Properties

Label 882.2.k.a.215.3
Level $882$
Weight $2$
Character 882.215
Analytic conductor $7.043$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,2,Mod(215,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.215");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 882.k (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.04280545828\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 215.3
Root \(0.258819 - 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 882.215
Dual form 882.2.k.a.521.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 0.500000i) q^{2} +(0.500000 + 0.866025i) q^{4} +(-2.09077 + 3.62132i) q^{5} +1.00000i q^{8} +(-3.62132 + 2.09077i) q^{10} +(-2.59808 + 1.50000i) q^{11} -2.44949i q^{13} +(-0.500000 + 0.866025i) q^{16} +(0.507306 + 0.878680i) q^{17} +(0.878680 + 0.507306i) q^{19} -4.18154 q^{20} -3.00000 q^{22} +(-3.67423 - 2.12132i) q^{23} +(-6.24264 - 10.8126i) q^{25} +(1.22474 - 2.12132i) q^{26} +1.24264i q^{29} +(-4.86396 + 2.80821i) q^{31} +(-0.866025 + 0.500000i) q^{32} +1.01461i q^{34} +(-4.12132 + 7.13834i) q^{37} +(0.507306 + 0.878680i) q^{38} +(-3.62132 - 2.09077i) q^{40} -2.02922 q^{41} +8.24264 q^{43} +(-2.59808 - 1.50000i) q^{44} +(-2.12132 - 3.67423i) q^{46} +(0.507306 - 0.878680i) q^{47} -12.4853i q^{50} +(2.12132 - 1.22474i) q^{52} +(1.07616 - 0.621320i) q^{53} -12.5446i q^{55} +(-0.621320 + 1.07616i) q^{58} +(5.76500 + 9.98528i) q^{59} +(-5.12132 - 2.95680i) q^{61} -5.61642 q^{62} -1.00000 q^{64} +(8.87039 + 5.12132i) q^{65} +(5.00000 + 8.66025i) q^{67} +(-0.507306 + 0.878680i) q^{68} +10.2426i q^{71} +(-7.24264 + 4.18154i) q^{73} +(-7.13834 + 4.12132i) q^{74} +1.01461i q^{76} +(5.62132 - 9.73641i) q^{79} +(-2.09077 - 3.62132i) q^{80} +(-1.75736 - 1.01461i) q^{82} +3.16693 q^{83} -4.24264 q^{85} +(7.13834 + 4.12132i) q^{86} +(-1.50000 - 2.59808i) q^{88} +(-5.19615 + 9.00000i) q^{89} -4.24264i q^{92} +(0.878680 - 0.507306i) q^{94} +(-3.67423 + 2.12132i) q^{95} -3.76127i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{4} - 12 q^{10} - 4 q^{16} + 24 q^{19} - 24 q^{22} - 16 q^{25} + 12 q^{31} - 16 q^{37} - 12 q^{40} + 32 q^{43} + 12 q^{58} - 24 q^{61} - 8 q^{64} + 40 q^{67} - 24 q^{73} + 28 q^{79} - 48 q^{82}+ \cdots + 24 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 + 0.500000i 0.612372 + 0.353553i
\(3\) 0 0
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) −2.09077 + 3.62132i −0.935021 + 1.61950i −0.160424 + 0.987048i \(0.551286\pi\)
−0.774597 + 0.632456i \(0.782047\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −3.62132 + 2.09077i −1.14516 + 0.661160i
\(11\) −2.59808 + 1.50000i −0.783349 + 0.452267i −0.837616 0.546259i \(-0.816051\pi\)
0.0542666 + 0.998526i \(0.482718\pi\)
\(12\) 0 0
\(13\) 2.44949i 0.679366i −0.940540 0.339683i \(-0.889680\pi\)
0.940540 0.339683i \(-0.110320\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 0.507306 + 0.878680i 0.123040 + 0.213111i 0.920965 0.389645i \(-0.127402\pi\)
−0.797925 + 0.602756i \(0.794069\pi\)
\(18\) 0 0
\(19\) 0.878680 + 0.507306i 0.201583 + 0.116384i 0.597394 0.801948i \(-0.296203\pi\)
−0.395811 + 0.918332i \(0.629536\pi\)
\(20\) −4.18154 −0.935021
\(21\) 0 0
\(22\) −3.00000 −0.639602
\(23\) −3.67423 2.12132i −0.766131 0.442326i 0.0653618 0.997862i \(-0.479180\pi\)
−0.831493 + 0.555536i \(0.812513\pi\)
\(24\) 0 0
\(25\) −6.24264 10.8126i −1.24853 2.16251i
\(26\) 1.22474 2.12132i 0.240192 0.416025i
\(27\) 0 0
\(28\) 0 0
\(29\) 1.24264i 0.230753i 0.993322 + 0.115376i \(0.0368074\pi\)
−0.993322 + 0.115376i \(0.963193\pi\)
\(30\) 0 0
\(31\) −4.86396 + 2.80821i −0.873593 + 0.504369i −0.868541 0.495618i \(-0.834942\pi\)
−0.00505256 + 0.999987i \(0.501608\pi\)
\(32\) −0.866025 + 0.500000i −0.153093 + 0.0883883i
\(33\) 0 0
\(34\) 1.01461i 0.174005i
\(35\) 0 0
\(36\) 0 0
\(37\) −4.12132 + 7.13834i −0.677541 + 1.17354i 0.298178 + 0.954510i \(0.403621\pi\)
−0.975719 + 0.219025i \(0.929712\pi\)
\(38\) 0.507306 + 0.878680i 0.0822959 + 0.142541i
\(39\) 0 0
\(40\) −3.62132 2.09077i −0.572581 0.330580i
\(41\) −2.02922 −0.316912 −0.158456 0.987366i \(-0.550652\pi\)
−0.158456 + 0.987366i \(0.550652\pi\)
\(42\) 0 0
\(43\) 8.24264 1.25699 0.628495 0.777813i \(-0.283671\pi\)
0.628495 + 0.777813i \(0.283671\pi\)
\(44\) −2.59808 1.50000i −0.391675 0.226134i
\(45\) 0 0
\(46\) −2.12132 3.67423i −0.312772 0.541736i
\(47\) 0.507306 0.878680i 0.0739982 0.128169i −0.826652 0.562713i \(-0.809757\pi\)
0.900650 + 0.434545i \(0.143091\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 12.4853i 1.76569i
\(51\) 0 0
\(52\) 2.12132 1.22474i 0.294174 0.169842i
\(53\) 1.07616 0.621320i 0.147822 0.0853449i −0.424265 0.905538i \(-0.639467\pi\)
0.572087 + 0.820193i \(0.306134\pi\)
\(54\) 0 0
\(55\) 12.5446i 1.69152i
\(56\) 0 0
\(57\) 0 0
\(58\) −0.621320 + 1.07616i −0.0815834 + 0.141307i
\(59\) 5.76500 + 9.98528i 0.750540 + 1.29997i 0.947561 + 0.319574i \(0.103540\pi\)
−0.197022 + 0.980399i \(0.563127\pi\)
\(60\) 0 0
\(61\) −5.12132 2.95680i −0.655718 0.378579i 0.134926 0.990856i \(-0.456920\pi\)
−0.790643 + 0.612277i \(0.790254\pi\)
\(62\) −5.61642 −0.713286
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 8.87039 + 5.12132i 1.10024 + 0.635222i
\(66\) 0 0
\(67\) 5.00000 + 8.66025i 0.610847 + 1.05802i 0.991098 + 0.133135i \(0.0425044\pi\)
−0.380251 + 0.924883i \(0.624162\pi\)
\(68\) −0.507306 + 0.878680i −0.0615199 + 0.106556i
\(69\) 0 0
\(70\) 0 0
\(71\) 10.2426i 1.21558i 0.794099 + 0.607789i \(0.207943\pi\)
−0.794099 + 0.607789i \(0.792057\pi\)
\(72\) 0 0
\(73\) −7.24264 + 4.18154i −0.847687 + 0.489412i −0.859870 0.510513i \(-0.829455\pi\)
0.0121828 + 0.999926i \(0.496122\pi\)
\(74\) −7.13834 + 4.12132i −0.829815 + 0.479094i
\(75\) 0 0
\(76\) 1.01461i 0.116384i
\(77\) 0 0
\(78\) 0 0
\(79\) 5.62132 9.73641i 0.632448 1.09543i −0.354602 0.935017i \(-0.615384\pi\)
0.987050 0.160415i \(-0.0512831\pi\)
\(80\) −2.09077 3.62132i −0.233755 0.404876i
\(81\) 0 0
\(82\) −1.75736 1.01461i −0.194068 0.112045i
\(83\) 3.16693 0.347616 0.173808 0.984780i \(-0.444393\pi\)
0.173808 + 0.984780i \(0.444393\pi\)
\(84\) 0 0
\(85\) −4.24264 −0.460179
\(86\) 7.13834 + 4.12132i 0.769747 + 0.444413i
\(87\) 0 0
\(88\) −1.50000 2.59808i −0.159901 0.276956i
\(89\) −5.19615 + 9.00000i −0.550791 + 0.953998i 0.447427 + 0.894321i \(0.352341\pi\)
−0.998218 + 0.0596775i \(0.980993\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 4.24264i 0.442326i
\(93\) 0 0
\(94\) 0.878680 0.507306i 0.0906289 0.0523246i
\(95\) −3.67423 + 2.12132i −0.376969 + 0.217643i
\(96\) 0 0
\(97\) 3.76127i 0.381900i −0.981600 0.190950i \(-0.938843\pi\)
0.981600 0.190950i \(-0.0611568\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 6.24264 10.8126i 0.624264 1.08126i
\(101\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(102\) 0 0
\(103\) 13.2426 + 7.64564i 1.30484 + 0.753348i 0.981229 0.192844i \(-0.0617712\pi\)
0.323607 + 0.946192i \(0.395105\pi\)
\(104\) 2.44949 0.240192
\(105\) 0 0
\(106\) 1.24264 0.120696
\(107\) 4.75039 + 2.74264i 0.459238 + 0.265141i 0.711724 0.702459i \(-0.247915\pi\)
−0.252486 + 0.967601i \(0.581248\pi\)
\(108\) 0 0
\(109\) −0.757359 1.31178i −0.0725419 0.125646i 0.827473 0.561506i \(-0.189778\pi\)
−0.900015 + 0.435860i \(0.856444\pi\)
\(110\) 6.27231 10.8640i 0.598041 1.03584i
\(111\) 0 0
\(112\) 0 0
\(113\) 8.48528i 0.798228i 0.916901 + 0.399114i \(0.130682\pi\)
−0.916901 + 0.399114i \(0.869318\pi\)
\(114\) 0 0
\(115\) 15.3640 8.87039i 1.43270 0.827168i
\(116\) −1.07616 + 0.621320i −0.0999188 + 0.0576881i
\(117\) 0 0
\(118\) 11.5300i 1.06142i
\(119\) 0 0
\(120\) 0 0
\(121\) −1.00000 + 1.73205i −0.0909091 + 0.157459i
\(122\) −2.95680 5.12132i −0.267696 0.463663i
\(123\) 0 0
\(124\) −4.86396 2.80821i −0.436797 0.252185i
\(125\) 31.3000 2.79956
\(126\) 0 0
\(127\) −5.24264 −0.465209 −0.232605 0.972571i \(-0.574725\pi\)
−0.232605 + 0.972571i \(0.574725\pi\)
\(128\) −0.866025 0.500000i −0.0765466 0.0441942i
\(129\) 0 0
\(130\) 5.12132 + 8.87039i 0.449170 + 0.777984i
\(131\) 2.59808 4.50000i 0.226995 0.393167i −0.729921 0.683531i \(-0.760443\pi\)
0.956916 + 0.290365i \(0.0937766\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 10.0000i 0.863868i
\(135\) 0 0
\(136\) −0.878680 + 0.507306i −0.0753462 + 0.0435011i
\(137\) 12.5446 7.24264i 1.07176 0.618781i 0.143098 0.989709i \(-0.454294\pi\)
0.928662 + 0.370928i \(0.120960\pi\)
\(138\) 0 0
\(139\) 20.1903i 1.71252i 0.516549 + 0.856258i \(0.327217\pi\)
−0.516549 + 0.856258i \(0.672783\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −5.12132 + 8.87039i −0.429772 + 0.744386i
\(143\) 3.67423 + 6.36396i 0.307255 + 0.532181i
\(144\) 0 0
\(145\) −4.50000 2.59808i −0.373705 0.215758i
\(146\) −8.36308 −0.692134
\(147\) 0 0
\(148\) −8.24264 −0.677541
\(149\) −17.7408 10.2426i −1.45338 0.839110i −0.454709 0.890640i \(-0.650257\pi\)
−0.998671 + 0.0515300i \(0.983590\pi\)
\(150\) 0 0
\(151\) 1.62132 + 2.80821i 0.131941 + 0.228529i 0.924425 0.381364i \(-0.124546\pi\)
−0.792484 + 0.609893i \(0.791212\pi\)
\(152\) −0.507306 + 0.878680i −0.0411479 + 0.0712703i
\(153\) 0 0
\(154\) 0 0
\(155\) 23.4853i 1.88638i
\(156\) 0 0
\(157\) 12.7279 7.34847i 1.01580 0.586472i 0.102915 0.994690i \(-0.467183\pi\)
0.912884 + 0.408219i \(0.133850\pi\)
\(158\) 9.73641 5.62132i 0.774587 0.447208i
\(159\) 0 0
\(160\) 4.18154i 0.330580i
\(161\) 0 0
\(162\) 0 0
\(163\) −3.12132 + 5.40629i −0.244481 + 0.423453i −0.961985 0.273101i \(-0.911951\pi\)
0.717505 + 0.696554i \(0.245284\pi\)
\(164\) −1.01461 1.75736i −0.0792279 0.137227i
\(165\) 0 0
\(166\) 2.74264 + 1.58346i 0.212870 + 0.122901i
\(167\) −23.0600 −1.78444 −0.892219 0.451603i \(-0.850852\pi\)
−0.892219 + 0.451603i \(0.850852\pi\)
\(168\) 0 0
\(169\) 7.00000 0.538462
\(170\) −3.67423 2.12132i −0.281801 0.162698i
\(171\) 0 0
\(172\) 4.12132 + 7.13834i 0.314248 + 0.544293i
\(173\) 10.3923 18.0000i 0.790112 1.36851i −0.135785 0.990738i \(-0.543356\pi\)
0.925897 0.377776i \(-0.123311\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 3.00000i 0.226134i
\(177\) 0 0
\(178\) −9.00000 + 5.19615i −0.674579 + 0.389468i
\(179\) 8.23999 4.75736i 0.615886 0.355582i −0.159380 0.987217i \(-0.550949\pi\)
0.775265 + 0.631636i \(0.217616\pi\)
\(180\) 0 0
\(181\) 2.02922i 0.150831i −0.997152 0.0754155i \(-0.975972\pi\)
0.997152 0.0754155i \(-0.0240283\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 2.12132 3.67423i 0.156386 0.270868i
\(185\) −17.2335 29.8492i −1.26703 2.19456i
\(186\) 0 0
\(187\) −2.63604 1.52192i −0.192766 0.111294i
\(188\) 1.01461 0.0739982
\(189\) 0 0
\(190\) −4.24264 −0.307794
\(191\) −7.34847 4.24264i −0.531717 0.306987i 0.209999 0.977702i \(-0.432654\pi\)
−0.741715 + 0.670715i \(0.765987\pi\)
\(192\) 0 0
\(193\) 3.74264 + 6.48244i 0.269401 + 0.466617i 0.968707 0.248206i \(-0.0798409\pi\)
−0.699306 + 0.714822i \(0.746508\pi\)
\(194\) 1.88064 3.25736i 0.135022 0.233865i
\(195\) 0 0
\(196\) 0 0
\(197\) 9.51472i 0.677896i 0.940805 + 0.338948i \(0.110071\pi\)
−0.940805 + 0.338948i \(0.889929\pi\)
\(198\) 0 0
\(199\) 13.9706 8.06591i 0.990347 0.571777i 0.0849690 0.996384i \(-0.472921\pi\)
0.905378 + 0.424607i \(0.139588\pi\)
\(200\) 10.8126 6.24264i 0.764564 0.441421i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 4.24264 7.34847i 0.296319 0.513239i
\(206\) 7.64564 + 13.2426i 0.532697 + 0.922658i
\(207\) 0 0
\(208\) 2.12132 + 1.22474i 0.147087 + 0.0849208i
\(209\) −3.04384 −0.210547
\(210\) 0 0
\(211\) 8.24264 0.567447 0.283723 0.958906i \(-0.408430\pi\)
0.283723 + 0.958906i \(0.408430\pi\)
\(212\) 1.07616 + 0.621320i 0.0739109 + 0.0426725i
\(213\) 0 0
\(214\) 2.74264 + 4.75039i 0.187483 + 0.324730i
\(215\) −17.2335 + 29.8492i −1.17531 + 2.03570i
\(216\) 0 0
\(217\) 0 0
\(218\) 1.51472i 0.102590i
\(219\) 0 0
\(220\) 10.8640 6.27231i 0.732448 0.422879i
\(221\) 2.15232 1.24264i 0.144780 0.0835891i
\(222\) 0 0
\(223\) 12.5446i 0.840050i 0.907513 + 0.420025i \(0.137979\pi\)
−0.907513 + 0.420025i \(0.862021\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −4.24264 + 7.34847i −0.282216 + 0.488813i
\(227\) −7.79423 13.5000i −0.517321 0.896026i −0.999798 0.0201176i \(-0.993596\pi\)
0.482476 0.875909i \(-0.339737\pi\)
\(228\) 0 0
\(229\) 12.0000 + 6.92820i 0.792982 + 0.457829i 0.841011 0.541017i \(-0.181961\pi\)
−0.0480291 + 0.998846i \(0.515294\pi\)
\(230\) 17.7408 1.16979
\(231\) 0 0
\(232\) −1.24264 −0.0815834
\(233\) −5.82655 3.36396i −0.381710 0.220380i 0.296852 0.954924i \(-0.404063\pi\)
−0.678562 + 0.734543i \(0.737397\pi\)
\(234\) 0 0
\(235\) 2.12132 + 3.67423i 0.138380 + 0.239681i
\(236\) −5.76500 + 9.98528i −0.375270 + 0.649986i
\(237\) 0 0
\(238\) 0 0
\(239\) 12.7279i 0.823301i 0.911342 + 0.411650i \(0.135048\pi\)
−0.911342 + 0.411650i \(0.864952\pi\)
\(240\) 0 0
\(241\) −14.7426 + 8.51167i −0.949657 + 0.548285i −0.892974 0.450108i \(-0.851386\pi\)
−0.0566826 + 0.998392i \(0.518052\pi\)
\(242\) −1.73205 + 1.00000i −0.111340 + 0.0642824i
\(243\) 0 0
\(244\) 5.91359i 0.378579i
\(245\) 0 0
\(246\) 0 0
\(247\) 1.24264 2.15232i 0.0790673 0.136949i
\(248\) −2.80821 4.86396i −0.178321 0.308862i
\(249\) 0 0
\(250\) 27.1066 + 15.6500i 1.71437 + 0.989793i
\(251\) 17.6177 1.11202 0.556009 0.831176i \(-0.312332\pi\)
0.556009 + 0.831176i \(0.312332\pi\)
\(252\) 0 0
\(253\) 12.7279 0.800198
\(254\) −4.54026 2.62132i −0.284881 0.164476i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 12.5446 21.7279i 0.782512 1.35535i −0.147962 0.988993i \(-0.547271\pi\)
0.930474 0.366358i \(-0.119395\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 10.2426i 0.635222i
\(261\) 0 0
\(262\) 4.50000 2.59808i 0.278011 0.160510i
\(263\) −23.5673 + 13.6066i −1.45322 + 0.839019i −0.998663 0.0516967i \(-0.983537\pi\)
−0.454561 + 0.890716i \(0.650204\pi\)
\(264\) 0 0
\(265\) 5.19615i 0.319197i
\(266\) 0 0
\(267\) 0 0
\(268\) −5.00000 + 8.66025i −0.305424 + 0.529009i
\(269\) −5.25770 9.10660i −0.320568 0.555239i 0.660038 0.751232i \(-0.270540\pi\)
−0.980605 + 0.195993i \(0.937207\pi\)
\(270\) 0 0
\(271\) 9.62132 + 5.55487i 0.584454 + 0.337434i 0.762901 0.646515i \(-0.223774\pi\)
−0.178448 + 0.983949i \(0.557108\pi\)
\(272\) −1.01461 −0.0615199
\(273\) 0 0
\(274\) 14.4853 0.875088
\(275\) 32.4377 + 18.7279i 1.95607 + 1.12934i
\(276\) 0 0
\(277\) 10.4853 + 18.1610i 0.630000 + 1.09119i 0.987551 + 0.157298i \(0.0502783\pi\)
−0.357552 + 0.933893i \(0.616388\pi\)
\(278\) −10.0951 + 17.4853i −0.605466 + 1.04870i
\(279\) 0 0
\(280\) 0 0
\(281\) 6.00000i 0.357930i −0.983855 0.178965i \(-0.942725\pi\)
0.983855 0.178965i \(-0.0572749\pi\)
\(282\) 0 0
\(283\) 5.63604 3.25397i 0.335028 0.193428i −0.323043 0.946384i \(-0.604706\pi\)
0.658071 + 0.752956i \(0.271373\pi\)
\(284\) −8.87039 + 5.12132i −0.526361 + 0.303894i
\(285\) 0 0
\(286\) 7.34847i 0.434524i
\(287\) 0 0
\(288\) 0 0
\(289\) 7.98528 13.8309i 0.469722 0.813583i
\(290\) −2.59808 4.50000i −0.152564 0.264249i
\(291\) 0 0
\(292\) −7.24264 4.18154i −0.423843 0.244706i
\(293\) −4.18154 −0.244288 −0.122144 0.992512i \(-0.538977\pi\)
−0.122144 + 0.992512i \(0.538977\pi\)
\(294\) 0 0
\(295\) −48.2132 −2.80708
\(296\) −7.13834 4.12132i −0.414907 0.239547i
\(297\) 0 0
\(298\) −10.2426 17.7408i −0.593340 1.02770i
\(299\) −5.19615 + 9.00000i −0.300501 + 0.520483i
\(300\) 0 0
\(301\) 0 0
\(302\) 3.24264i 0.186593i
\(303\) 0 0
\(304\) −0.878680 + 0.507306i −0.0503957 + 0.0290960i
\(305\) 21.4150 12.3640i 1.22622 0.707958i
\(306\) 0 0
\(307\) 24.6690i 1.40793i 0.710233 + 0.703966i \(0.248589\pi\)
−0.710233 + 0.703966i \(0.751411\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 11.7426 20.3389i 0.666937 1.15517i
\(311\) 9.37769 + 16.2426i 0.531760 + 0.921036i 0.999313 + 0.0370703i \(0.0118026\pi\)
−0.467552 + 0.883965i \(0.654864\pi\)
\(312\) 0 0
\(313\) 0.985281 + 0.568852i 0.0556914 + 0.0321534i 0.527587 0.849501i \(-0.323097\pi\)
−0.471896 + 0.881654i \(0.656430\pi\)
\(314\) 14.6969 0.829396
\(315\) 0 0
\(316\) 11.2426 0.632448
\(317\) −6.27231 3.62132i −0.352288 0.203394i 0.313404 0.949620i \(-0.398530\pi\)
−0.665693 + 0.746226i \(0.731864\pi\)
\(318\) 0 0
\(319\) −1.86396 3.22848i −0.104362 0.180760i
\(320\) 2.09077 3.62132i 0.116878 0.202438i
\(321\) 0 0
\(322\) 0 0
\(323\) 1.02944i 0.0572794i
\(324\) 0 0
\(325\) −26.4853 + 15.2913i −1.46914 + 0.848208i
\(326\) −5.40629 + 3.12132i −0.299426 + 0.172874i
\(327\) 0 0
\(328\) 2.02922i 0.112045i
\(329\) 0 0
\(330\) 0 0
\(331\) −8.72792 + 15.1172i −0.479730 + 0.830917i −0.999730 0.0232497i \(-0.992599\pi\)
0.520000 + 0.854166i \(0.325932\pi\)
\(332\) 1.58346 + 2.74264i 0.0869039 + 0.150522i
\(333\) 0 0
\(334\) −19.9706 11.5300i −1.09274 0.630894i
\(335\) −41.8154 −2.28462
\(336\) 0 0
\(337\) −5.00000 −0.272367 −0.136184 0.990684i \(-0.543484\pi\)
−0.136184 + 0.990684i \(0.543484\pi\)
\(338\) 6.06218 + 3.50000i 0.329739 + 0.190375i
\(339\) 0 0
\(340\) −2.12132 3.67423i −0.115045 0.199263i
\(341\) 8.42463 14.5919i 0.456219 0.790195i
\(342\) 0 0
\(343\) 0 0
\(344\) 8.24264i 0.444413i
\(345\) 0 0
\(346\) 18.0000 10.3923i 0.967686 0.558694i
\(347\) −12.5446 + 7.24264i −0.673431 + 0.388805i −0.797375 0.603484i \(-0.793779\pi\)
0.123945 + 0.992289i \(0.460445\pi\)
\(348\) 0 0
\(349\) 36.9164i 1.97609i −0.154163 0.988045i \(-0.549268\pi\)
0.154163 0.988045i \(-0.450732\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1.50000 2.59808i 0.0799503 0.138478i
\(353\) 9.37769 + 16.2426i 0.499124 + 0.864509i 0.999999 0.00101095i \(-0.000321796\pi\)
−0.500875 + 0.865519i \(0.666988\pi\)
\(354\) 0 0
\(355\) −37.0919 21.4150i −1.96863 1.13659i
\(356\) −10.3923 −0.550791
\(357\) 0 0
\(358\) 9.51472 0.502869
\(359\) −15.5885 9.00000i −0.822727 0.475002i 0.0286287 0.999590i \(-0.490886\pi\)
−0.851356 + 0.524588i \(0.824219\pi\)
\(360\) 0 0
\(361\) −8.98528 15.5630i −0.472910 0.819103i
\(362\) 1.01461 1.75736i 0.0533268 0.0923648i
\(363\) 0 0
\(364\) 0 0
\(365\) 34.9706i 1.83044i
\(366\) 0 0
\(367\) −16.3492 + 9.43924i −0.853424 + 0.492724i −0.861804 0.507241i \(-0.830666\pi\)
0.00838099 + 0.999965i \(0.497332\pi\)
\(368\) 3.67423 2.12132i 0.191533 0.110581i
\(369\) 0 0
\(370\) 34.4669i 1.79185i
\(371\) 0 0
\(372\) 0 0
\(373\) −10.7279 + 18.5813i −0.555471 + 0.962104i 0.442396 + 0.896820i \(0.354129\pi\)
−0.997867 + 0.0652837i \(0.979205\pi\)
\(374\) −1.52192 2.63604i −0.0786965 0.136306i
\(375\) 0 0
\(376\) 0.878680 + 0.507306i 0.0453144 + 0.0261623i
\(377\) 3.04384 0.156766
\(378\) 0 0
\(379\) −4.48528 −0.230393 −0.115197 0.993343i \(-0.536750\pi\)
−0.115197 + 0.993343i \(0.536750\pi\)
\(380\) −3.67423 2.12132i −0.188484 0.108821i
\(381\) 0 0
\(382\) −4.24264 7.34847i −0.217072 0.375980i
\(383\) 6.21076 10.7574i 0.317355 0.549675i −0.662580 0.748991i \(-0.730539\pi\)
0.979935 + 0.199316i \(0.0638719\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 7.48528i 0.380991i
\(387\) 0 0
\(388\) 3.25736 1.88064i 0.165367 0.0954749i
\(389\) 16.8493 9.72792i 0.854291 0.493225i −0.00780525 0.999970i \(-0.502485\pi\)
0.862096 + 0.506744i \(0.169151\pi\)
\(390\) 0 0
\(391\) 4.30463i 0.217695i
\(392\) 0 0
\(393\) 0 0
\(394\) −4.75736 + 8.23999i −0.239672 + 0.415125i
\(395\) 23.5058 + 40.7132i 1.18270 + 2.04850i
\(396\) 0 0
\(397\) −12.0000 6.92820i −0.602263 0.347717i 0.167668 0.985843i \(-0.446376\pi\)
−0.769931 + 0.638127i \(0.779710\pi\)
\(398\) 16.1318 0.808615
\(399\) 0 0
\(400\) 12.4853 0.624264
\(401\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(402\) 0 0
\(403\) 6.87868 + 11.9142i 0.342651 + 0.593490i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 24.7279i 1.22572i
\(408\) 0 0
\(409\) 3.98528 2.30090i 0.197059 0.113772i −0.398224 0.917288i \(-0.630373\pi\)
0.595283 + 0.803516i \(0.297040\pi\)
\(410\) 7.34847 4.24264i 0.362915 0.209529i
\(411\) 0 0
\(412\) 15.2913i 0.753348i
\(413\) 0 0
\(414\) 0 0
\(415\) −6.62132 + 11.4685i −0.325028 + 0.562965i
\(416\) 1.22474 + 2.12132i 0.0600481 + 0.104006i
\(417\) 0 0
\(418\) −2.63604 1.52192i −0.128933 0.0744394i
\(419\) −4.05845 −0.198268 −0.0991341 0.995074i \(-0.531607\pi\)
−0.0991341 + 0.995074i \(0.531607\pi\)
\(420\) 0 0
\(421\) −5.75736 −0.280597 −0.140298 0.990109i \(-0.544806\pi\)
−0.140298 + 0.990109i \(0.544806\pi\)
\(422\) 7.13834 + 4.12132i 0.347489 + 0.200623i
\(423\) 0 0
\(424\) 0.621320 + 1.07616i 0.0301740 + 0.0522629i
\(425\) 6.33386 10.9706i 0.307237 0.532150i
\(426\) 0 0
\(427\) 0 0
\(428\) 5.48528i 0.265141i
\(429\) 0 0
\(430\) −29.8492 + 17.2335i −1.43946 + 0.831072i
\(431\) −17.7408 + 10.2426i −0.854543 + 0.493371i −0.862181 0.506600i \(-0.830902\pi\)
0.00763808 + 0.999971i \(0.497569\pi\)
\(432\) 0 0
\(433\) 3.46410i 0.166474i 0.996530 + 0.0832370i \(0.0265259\pi\)
−0.996530 + 0.0832370i \(0.973474\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0.757359 1.31178i 0.0362709 0.0628231i
\(437\) −2.15232 3.72792i −0.102959 0.178331i
\(438\) 0 0
\(439\) −23.5919 13.6208i −1.12598 0.650084i −0.183059 0.983102i \(-0.558600\pi\)
−0.942921 + 0.333018i \(0.891933\pi\)
\(440\) 12.5446 0.598041
\(441\) 0 0
\(442\) 2.48528 0.118213
\(443\) 29.8396 + 17.2279i 1.41772 + 0.818523i 0.996099 0.0882469i \(-0.0281264\pi\)
0.421625 + 0.906770i \(0.361460\pi\)
\(444\) 0 0
\(445\) −21.7279 37.6339i −1.03000 1.78402i
\(446\) −6.27231 + 10.8640i −0.297003 + 0.514423i
\(447\) 0 0
\(448\) 0 0
\(449\) 10.2426i 0.483380i 0.970354 + 0.241690i \(0.0777017\pi\)
−0.970354 + 0.241690i \(0.922298\pi\)
\(450\) 0 0
\(451\) 5.27208 3.04384i 0.248252 0.143329i
\(452\) −7.34847 + 4.24264i −0.345643 + 0.199557i
\(453\) 0 0
\(454\) 15.5885i 0.731603i
\(455\) 0 0
\(456\) 0 0
\(457\) 11.5000 19.9186i 0.537947 0.931752i −0.461067 0.887365i \(-0.652533\pi\)
0.999014 0.0443868i \(-0.0141334\pi\)
\(458\) 6.92820 + 12.0000i 0.323734 + 0.560723i
\(459\) 0 0
\(460\) 15.3640 + 8.87039i 0.716348 + 0.413584i
\(461\) −22.8138 −1.06255 −0.531273 0.847201i \(-0.678286\pi\)
−0.531273 + 0.847201i \(0.678286\pi\)
\(462\) 0 0
\(463\) 21.4558 0.997138 0.498569 0.866850i \(-0.333859\pi\)
0.498569 + 0.866850i \(0.333859\pi\)
\(464\) −1.07616 0.621320i −0.0499594 0.0288441i
\(465\) 0 0
\(466\) −3.36396 5.82655i −0.155832 0.269910i
\(467\) 9.50079 16.4558i 0.439644 0.761486i −0.558018 0.829829i \(-0.688438\pi\)
0.997662 + 0.0683432i \(0.0217713\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 4.24264i 0.195698i
\(471\) 0 0
\(472\) −9.98528 + 5.76500i −0.459610 + 0.265356i
\(473\) −21.4150 + 12.3640i −0.984663 + 0.568496i
\(474\) 0 0
\(475\) 12.6677i 0.581235i
\(476\) 0 0
\(477\) 0 0
\(478\) −6.36396 + 11.0227i −0.291081 + 0.504167i
\(479\) −18.2481 31.6066i −0.833776 1.44414i −0.895023 0.446020i \(-0.852841\pi\)
0.0612470 0.998123i \(-0.480492\pi\)
\(480\) 0 0
\(481\) 17.4853 + 10.0951i 0.797260 + 0.460298i
\(482\) −17.0233 −0.775392
\(483\) 0 0
\(484\) −2.00000 −0.0909091
\(485\) 13.6208 + 7.86396i 0.618488 + 0.357084i
\(486\) 0 0
\(487\) −14.1066 24.4334i −0.639231 1.10718i −0.985602 0.169083i \(-0.945919\pi\)
0.346371 0.938098i \(-0.387414\pi\)
\(488\) 2.95680 5.12132i 0.133848 0.231831i
\(489\) 0 0
\(490\) 0 0
\(491\) 19.9706i 0.901259i −0.892711 0.450629i \(-0.851200\pi\)
0.892711 0.450629i \(-0.148800\pi\)
\(492\) 0 0
\(493\) −1.09188 + 0.630399i −0.0491759 + 0.0283917i
\(494\) 2.15232 1.24264i 0.0968373 0.0559090i
\(495\) 0 0
\(496\) 5.61642i 0.252185i
\(497\) 0 0
\(498\) 0 0
\(499\) 17.9706 31.1259i 0.804473 1.39339i −0.112173 0.993689i \(-0.535781\pi\)
0.916646 0.399699i \(-0.130885\pi\)
\(500\) 15.6500 + 27.1066i 0.699889 + 1.21224i
\(501\) 0 0
\(502\) 15.2574 + 8.80884i 0.680969 + 0.393158i
\(503\) −3.29002 −0.146695 −0.0733474 0.997306i \(-0.523368\pi\)
−0.0733474 + 0.997306i \(0.523368\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 11.0227 + 6.36396i 0.490019 + 0.282913i
\(507\) 0 0
\(508\) −2.62132 4.54026i −0.116302 0.201441i
\(509\) −20.8462 + 36.1066i −0.923990 + 1.60040i −0.130812 + 0.991407i \(0.541758\pi\)
−0.793178 + 0.608990i \(0.791575\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 21.7279 12.5446i 0.958378 0.553320i
\(515\) −55.3746 + 31.9706i −2.44010 + 1.40879i
\(516\) 0 0
\(517\) 3.04384i 0.133868i
\(518\) 0 0
\(519\) 0 0
\(520\) −5.12132 + 8.87039i −0.224585 + 0.388992i
\(521\) −10.0081 17.3345i −0.438462 0.759439i 0.559109 0.829094i \(-0.311143\pi\)
−0.997571 + 0.0696551i \(0.977810\pi\)
\(522\) 0 0
\(523\) 23.8492 + 13.7694i 1.04285 + 0.602092i 0.920641 0.390411i \(-0.127667\pi\)
0.122214 + 0.992504i \(0.461001\pi\)
\(524\) 5.19615 0.226995
\(525\) 0 0
\(526\) −27.2132 −1.18655
\(527\) −4.93503 2.84924i −0.214973 0.124115i
\(528\) 0 0
\(529\) −2.50000 4.33013i −0.108696 0.188266i
\(530\) −2.59808 + 4.50000i −0.112853 + 0.195468i
\(531\) 0 0
\(532\) 0 0
\(533\) 4.97056i 0.215299i
\(534\) 0 0
\(535\) −19.8640 + 11.4685i −0.858794 + 0.495825i
\(536\) −8.66025 + 5.00000i −0.374066 + 0.215967i
\(537\) 0 0
\(538\) 10.5154i 0.453351i
\(539\) 0 0
\(540\) 0 0
\(541\) 5.36396 9.29065i 0.230615 0.399436i −0.727374 0.686241i \(-0.759260\pi\)
0.957989 + 0.286804i \(0.0925930\pi\)
\(542\) 5.55487 + 9.62132i 0.238602 + 0.413271i
\(543\) 0 0
\(544\) −0.878680 0.507306i −0.0376731 0.0217506i
\(545\) 6.33386 0.271313
\(546\) 0 0
\(547\) 19.6985 0.842246 0.421123 0.907003i \(-0.361636\pi\)
0.421123 + 0.907003i \(0.361636\pi\)
\(548\) 12.5446 + 7.24264i 0.535880 + 0.309390i
\(549\) 0 0
\(550\) 18.7279 + 32.4377i 0.798561 + 1.38315i
\(551\) −0.630399 + 1.09188i −0.0268559 + 0.0465158i
\(552\) 0 0
\(553\) 0 0
\(554\) 20.9706i 0.890954i
\(555\) 0 0
\(556\) −17.4853 + 10.0951i −0.741541 + 0.428129i
\(557\) −13.6208 + 7.86396i −0.577131 + 0.333207i −0.759992 0.649932i \(-0.774797\pi\)
0.182861 + 0.983139i \(0.441464\pi\)
\(558\) 0 0
\(559\) 20.1903i 0.853957i
\(560\) 0 0
\(561\) 0 0
\(562\) 3.00000 5.19615i 0.126547 0.219186i
\(563\) 12.0989 + 20.9558i 0.509906 + 0.883184i 0.999934 + 0.0114768i \(0.00365325\pi\)
−0.490028 + 0.871707i \(0.663013\pi\)
\(564\) 0 0
\(565\) −30.7279 17.7408i −1.29273 0.746360i
\(566\) 6.50794 0.273549
\(567\) 0 0
\(568\) −10.2426 −0.429772
\(569\) −1.52192 0.878680i −0.0638021 0.0368362i 0.467760 0.883856i \(-0.345061\pi\)
−0.531562 + 0.847020i \(0.678395\pi\)
\(570\) 0 0
\(571\) 8.36396 + 14.4868i 0.350021 + 0.606254i 0.986253 0.165244i \(-0.0528412\pi\)
−0.636232 + 0.771498i \(0.719508\pi\)
\(572\) −3.67423 + 6.36396i −0.153627 + 0.266091i
\(573\) 0 0
\(574\) 0 0
\(575\) 52.9706i 2.20903i
\(576\) 0 0
\(577\) −17.7426 + 10.2437i −0.738636 + 0.426452i −0.821573 0.570103i \(-0.806903\pi\)
0.0829373 + 0.996555i \(0.473570\pi\)
\(578\) 13.8309 7.98528i 0.575290 0.332144i
\(579\) 0 0
\(580\) 5.19615i 0.215758i
\(581\) 0 0
\(582\) 0 0
\(583\) −1.86396 + 3.22848i −0.0771974 + 0.133710i
\(584\) −4.18154 7.24264i −0.173033 0.299703i
\(585\) 0 0
\(586\) −3.62132 2.09077i −0.149595 0.0863689i
\(587\) −5.19615 −0.214468 −0.107234 0.994234i \(-0.534199\pi\)
−0.107234 + 0.994234i \(0.534199\pi\)
\(588\) 0 0
\(589\) −5.69848 −0.234802
\(590\) −41.7539 24.1066i −1.71898 0.992453i
\(591\) 0 0
\(592\) −4.12132 7.13834i −0.169385 0.293384i
\(593\) −15.2042 + 26.3345i −0.624363 + 1.08143i 0.364300 + 0.931282i \(0.381308\pi\)
−0.988664 + 0.150148i \(0.952025\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 20.4853i 0.839110i
\(597\) 0 0
\(598\) −9.00000 + 5.19615i −0.368037 + 0.212486i
\(599\) 37.6339 21.7279i 1.53768 0.887779i 0.538704 0.842495i \(-0.318914\pi\)
0.998974 0.0452836i \(-0.0144192\pi\)
\(600\) 0 0
\(601\) 6.03668i 0.246241i 0.992392 + 0.123121i \(0.0392902\pi\)
−0.992392 + 0.123121i \(0.960710\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −1.62132 + 2.80821i −0.0659706 + 0.114264i
\(605\) −4.18154 7.24264i −0.170004 0.294455i
\(606\) 0 0
\(607\) 21.6213 + 12.4831i 0.877582 + 0.506672i 0.869860 0.493298i \(-0.164209\pi\)
0.00772182 + 0.999970i \(0.497542\pi\)
\(608\) −1.01461 −0.0411479
\(609\) 0 0
\(610\) 24.7279 1.00120
\(611\) −2.15232 1.24264i −0.0870734 0.0502719i
\(612\) 0 0
\(613\) −2.60660 4.51477i −0.105280 0.182350i 0.808573 0.588396i \(-0.200240\pi\)
−0.913852 + 0.406046i \(0.866907\pi\)
\(614\) −12.3345 + 21.3640i −0.497779 + 0.862179i
\(615\) 0 0
\(616\) 0 0
\(617\) 41.6985i 1.67872i −0.543578 0.839359i \(-0.682931\pi\)
0.543578 0.839359i \(-0.317069\pi\)
\(618\) 0 0
\(619\) 41.3345 23.8645i 1.66137 0.959195i 0.689315 0.724462i \(-0.257912\pi\)
0.972060 0.234733i \(-0.0754217\pi\)
\(620\) 20.3389 11.7426i 0.816828 0.471596i
\(621\) 0 0
\(622\) 18.7554i 0.752022i
\(623\) 0 0
\(624\) 0 0
\(625\) −34.2279 + 59.2845i −1.36912 + 2.37138i
\(626\) 0.568852 + 0.985281i 0.0227359 + 0.0393798i
\(627\) 0 0
\(628\) 12.7279 + 7.34847i 0.507899 + 0.293236i
\(629\) −8.36308 −0.333458
\(630\) 0 0
\(631\) 33.2426 1.32337 0.661684 0.749783i \(-0.269842\pi\)
0.661684 + 0.749783i \(0.269842\pi\)
\(632\) 9.73641 + 5.62132i 0.387294 + 0.223604i
\(633\) 0 0
\(634\) −3.62132 6.27231i −0.143821 0.249105i
\(635\) 10.9612 18.9853i 0.434980 0.753408i
\(636\) 0 0
\(637\) 0 0
\(638\) 3.72792i 0.147590i
\(639\) 0 0
\(640\) 3.62132 2.09077i 0.143145 0.0826450i
\(641\) 36.1119 20.8492i 1.42634 0.823496i 0.429507 0.903064i \(-0.358687\pi\)
0.996829 + 0.0795681i \(0.0253541\pi\)
\(642\) 0 0
\(643\) 2.62357i 0.103463i −0.998661 0.0517317i \(-0.983526\pi\)
0.998661 0.0517317i \(-0.0164741\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −0.514719 + 0.891519i −0.0202513 + 0.0350763i
\(647\) −5.82655 10.0919i −0.229065 0.396753i 0.728466 0.685082i \(-0.240234\pi\)
−0.957531 + 0.288329i \(0.906900\pi\)
\(648\) 0 0
\(649\) −29.9558 17.2950i −1.17587 0.678889i
\(650\) −30.5826 −1.19955
\(651\) 0 0
\(652\) −6.24264 −0.244481
\(653\) 9.31615 + 5.37868i 0.364569 + 0.210484i 0.671083 0.741382i \(-0.265829\pi\)
−0.306514 + 0.951866i \(0.599163\pi\)
\(654\) 0 0
\(655\) 10.8640 + 18.8169i 0.424490 + 0.735238i
\(656\) 1.01461 1.75736i 0.0396139 0.0686134i
\(657\) 0 0
\(658\) 0 0
\(659\) 6.00000i 0.233727i −0.993148 0.116863i \(-0.962716\pi\)
0.993148 0.116863i \(-0.0372840\pi\)
\(660\) 0 0
\(661\) −35.1213 + 20.2773i −1.36606 + 0.788696i −0.990422 0.138071i \(-0.955910\pi\)
−0.375639 + 0.926766i \(0.622577\pi\)
\(662\) −15.1172 + 8.72792i −0.587547 + 0.339220i
\(663\) 0 0
\(664\) 3.16693i 0.122901i
\(665\) 0 0
\(666\) 0 0
\(667\) 2.63604 4.56575i 0.102068 0.176787i
\(668\) −11.5300 19.9706i −0.446109 0.772684i
\(669\) 0 0
\(670\) −36.2132 20.9077i −1.39904 0.807735i
\(671\) 17.7408 0.684875
\(672\) 0 0
\(673\) −15.9706 −0.615620 −0.307810 0.951448i \(-0.599596\pi\)
−0.307810 + 0.951448i \(0.599596\pi\)
\(674\) −4.33013 2.50000i −0.166790 0.0962964i
\(675\) 0 0
\(676\) 3.50000 + 6.06218i 0.134615 + 0.233161i
\(677\) 6.27231 10.8640i 0.241064 0.417536i −0.719953 0.694023i \(-0.755837\pi\)
0.961018 + 0.276487i \(0.0891701\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 4.24264i 0.162698i
\(681\) 0 0
\(682\) 14.5919 8.42463i 0.558752 0.322596i
\(683\) 22.4912 12.9853i 0.860601 0.496868i −0.00361277 0.999993i \(-0.501150\pi\)
0.864213 + 0.503125i \(0.167817\pi\)
\(684\) 0 0
\(685\) 60.5708i 2.31429i
\(686\) 0 0
\(687\) 0 0
\(688\) −4.12132 + 7.13834i −0.157124 + 0.272147i
\(689\) −1.52192 2.63604i −0.0579805 0.100425i
\(690\) 0 0
\(691\) 0.727922 + 0.420266i 0.0276915 + 0.0159877i 0.513782 0.857921i \(-0.328244\pi\)
−0.486090 + 0.873909i \(0.661577\pi\)
\(692\) 20.7846 0.790112
\(693\) 0 0
\(694\) −14.4853 −0.549854
\(695\) −73.1154 42.2132i −2.77343 1.60124i
\(696\) 0 0
\(697\) −1.02944 1.78304i −0.0389927 0.0675374i
\(698\) 18.4582 31.9706i 0.698654 1.21010i
\(699\) 0 0
\(700\) 0 0
\(701\) 38.6985i 1.46162i 0.682580 + 0.730811i \(0.260858\pi\)
−0.682580 + 0.730811i \(0.739142\pi\)
\(702\) 0 0
\(703\) −7.24264 + 4.18154i −0.273161 + 0.157710i
\(704\) 2.59808 1.50000i 0.0979187 0.0565334i
\(705\) 0 0
\(706\) 18.7554i 0.705868i
\(707\) 0 0
\(708\) 0 0
\(709\) 3.48528 6.03668i 0.130892 0.226712i −0.793128 0.609055i \(-0.791549\pi\)
0.924021 + 0.382342i \(0.124882\pi\)
\(710\) −21.4150 37.0919i −0.803691 1.39203i
\(711\) 0 0
\(712\) −9.00000 5.19615i −0.337289 0.194734i
\(713\) 23.8284 0.892382
\(714\) 0 0
\(715\) −30.7279 −1.14916
\(716\) 8.23999 + 4.75736i 0.307943 + 0.177791i
\(717\) 0 0
\(718\) −9.00000 15.5885i −0.335877 0.581756i
\(719\) −11.5300 + 19.9706i −0.429997 + 0.744776i −0.996872 0.0790270i \(-0.974819\pi\)
0.566876 + 0.823803i \(0.308152\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 17.9706i 0.668795i
\(723\) 0 0
\(724\) 1.75736 1.01461i 0.0653117 0.0377078i
\(725\) 13.4361 7.75736i 0.499006 0.288101i
\(726\) 0 0
\(727\) 26.4010i 0.979160i 0.871958 + 0.489580i \(0.162850\pi\)
−0.871958 + 0.489580i \(0.837150\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 17.4853 30.2854i 0.647159 1.12091i
\(731\) 4.18154 + 7.24264i 0.154660 + 0.267879i
\(732\) 0 0
\(733\) 34.0919 + 19.6830i 1.25921 + 0.727007i 0.972921 0.231136i \(-0.0742443\pi\)
0.286291 + 0.958143i \(0.407578\pi\)
\(734\) −18.8785 −0.696817
\(735\) 0 0
\(736\) 4.24264 0.156386
\(737\) −25.9808 15.0000i −0.957014 0.552532i
\(738\) 0 0
\(739\) 17.7279 + 30.7057i 0.652132 + 1.12953i 0.982605 + 0.185710i \(0.0594586\pi\)
−0.330472 + 0.943816i \(0.607208\pi\)
\(740\) 17.2335 29.8492i 0.633515 1.09728i
\(741\) 0 0
\(742\) 0 0
\(743\) 21.5147i 0.789298i −0.918832 0.394649i \(-0.870866\pi\)
0.918832 0.394649i \(-0.129134\pi\)
\(744\) 0 0
\(745\) 74.1838 42.8300i 2.71788 1.56917i
\(746\) −18.5813 + 10.7279i −0.680310 + 0.392777i
\(747\) 0 0
\(748\) 3.04384i 0.111294i
\(749\) 0 0
\(750\) 0 0
\(751\) −13.3787 + 23.1726i −0.488195 + 0.845578i −0.999908 0.0135781i \(-0.995678\pi\)
0.511713 + 0.859157i \(0.329011\pi\)
\(752\) 0.507306 + 0.878680i 0.0184995 + 0.0320422i
\(753\) 0 0
\(754\) 2.63604 + 1.52192i 0.0959989 + 0.0554250i
\(755\) −13.5592 −0.493471
\(756\) 0 0
\(757\) −42.2426 −1.53533 −0.767667 0.640848i \(-0.778583\pi\)
−0.767667 + 0.640848i \(0.778583\pi\)
\(758\) −3.88437 2.24264i −0.141087 0.0814564i
\(759\) 0 0
\(760\) −2.12132 3.67423i −0.0769484 0.133278i
\(761\) 2.53653 4.39340i 0.0919491 0.159261i −0.816382 0.577512i \(-0.804024\pi\)
0.908331 + 0.418252i \(0.137357\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 8.48528i 0.306987i
\(765\) 0 0
\(766\) 10.7574 6.21076i 0.388679 0.224404i
\(767\) 24.4588 14.1213i 0.883158 0.509891i
\(768\) 0 0
\(769\) 49.0408i 1.76846i −0.467056 0.884228i \(-0.654685\pi\)
0.467056 0.884228i \(-0.345315\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −3.74264 + 6.48244i −0.134701 + 0.233308i
\(773\) 11.5300 + 19.9706i 0.414706 + 0.718291i 0.995398 0.0958322i \(-0.0305512\pi\)
−0.580692 + 0.814123i \(0.697218\pi\)
\(774\) 0 0
\(775\) 60.7279 + 35.0613i 2.18141 + 1.25944i
\(776\) 3.76127 0.135022
\(777\) 0 0
\(778\) 19.4558 0.697526
\(779\) −1.78304 1.02944i −0.0638840 0.0368834i
\(780\) 0 0
\(781\) −15.3640 26.6112i −0.549766 0.952222i
\(782\) 2.15232 3.72792i 0.0769667 0.133310i
\(783\) 0 0
\(784\) 0 0
\(785\) 61.4558i 2.19345i
\(786\) 0 0
\(787\) −32.1213 + 18.5453i −1.14500 + 0.661067i −0.947664 0.319269i \(-0.896563\pi\)
−0.197337 + 0.980336i \(0.563229\pi\)
\(788\) −8.23999 + 4.75736i −0.293537 + 0.169474i
\(789\) 0 0
\(790\) 47.0116i 1.67260i
\(791\) 0 0
\(792\) 0 0
\(793\) −7.24264 + 12.5446i −0.257194 + 0.445473i
\(794\) −6.92820 12.0000i −0.245873 0.425864i
\(795\) 0 0
\(796\) 13.9706 + 8.06591i 0.495173 + 0.285889i
\(797\) 37.6339 1.33306 0.666530 0.745478i \(-0.267779\pi\)
0.666530 + 0.745478i \(0.267779\pi\)
\(798\) 0 0
\(799\) 1.02944 0.0364189
\(800\) 10.8126 + 6.24264i 0.382282 + 0.220711i
\(801\) 0 0
\(802\) 0 0
\(803\) 12.5446 21.7279i 0.442690 0.766762i
\(804\) 0 0
\(805\) 0 0
\(806\) 13.7574i 0.484582i
\(807\) 0 0
\(808\) 0 0
\(809\) −35.4815 + 20.4853i −1.24746 + 0.720224i −0.970603 0.240686i \(-0.922628\pi\)
−0.276862 + 0.960910i \(0.589294\pi\)
\(810\) 0 0
\(811\) 31.1769i 1.09477i −0.836881 0.547385i \(-0.815623\pi\)
0.836881 0.547385i \(-0.184377\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 12.3640 21.4150i 0.433357 0.750596i
\(815\) −13.0519 22.6066i −0.457189 0.791875i
\(816\) 0 0
\(817\) 7.24264 + 4.18154i 0.253388 + 0.146294i
\(818\) 4.60181 0.160898
\(819\) 0 0
\(820\) 8.48528 0.296319
\(821\) 42.6454 + 24.6213i 1.48833 + 0.859290i 0.999911 0.0133172i \(-0.00423912\pi\)
0.488423 + 0.872607i \(0.337572\pi\)
\(822\) 0 0
\(823\) 18.9706 + 32.8580i 0.661272 + 1.14536i 0.980282 + 0.197606i \(0.0633165\pi\)
−0.319009 + 0.947752i \(0.603350\pi\)
\(824\) −7.64564 + 13.2426i −0.266349 + 0.461329i
\(825\) 0 0
\(826\) 0 0
\(827\) 4.02944i 0.140117i −0.997543 0.0700586i \(-0.977681\pi\)
0.997543 0.0700586i \(-0.0223186\pi\)
\(828\) 0 0
\(829\) 35.3345 20.4004i 1.22722 0.708535i 0.260772 0.965401i \(-0.416023\pi\)
0.966447 + 0.256865i \(0.0826897\pi\)
\(830\) −11.4685 + 6.62132i −0.398076 + 0.229829i
\(831\) 0 0
\(832\) 2.44949i 0.0849208i
\(833\) 0 0
\(834\) 0 0
\(835\) 48.2132 83.5077i 1.66849 2.88990i
\(836\) −1.52192 2.63604i −0.0526366 0.0911693i
\(837\) 0 0
\(838\) −3.51472 2.02922i −0.121414 0.0700984i
\(839\) 24.0746 0.831149 0.415574 0.909559i \(-0.363581\pi\)
0.415574 + 0.909559i \(0.363581\pi\)
\(840\) 0 0
\(841\) 27.4558 0.946753
\(842\) −4.98602 2.87868i −0.171830 0.0992059i
\(843\) 0 0
\(844\) 4.12132 + 7.13834i 0.141862 + 0.245712i
\(845\) −14.6354 + 25.3492i −0.503473 + 0.872040i
\(846\) 0 0
\(847\) 0 0
\(848\) 1.24264i 0.0426725i
\(849\) 0 0
\(850\) 10.9706 6.33386i 0.376287 0.217250i
\(851\) 30.2854 17.4853i 1.03817 0.599388i
\(852\) 0 0
\(853\) 2.27541i 0.0779085i 0.999241 + 0.0389543i \(0.0124027\pi\)
−0.999241 + 0.0389543i \(0.987597\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −2.74264 + 4.75039i −0.0937415 + 0.162365i
\(857\) 10.0081 + 17.3345i 0.341870 + 0.592136i 0.984780 0.173806i \(-0.0556064\pi\)
−0.642910 + 0.765942i \(0.722273\pi\)
\(858\) 0 0
\(859\) −3.87868 2.23936i −0.132339 0.0764059i 0.432369 0.901697i \(-0.357678\pi\)
−0.564708 + 0.825291i \(0.691011\pi\)
\(860\) −34.4669 −1.17531
\(861\) 0 0
\(862\) −20.4853 −0.697731
\(863\) 43.7215 + 25.2426i 1.48830 + 0.859269i 0.999911 0.0133573i \(-0.00425189\pi\)
0.488388 + 0.872627i \(0.337585\pi\)
\(864\) 0 0
\(865\) 43.4558 + 75.2677i 1.47754 + 2.55918i
\(866\) −1.73205 + 3.00000i −0.0588575 + 0.101944i
\(867\) 0 0
\(868\) 0 0
\(869\) 33.7279i 1.14414i
\(870\) 0 0
\(871\) 21.2132 12.2474i 0.718782 0.414989i
\(872\) 1.31178 0.757359i 0.0444226 0.0256474i
\(873\) 0 0
\(874\) 4.30463i 0.145606i
\(875\) 0 0
\(876\) 0 0
\(877\) 6.24264 10.8126i 0.210799 0.365115i −0.741166 0.671322i \(-0.765727\pi\)
0.951965 + 0.306207i \(0.0990601\pi\)
\(878\) −13.6208 23.5919i −0.459679 0.796187i
\(879\) 0 0
\(880\) 10.8640 + 6.27231i 0.366224 + 0.211440i
\(881\) 39.7862 1.34043 0.670215 0.742167i \(-0.266202\pi\)
0.670215 + 0.742167i \(0.266202\pi\)
\(882\) 0 0
\(883\) −9.45584 −0.318214 −0.159107 0.987261i \(-0.550862\pi\)
−0.159107 + 0.987261i \(0.550862\pi\)
\(884\) 2.15232 + 1.24264i 0.0723902 + 0.0417945i
\(885\) 0 0
\(886\) 17.2279 + 29.8396i 0.578783 + 1.00248i
\(887\) −22.4296 + 38.8492i −0.753113 + 1.30443i 0.193194 + 0.981161i \(0.438115\pi\)
−0.946307 + 0.323269i \(0.895218\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 43.4558i 1.45664i
\(891\) 0 0
\(892\) −10.8640 + 6.27231i −0.363752 + 0.210012i
\(893\) 0.891519 0.514719i 0.0298335 0.0172244i
\(894\) 0 0
\(895\) 39.7862i 1.32991i
\(896\) 0 0
\(897\) 0 0
\(898\) −5.12132 + 8.87039i −0.170901 + 0.296009i
\(899\) −3.48960 6.04416i −0.116385 0.201584i
\(900\) 0 0
\(901\) 1.09188 + 0.630399i 0.0363759 + 0.0210016i
\(902\) 6.08767 0.202697
\(903\) 0 0
\(904\) −8.48528 −0.282216
\(905\) 7.34847 + 4.24264i 0.244271 + 0.141030i
\(906\) 0 0
\(907\) −13.8492 23.9876i −0.459857 0.796495i 0.539096 0.842244i \(-0.318766\pi\)
−0.998953 + 0.0457492i \(0.985433\pi\)
\(908\) 7.79423 13.5000i 0.258661 0.448013i
\(909\) 0 0
\(910\) 0 0
\(911\) 18.7279i 0.620484i −0.950658 0.310242i \(-0.899590\pi\)
0.950658 0.310242i \(-0.100410\pi\)
\(912\) 0 0
\(913\) −8.22792 + 4.75039i −0.272304 + 0.157215i
\(914\) 19.9186 11.5000i 0.658848 0.380386i
\(915\) 0 0
\(916\) 13.8564i 0.457829i
\(917\) 0 0
\(918\) 0 0
\(919\) −9.75736 + 16.9002i −0.321866 + 0.557488i −0.980873 0.194649i \(-0.937643\pi\)
0.659007 + 0.752136i \(0.270977\pi\)
\(920\) 8.87039 + 15.3640i 0.292448 + 0.506535i
\(921\) 0 0
\(922\) −19.7574 11.4069i −0.650674 0.375667i
\(923\) 25.0892 0.825823
\(924\) 0 0
\(925\) 102.912 3.38372
\(926\) 18.5813 + 10.7279i 0.610620 + 0.352541i
\(927\) 0 0
\(928\) −0.621320 1.07616i −0.0203958 0.0353266i
\(929\) −1.64501 + 2.84924i −0.0539711 + 0.0934806i −0.891749 0.452531i \(-0.850521\pi\)
0.837778 + 0.546012i \(0.183855\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 6.72792i 0.220380i
\(933\) 0 0
\(934\) 16.4558 9.50079i 0.538452 0.310875i
\(935\) 11.0227 6.36396i 0.360481 0.208124i
\(936\) 0 0
\(937\) 4.00746i 0.130918i −0.997855 0.0654590i \(-0.979149\pi\)
0.997855 0.0654590i \(-0.0208512\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −2.12132 + 3.67423i −0.0691898 + 0.119840i
\(941\) −26.0423 45.1066i −0.848955 1.47043i −0.882142 0.470984i \(-0.843899\pi\)
0.0331867 0.999449i \(-0.489434\pi\)
\(942\) 0 0
\(943\) 7.45584 + 4.30463i 0.242796 + 0.140178i
\(944\) −11.5300 −0.375270
\(945\) 0 0
\(946\) −24.7279 −0.803974
\(947\) 19.8931 + 11.4853i 0.646439 + 0.373221i 0.787090 0.616838i \(-0.211586\pi\)
−0.140652 + 0.990059i \(0.544920\pi\)
\(948\) 0 0
\(949\) 10.2426 + 17.7408i 0.332490 + 0.575890i
\(950\) 6.33386 10.9706i 0.205497 0.355932i
\(951\) 0 0
\(952\) 0 0
\(953\) 41.6985i 1.35075i −0.737476 0.675373i \(-0.763983\pi\)
0.737476 0.675373i \(-0.236017\pi\)
\(954\) 0 0
\(955\) 30.7279 17.7408i 0.994332 0.574078i
\(956\) −11.0227 + 6.36396i −0.356500 + 0.205825i
\(957\) 0 0
\(958\) 36.4962i 1.17914i
\(959\) 0 0
\(960\) 0 0
\(961\) 0.272078 0.471253i 0.00877671 0.0152017i
\(962\) 10.0951 + 17.4853i 0.325480 + 0.563748i
\(963\) 0 0
\(964\) −14.7426 8.51167i −0.474828 0.274142i
\(965\) −31.3000 −1.00758
\(966\) 0 0
\(967\) 22.2721 0.716222 0.358111 0.933679i \(-0.383421\pi\)
0.358111 + 0.933679i \(0.383421\pi\)
\(968\) −1.73205 1.00000i −0.0556702 0.0321412i
\(969\) 0 0
\(970\) 7.86396 + 13.6208i 0.252497 + 0.437337i
\(971\) 25.6581 44.4411i 0.823407 1.42618i −0.0797229 0.996817i \(-0.525404\pi\)
0.903130 0.429367i \(-0.141263\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 28.2132i 0.904009i
\(975\) 0 0
\(976\) 5.12132 2.95680i 0.163929 0.0946447i
\(977\) −27.5027 + 15.8787i −0.879889 + 0.508004i −0.870622 0.491953i \(-0.836283\pi\)
−0.00926698 + 0.999957i \(0.502950\pi\)
\(978\) 0 0
\(979\) 31.1769i 0.996419i
\(980\) 0 0
\(981\) 0 0
\(982\) 9.98528 17.2950i 0.318643 0.551906i
\(983\) 4.05845 + 7.02944i 0.129444 + 0.224204i 0.923461 0.383691i \(-0.125347\pi\)
−0.794017 + 0.607895i \(0.792014\pi\)
\(984\) 0 0
\(985\) −34.4558 19.8931i −1.09785 0.633847i
\(986\) −1.26080 −0.0401520
\(987\) 0 0
\(988\) 2.48528 0.0790673
\(989\) −30.2854 17.4853i −0.963020 0.556000i
\(990\) 0 0
\(991\) −4.89340 8.47561i −0.155444 0.269237i 0.777777 0.628541i \(-0.216347\pi\)
−0.933221 + 0.359304i \(0.883014\pi\)
\(992\) 2.80821 4.86396i 0.0891607 0.154431i
\(993\) 0 0
\(994\) 0 0
\(995\) 67.4558i 2.13849i
\(996\) 0 0
\(997\) 8.27208 4.77589i 0.261979 0.151254i −0.363258 0.931689i \(-0.618336\pi\)
0.625237 + 0.780435i \(0.285002\pi\)
\(998\) 31.1259 17.9706i 0.985274 0.568848i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.2.k.a.215.3 8
3.2 odd 2 inner 882.2.k.a.215.2 8
7.2 even 3 882.2.d.a.881.4 8
7.3 odd 6 inner 882.2.k.a.521.2 8
7.4 even 3 126.2.k.a.17.1 8
7.5 odd 6 882.2.d.a.881.1 8
7.6 odd 2 126.2.k.a.89.4 yes 8
21.2 odd 6 882.2.d.a.881.5 8
21.5 even 6 882.2.d.a.881.8 8
21.11 odd 6 126.2.k.a.17.4 yes 8
21.17 even 6 inner 882.2.k.a.521.3 8
21.20 even 2 126.2.k.a.89.1 yes 8
28.11 odd 6 1008.2.bt.c.17.1 8
28.19 even 6 7056.2.k.f.881.2 8
28.23 odd 6 7056.2.k.f.881.8 8
28.27 even 2 1008.2.bt.c.593.4 8
35.4 even 6 3150.2.bf.a.1151.4 8
35.13 even 4 3150.2.bp.e.1349.4 8
35.18 odd 12 3150.2.bp.e.899.1 8
35.27 even 4 3150.2.bp.b.1349.1 8
35.32 odd 12 3150.2.bp.b.899.4 8
35.34 odd 2 3150.2.bf.a.1601.2 8
63.4 even 3 1134.2.l.f.269.1 8
63.11 odd 6 1134.2.t.e.1025.1 8
63.13 odd 6 1134.2.t.e.593.1 8
63.20 even 6 1134.2.l.f.215.3 8
63.25 even 3 1134.2.t.e.1025.4 8
63.32 odd 6 1134.2.l.f.269.4 8
63.34 odd 6 1134.2.l.f.215.2 8
63.41 even 6 1134.2.t.e.593.4 8
84.11 even 6 1008.2.bt.c.17.4 8
84.23 even 6 7056.2.k.f.881.1 8
84.47 odd 6 7056.2.k.f.881.7 8
84.83 odd 2 1008.2.bt.c.593.1 8
105.32 even 12 3150.2.bp.e.899.4 8
105.53 even 12 3150.2.bp.b.899.1 8
105.62 odd 4 3150.2.bp.e.1349.1 8
105.74 odd 6 3150.2.bf.a.1151.2 8
105.83 odd 4 3150.2.bp.b.1349.4 8
105.104 even 2 3150.2.bf.a.1601.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.k.a.17.1 8 7.4 even 3
126.2.k.a.17.4 yes 8 21.11 odd 6
126.2.k.a.89.1 yes 8 21.20 even 2
126.2.k.a.89.4 yes 8 7.6 odd 2
882.2.d.a.881.1 8 7.5 odd 6
882.2.d.a.881.4 8 7.2 even 3
882.2.d.a.881.5 8 21.2 odd 6
882.2.d.a.881.8 8 21.5 even 6
882.2.k.a.215.2 8 3.2 odd 2 inner
882.2.k.a.215.3 8 1.1 even 1 trivial
882.2.k.a.521.2 8 7.3 odd 6 inner
882.2.k.a.521.3 8 21.17 even 6 inner
1008.2.bt.c.17.1 8 28.11 odd 6
1008.2.bt.c.17.4 8 84.11 even 6
1008.2.bt.c.593.1 8 84.83 odd 2
1008.2.bt.c.593.4 8 28.27 even 2
1134.2.l.f.215.2 8 63.34 odd 6
1134.2.l.f.215.3 8 63.20 even 6
1134.2.l.f.269.1 8 63.4 even 3
1134.2.l.f.269.4 8 63.32 odd 6
1134.2.t.e.593.1 8 63.13 odd 6
1134.2.t.e.593.4 8 63.41 even 6
1134.2.t.e.1025.1 8 63.11 odd 6
1134.2.t.e.1025.4 8 63.25 even 3
3150.2.bf.a.1151.2 8 105.74 odd 6
3150.2.bf.a.1151.4 8 35.4 even 6
3150.2.bf.a.1601.2 8 35.34 odd 2
3150.2.bf.a.1601.4 8 105.104 even 2
3150.2.bp.b.899.1 8 105.53 even 12
3150.2.bp.b.899.4 8 35.32 odd 12
3150.2.bp.b.1349.1 8 35.27 even 4
3150.2.bp.b.1349.4 8 105.83 odd 4
3150.2.bp.e.899.1 8 35.18 odd 12
3150.2.bp.e.899.4 8 105.32 even 12
3150.2.bp.e.1349.1 8 105.62 odd 4
3150.2.bp.e.1349.4 8 35.13 even 4
7056.2.k.f.881.1 8 84.23 even 6
7056.2.k.f.881.2 8 28.19 even 6
7056.2.k.f.881.7 8 84.47 odd 6
7056.2.k.f.881.8 8 28.23 odd 6