216i
\(990\) 0 0
\(991\) 20.0000 + 34.6410i 0.635321 + 1.10041i 0.986447 + 0.164080i \(0.0524655\pi\)
−0.351126 + 0.936328i \(0.614201\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 24.0000 0.760851
\(996\) 0 0
\(997\) −3.53553 6.12372i −0.111971 0.193940i 0.804594 0.593826i \(-0.202383\pi\)
−0.916565 + 0.399886i \(0.869050\pi\)
\(998\) 2.00000 + 3.46410i 0.0633089 + 0.109654i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.2.g.k.667.2 4
3.2 odd 2 882.2.g.m.667.1 4
7.2 even 3 882.2.a.o.1.1 yes 2
7.3 odd 6 inner 882.2.g.k.361.1 4
7.4 even 3 inner 882.2.g.k.361.2 4
7.5 odd 6 882.2.a.o.1.2 yes 2
7.6 odd 2 inner 882.2.g.k.667.1 4
21.2 odd 6 882.2.a.m.1.2 yes 2
21.5 even 6 882.2.a.m.1.1 2
21.11 odd 6 882.2.g.m.361.1 4
21.17 even 6 882.2.g.m.361.2 4
21.20 even 2 882.2.g.m.667.2 4
28.19 even 6 7056.2.a.ci.1.2 2
28.23 odd 6 7056.2.a.ci.1.1 2
84.23 even 6 7056.2.a.cs.1.2 2
84.47 odd 6 7056.2.a.cs.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
882.2.a.m.1.1 2 21.5 even 6
882.2.a.m.1.2 yes 2 21.2 odd 6
882.2.a.o.1.1 yes 2 7.2 even 3
882.2.a.o.1.2 yes 2 7.5 odd 6
882.2.g.k.361.1 4 7.3 odd 6 inner
882.2.g.k.361.2 4 7.4 even 3 inner
882.2.g.k.667.1 4 7.6 odd 2 inner
882.2.g.k.667.2 4 1.1 even 1 trivial
882.2.g.m.361.1 4 21.11 odd 6
882.2.g.m.361.2 4 21.17 even 6
882.2.g.m.667.1 4 3.2 odd 2
882.2.g.m.667.2 4 21.20 even 2
7056.2.a.ci.1.1 2 28.23 odd 6
7056.2.a.ci.1.2 2 28.19 even 6
7056.2.a.cs.1.1 2 84.47 odd 6
7056.2.a.cs.1.2 2 84.23 even 6