Properties

Label 882.4.a.be.1.1
Level $882$
Weight $4$
Character 882.1
Self dual yes
Analytic conductor $52.040$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,4,Mod(1,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 882.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.0396846251\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 882.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +4.00000 q^{4} -7.07107 q^{5} +8.00000 q^{8} -14.1421 q^{10} -40.0000 q^{11} +63.6396 q^{13} +16.0000 q^{16} +1.41421 q^{17} -11.3137 q^{19} -28.2843 q^{20} -80.0000 q^{22} -68.0000 q^{23} -75.0000 q^{25} +127.279 q^{26} -110.000 q^{29} +118.794 q^{31} +32.0000 q^{32} +2.82843 q^{34} -20.0000 q^{37} -22.6274 q^{38} -56.5685 q^{40} -49.4975 q^{41} -340.000 q^{43} -160.000 q^{44} -136.000 q^{46} +90.5097 q^{47} -150.000 q^{50} +254.558 q^{52} -628.000 q^{53} +282.843 q^{55} -220.000 q^{58} -876.812 q^{59} -917.825 q^{61} +237.588 q^{62} +64.0000 q^{64} -450.000 q^{65} +540.000 q^{67} +5.65685 q^{68} +420.000 q^{71} -289.914 q^{73} -40.0000 q^{74} -45.2548 q^{76} -760.000 q^{79} -113.137 q^{80} -98.9949 q^{82} +944.695 q^{83} -10.0000 q^{85} -680.000 q^{86} -320.000 q^{88} +1152.58 q^{89} -272.000 q^{92} +181.019 q^{94} +80.0000 q^{95} +502.046 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} + 8 q^{4} + 16 q^{8} - 80 q^{11} + 32 q^{16} - 160 q^{22} - 136 q^{23} - 150 q^{25} - 220 q^{29} + 64 q^{32} - 40 q^{37} - 680 q^{43} - 320 q^{44} - 272 q^{46} - 300 q^{50} - 1256 q^{53} - 440 q^{58}+ \cdots + 160 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) 0 0
\(4\) 4.00000 0.500000
\(5\) −7.07107 −0.632456 −0.316228 0.948683i \(-0.602416\pi\)
−0.316228 + 0.948683i \(0.602416\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 8.00000 0.353553
\(9\) 0 0
\(10\) −14.1421 −0.447214
\(11\) −40.0000 −1.09640 −0.548202 0.836346i \(-0.684688\pi\)
−0.548202 + 0.836346i \(0.684688\pi\)
\(12\) 0 0
\(13\) 63.6396 1.35773 0.678864 0.734264i \(-0.262473\pi\)
0.678864 + 0.734264i \(0.262473\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 1.41421 0.0201763 0.0100882 0.999949i \(-0.496789\pi\)
0.0100882 + 0.999949i \(0.496789\pi\)
\(18\) 0 0
\(19\) −11.3137 −0.136608 −0.0683038 0.997665i \(-0.521759\pi\)
−0.0683038 + 0.997665i \(0.521759\pi\)
\(20\) −28.2843 −0.316228
\(21\) 0 0
\(22\) −80.0000 −0.775275
\(23\) −68.0000 −0.616477 −0.308239 0.951309i \(-0.599740\pi\)
−0.308239 + 0.951309i \(0.599740\pi\)
\(24\) 0 0
\(25\) −75.0000 −0.600000
\(26\) 127.279 0.960058
\(27\) 0 0
\(28\) 0 0
\(29\) −110.000 −0.704362 −0.352181 0.935932i \(-0.614560\pi\)
−0.352181 + 0.935932i \(0.614560\pi\)
\(30\) 0 0
\(31\) 118.794 0.688259 0.344129 0.938922i \(-0.388174\pi\)
0.344129 + 0.938922i \(0.388174\pi\)
\(32\) 32.0000 0.176777
\(33\) 0 0
\(34\) 2.82843 0.0142668
\(35\) 0 0
\(36\) 0 0
\(37\) −20.0000 −0.0888643 −0.0444322 0.999012i \(-0.514148\pi\)
−0.0444322 + 0.999012i \(0.514148\pi\)
\(38\) −22.6274 −0.0965961
\(39\) 0 0
\(40\) −56.5685 −0.223607
\(41\) −49.4975 −0.188542 −0.0942708 0.995547i \(-0.530052\pi\)
−0.0942708 + 0.995547i \(0.530052\pi\)
\(42\) 0 0
\(43\) −340.000 −1.20580 −0.602901 0.797816i \(-0.705989\pi\)
−0.602901 + 0.797816i \(0.705989\pi\)
\(44\) −160.000 −0.548202
\(45\) 0 0
\(46\) −136.000 −0.435915
\(47\) 90.5097 0.280898 0.140449 0.990088i \(-0.455145\pi\)
0.140449 + 0.990088i \(0.455145\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −150.000 −0.424264
\(51\) 0 0
\(52\) 254.558 0.678864
\(53\) −628.000 −1.62759 −0.813797 0.581150i \(-0.802603\pi\)
−0.813797 + 0.581150i \(0.802603\pi\)
\(54\) 0 0
\(55\) 282.843 0.693427
\(56\) 0 0
\(57\) 0 0
\(58\) −220.000 −0.498059
\(59\) −876.812 −1.93477 −0.967383 0.253316i \(-0.918479\pi\)
−0.967383 + 0.253316i \(0.918479\pi\)
\(60\) 0 0
\(61\) −917.825 −1.92648 −0.963241 0.268639i \(-0.913426\pi\)
−0.963241 + 0.268639i \(0.913426\pi\)
\(62\) 237.588 0.486672
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −450.000 −0.858702
\(66\) 0 0
\(67\) 540.000 0.984649 0.492325 0.870412i \(-0.336147\pi\)
0.492325 + 0.870412i \(0.336147\pi\)
\(68\) 5.65685 0.0100882
\(69\) 0 0
\(70\) 0 0
\(71\) 420.000 0.702040 0.351020 0.936368i \(-0.385835\pi\)
0.351020 + 0.936368i \(0.385835\pi\)
\(72\) 0 0
\(73\) −289.914 −0.464820 −0.232410 0.972618i \(-0.574661\pi\)
−0.232410 + 0.972618i \(0.574661\pi\)
\(74\) −40.0000 −0.0628366
\(75\) 0 0
\(76\) −45.2548 −0.0683038
\(77\) 0 0
\(78\) 0 0
\(79\) −760.000 −1.08236 −0.541182 0.840906i \(-0.682023\pi\)
−0.541182 + 0.840906i \(0.682023\pi\)
\(80\) −113.137 −0.158114
\(81\) 0 0
\(82\) −98.9949 −0.133319
\(83\) 944.695 1.24932 0.624661 0.780896i \(-0.285237\pi\)
0.624661 + 0.780896i \(0.285237\pi\)
\(84\) 0 0
\(85\) −10.0000 −0.0127606
\(86\) −680.000 −0.852631
\(87\) 0 0
\(88\) −320.000 −0.387638
\(89\) 1152.58 1.37274 0.686369 0.727254i \(-0.259204\pi\)
0.686369 + 0.727254i \(0.259204\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −272.000 −0.308239
\(93\) 0 0
\(94\) 181.019 0.198625
\(95\) 80.0000 0.0863982
\(96\) 0 0
\(97\) 502.046 0.525516 0.262758 0.964862i \(-0.415368\pi\)
0.262758 + 0.964862i \(0.415368\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −300.000 −0.300000
\(101\) −1760.70 −1.73461 −0.867306 0.497776i \(-0.834150\pi\)
−0.867306 + 0.497776i \(0.834150\pi\)
\(102\) 0 0
\(103\) −226.274 −0.216461 −0.108230 0.994126i \(-0.534518\pi\)
−0.108230 + 0.994126i \(0.534518\pi\)
\(104\) 509.117 0.480029
\(105\) 0 0
\(106\) −1256.00 −1.15088
\(107\) −2024.00 −1.82867 −0.914334 0.404961i \(-0.867285\pi\)
−0.914334 + 0.404961i \(0.867285\pi\)
\(108\) 0 0
\(109\) −404.000 −0.355011 −0.177505 0.984120i \(-0.556803\pi\)
−0.177505 + 0.984120i \(0.556803\pi\)
\(110\) 565.685 0.490327
\(111\) 0 0
\(112\) 0 0
\(113\) −1008.00 −0.839156 −0.419578 0.907719i \(-0.637822\pi\)
−0.419578 + 0.907719i \(0.637822\pi\)
\(114\) 0 0
\(115\) 480.833 0.389895
\(116\) −440.000 −0.352181
\(117\) 0 0
\(118\) −1753.62 −1.36809
\(119\) 0 0
\(120\) 0 0
\(121\) 269.000 0.202104
\(122\) −1835.65 −1.36223
\(123\) 0 0
\(124\) 475.176 0.344129
\(125\) 1414.21 1.01193
\(126\) 0 0
\(127\) 1000.00 0.698706 0.349353 0.936991i \(-0.386401\pi\)
0.349353 + 0.936991i \(0.386401\pi\)
\(128\) 128.000 0.0883883
\(129\) 0 0
\(130\) −900.000 −0.607194
\(131\) 84.8528 0.0565926 0.0282963 0.999600i \(-0.490992\pi\)
0.0282963 + 0.999600i \(0.490992\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 1080.00 0.696252
\(135\) 0 0
\(136\) 11.3137 0.00713340
\(137\) −2034.00 −1.26844 −0.634220 0.773152i \(-0.718679\pi\)
−0.634220 + 0.773152i \(0.718679\pi\)
\(138\) 0 0
\(139\) 1736.65 1.05972 0.529860 0.848085i \(-0.322244\pi\)
0.529860 + 0.848085i \(0.322244\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 840.000 0.496417
\(143\) −2545.58 −1.48862
\(144\) 0 0
\(145\) 777.817 0.445477
\(146\) −579.828 −0.328677
\(147\) 0 0
\(148\) −80.0000 −0.0444322
\(149\) −2140.00 −1.17661 −0.588307 0.808637i \(-0.700206\pi\)
−0.588307 + 0.808637i \(0.700206\pi\)
\(150\) 0 0
\(151\) 2120.00 1.14254 0.571269 0.820763i \(-0.306451\pi\)
0.571269 + 0.820763i \(0.306451\pi\)
\(152\) −90.5097 −0.0482980
\(153\) 0 0
\(154\) 0 0
\(155\) −840.000 −0.435293
\(156\) 0 0
\(157\) −1746.55 −0.887835 −0.443918 0.896068i \(-0.646412\pi\)
−0.443918 + 0.896068i \(0.646412\pi\)
\(158\) −1520.00 −0.765346
\(159\) 0 0
\(160\) −226.274 −0.111803
\(161\) 0 0
\(162\) 0 0
\(163\) 3340.00 1.60496 0.802482 0.596677i \(-0.203513\pi\)
0.802482 + 0.596677i \(0.203513\pi\)
\(164\) −197.990 −0.0942708
\(165\) 0 0
\(166\) 1889.39 0.883404
\(167\) 367.696 0.170378 0.0851890 0.996365i \(-0.472851\pi\)
0.0851890 + 0.996365i \(0.472851\pi\)
\(168\) 0 0
\(169\) 1853.00 0.843423
\(170\) −20.0000 −0.00902312
\(171\) 0 0
\(172\) −1360.00 −0.602901
\(173\) 3389.87 1.48975 0.744876 0.667203i \(-0.232509\pi\)
0.744876 + 0.667203i \(0.232509\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −640.000 −0.274101
\(177\) 0 0
\(178\) 2305.17 0.970672
\(179\) −720.000 −0.300644 −0.150322 0.988637i \(-0.548031\pi\)
−0.150322 + 0.988637i \(0.548031\pi\)
\(180\) 0 0
\(181\) 1854.03 0.761377 0.380689 0.924703i \(-0.375687\pi\)
0.380689 + 0.924703i \(0.375687\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −544.000 −0.217958
\(185\) 141.421 0.0562027
\(186\) 0 0
\(187\) −56.5685 −0.0221214
\(188\) 362.039 0.140449
\(189\) 0 0
\(190\) 160.000 0.0610927
\(191\) −3980.00 −1.50776 −0.753881 0.657011i \(-0.771821\pi\)
−0.753881 + 0.657011i \(0.771821\pi\)
\(192\) 0 0
\(193\) 3710.00 1.38369 0.691844 0.722047i \(-0.256799\pi\)
0.691844 + 0.722047i \(0.256799\pi\)
\(194\) 1004.09 0.371596
\(195\) 0 0
\(196\) 0 0
\(197\) −956.000 −0.345747 −0.172874 0.984944i \(-0.555305\pi\)
−0.172874 + 0.984944i \(0.555305\pi\)
\(198\) 0 0
\(199\) −4089.91 −1.45691 −0.728457 0.685092i \(-0.759762\pi\)
−0.728457 + 0.685092i \(0.759762\pi\)
\(200\) −600.000 −0.212132
\(201\) 0 0
\(202\) −3521.39 −1.22656
\(203\) 0 0
\(204\) 0 0
\(205\) 350.000 0.119244
\(206\) −452.548 −0.153061
\(207\) 0 0
\(208\) 1018.23 0.339432
\(209\) 452.548 0.149777
\(210\) 0 0
\(211\) 2868.00 0.935741 0.467870 0.883797i \(-0.345021\pi\)
0.467870 + 0.883797i \(0.345021\pi\)
\(212\) −2512.00 −0.813797
\(213\) 0 0
\(214\) −4048.00 −1.29306
\(215\) 2404.16 0.762617
\(216\) 0 0
\(217\) 0 0
\(218\) −808.000 −0.251031
\(219\) 0 0
\(220\) 1131.37 0.346714
\(221\) 90.0000 0.0273939
\(222\) 0 0
\(223\) −2630.44 −0.789897 −0.394949 0.918703i \(-0.629238\pi\)
−0.394949 + 0.918703i \(0.629238\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −2016.00 −0.593373
\(227\) −169.706 −0.0496201 −0.0248100 0.999692i \(-0.507898\pi\)
−0.0248100 + 0.999692i \(0.507898\pi\)
\(228\) 0 0
\(229\) 3143.80 0.907196 0.453598 0.891206i \(-0.350140\pi\)
0.453598 + 0.891206i \(0.350140\pi\)
\(230\) 961.665 0.275697
\(231\) 0 0
\(232\) −880.000 −0.249029
\(233\) 4482.00 1.26020 0.630098 0.776516i \(-0.283015\pi\)
0.630098 + 0.776516i \(0.283015\pi\)
\(234\) 0 0
\(235\) −640.000 −0.177655
\(236\) −3507.25 −0.967383
\(237\) 0 0
\(238\) 0 0
\(239\) 1740.00 0.470926 0.235463 0.971883i \(-0.424339\pi\)
0.235463 + 0.971883i \(0.424339\pi\)
\(240\) 0 0
\(241\) −1260.06 −0.336796 −0.168398 0.985719i \(-0.553859\pi\)
−0.168398 + 0.985719i \(0.553859\pi\)
\(242\) 538.000 0.142909
\(243\) 0 0
\(244\) −3671.30 −0.963241
\(245\) 0 0
\(246\) 0 0
\(247\) −720.000 −0.185476
\(248\) 950.352 0.243336
\(249\) 0 0
\(250\) 2828.43 0.715542
\(251\) −5826.56 −1.46522 −0.732608 0.680651i \(-0.761697\pi\)
−0.732608 + 0.680651i \(0.761697\pi\)
\(252\) 0 0
\(253\) 2720.00 0.675909
\(254\) 2000.00 0.494060
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) −4688.12 −1.13789 −0.568943 0.822377i \(-0.692648\pi\)
−0.568943 + 0.822377i \(0.692648\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −1800.00 −0.429351
\(261\) 0 0
\(262\) 169.706 0.0400170
\(263\) −2172.00 −0.509244 −0.254622 0.967041i \(-0.581951\pi\)
−0.254622 + 0.967041i \(0.581951\pi\)
\(264\) 0 0
\(265\) 4440.63 1.02938
\(266\) 0 0
\(267\) 0 0
\(268\) 2160.00 0.492325
\(269\) −2708.22 −0.613840 −0.306920 0.951735i \(-0.599298\pi\)
−0.306920 + 0.951735i \(0.599298\pi\)
\(270\) 0 0
\(271\) −6188.60 −1.38720 −0.693599 0.720361i \(-0.743976\pi\)
−0.693599 + 0.720361i \(0.743976\pi\)
\(272\) 22.6274 0.00504408
\(273\) 0 0
\(274\) −4068.00 −0.896923
\(275\) 3000.00 0.657843
\(276\) 0 0
\(277\) 6130.00 1.32966 0.664830 0.746994i \(-0.268504\pi\)
0.664830 + 0.746994i \(0.268504\pi\)
\(278\) 3473.31 0.749335
\(279\) 0 0
\(280\) 0 0
\(281\) 1970.00 0.418222 0.209111 0.977892i \(-0.432943\pi\)
0.209111 + 0.977892i \(0.432943\pi\)
\(282\) 0 0
\(283\) 1555.63 0.326759 0.163380 0.986563i \(-0.447760\pi\)
0.163380 + 0.986563i \(0.447760\pi\)
\(284\) 1680.00 0.351020
\(285\) 0 0
\(286\) −5091.17 −1.05261
\(287\) 0 0
\(288\) 0 0
\(289\) −4911.00 −0.999593
\(290\) 1555.63 0.315000
\(291\) 0 0
\(292\) −1159.66 −0.232410
\(293\) 7686.25 1.53254 0.766272 0.642516i \(-0.222109\pi\)
0.766272 + 0.642516i \(0.222109\pi\)
\(294\) 0 0
\(295\) 6200.00 1.22365
\(296\) −160.000 −0.0314183
\(297\) 0 0
\(298\) −4280.00 −0.831992
\(299\) −4327.49 −0.837008
\(300\) 0 0
\(301\) 0 0
\(302\) 4240.00 0.807896
\(303\) 0 0
\(304\) −181.019 −0.0341519
\(305\) 6490.00 1.21841
\(306\) 0 0
\(307\) 8598.42 1.59849 0.799247 0.601003i \(-0.205232\pi\)
0.799247 + 0.601003i \(0.205232\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −1680.00 −0.307799
\(311\) 7580.18 1.38210 0.691050 0.722807i \(-0.257149\pi\)
0.691050 + 0.722807i \(0.257149\pi\)
\(312\) 0 0
\(313\) −3075.91 −0.555466 −0.277733 0.960658i \(-0.589583\pi\)
−0.277733 + 0.960658i \(0.589583\pi\)
\(314\) −3493.11 −0.627794
\(315\) 0 0
\(316\) −3040.00 −0.541182
\(317\) 2324.00 0.411763 0.205881 0.978577i \(-0.433994\pi\)
0.205881 + 0.978577i \(0.433994\pi\)
\(318\) 0 0
\(319\) 4400.00 0.772266
\(320\) −452.548 −0.0790569
\(321\) 0 0
\(322\) 0 0
\(323\) −16.0000 −0.00275623
\(324\) 0 0
\(325\) −4772.97 −0.814636
\(326\) 6680.00 1.13488
\(327\) 0 0
\(328\) −395.980 −0.0666595
\(329\) 0 0
\(330\) 0 0
\(331\) 9508.00 1.57887 0.789436 0.613832i \(-0.210373\pi\)
0.789436 + 0.613832i \(0.210373\pi\)
\(332\) 3778.78 0.624661
\(333\) 0 0
\(334\) 735.391 0.120475
\(335\) −3818.38 −0.622747
\(336\) 0 0
\(337\) −4720.00 −0.762952 −0.381476 0.924379i \(-0.624584\pi\)
−0.381476 + 0.924379i \(0.624584\pi\)
\(338\) 3706.00 0.596390
\(339\) 0 0
\(340\) −40.0000 −0.00638031
\(341\) −4751.76 −0.754610
\(342\) 0 0
\(343\) 0 0
\(344\) −2720.00 −0.426316
\(345\) 0 0
\(346\) 6779.74 1.05341
\(347\) 6504.00 1.00620 0.503102 0.864227i \(-0.332192\pi\)
0.503102 + 0.864227i \(0.332192\pi\)
\(348\) 0 0
\(349\) 5256.63 0.806249 0.403125 0.915145i \(-0.367924\pi\)
0.403125 + 0.915145i \(0.367924\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1280.00 −0.193819
\(353\) 12211.7 1.84126 0.920630 0.390435i \(-0.127676\pi\)
0.920630 + 0.390435i \(0.127676\pi\)
\(354\) 0 0
\(355\) −2969.85 −0.444009
\(356\) 4610.34 0.686369
\(357\) 0 0
\(358\) −1440.00 −0.212588
\(359\) 7340.00 1.07908 0.539541 0.841959i \(-0.318598\pi\)
0.539541 + 0.841959i \(0.318598\pi\)
\(360\) 0 0
\(361\) −6731.00 −0.981338
\(362\) 3708.07 0.538375
\(363\) 0 0
\(364\) 0 0
\(365\) 2050.00 0.293978
\(366\) 0 0
\(367\) 7665.04 1.09022 0.545111 0.838364i \(-0.316487\pi\)
0.545111 + 0.838364i \(0.316487\pi\)
\(368\) −1088.00 −0.154119
\(369\) 0 0
\(370\) 282.843 0.0397413
\(371\) 0 0
\(372\) 0 0
\(373\) −2990.00 −0.415057 −0.207529 0.978229i \(-0.566542\pi\)
−0.207529 + 0.978229i \(0.566542\pi\)
\(374\) −113.137 −0.0156422
\(375\) 0 0
\(376\) 724.077 0.0993123
\(377\) −7000.36 −0.956331
\(378\) 0 0
\(379\) −11900.0 −1.61283 −0.806414 0.591351i \(-0.798595\pi\)
−0.806414 + 0.591351i \(0.798595\pi\)
\(380\) 320.000 0.0431991
\(381\) 0 0
\(382\) −7960.00 −1.06615
\(383\) −9712.82 −1.29583 −0.647914 0.761714i \(-0.724358\pi\)
−0.647914 + 0.761714i \(0.724358\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 7420.00 0.978415
\(387\) 0 0
\(388\) 2008.18 0.262758
\(389\) −2150.00 −0.280230 −0.140115 0.990135i \(-0.544747\pi\)
−0.140115 + 0.990135i \(0.544747\pi\)
\(390\) 0 0
\(391\) −96.1665 −0.0124382
\(392\) 0 0
\(393\) 0 0
\(394\) −1912.00 −0.244480
\(395\) 5374.01 0.684546
\(396\) 0 0
\(397\) −3401.18 −0.429976 −0.214988 0.976617i \(-0.568971\pi\)
−0.214988 + 0.976617i \(0.568971\pi\)
\(398\) −8179.81 −1.03019
\(399\) 0 0
\(400\) −1200.00 −0.150000
\(401\) 12090.0 1.50560 0.752800 0.658249i \(-0.228703\pi\)
0.752800 + 0.658249i \(0.228703\pi\)
\(402\) 0 0
\(403\) 7560.00 0.934468
\(404\) −7042.78 −0.867306
\(405\) 0 0
\(406\) 0 0
\(407\) 800.000 0.0974313
\(408\) 0 0
\(409\) −8192.54 −0.990452 −0.495226 0.868764i \(-0.664915\pi\)
−0.495226 + 0.868764i \(0.664915\pi\)
\(410\) 700.000 0.0843184
\(411\) 0 0
\(412\) −905.097 −0.108230
\(413\) 0 0
\(414\) 0 0
\(415\) −6680.00 −0.790140
\(416\) 2036.47 0.240015
\(417\) 0 0
\(418\) 905.097 0.105908
\(419\) −1046.52 −0.122019 −0.0610093 0.998137i \(-0.519432\pi\)
−0.0610093 + 0.998137i \(0.519432\pi\)
\(420\) 0 0
\(421\) −3870.00 −0.448010 −0.224005 0.974588i \(-0.571913\pi\)
−0.224005 + 0.974588i \(0.571913\pi\)
\(422\) 5736.00 0.661669
\(423\) 0 0
\(424\) −5024.00 −0.575441
\(425\) −106.066 −0.0121058
\(426\) 0 0
\(427\) 0 0
\(428\) −8096.00 −0.914334
\(429\) 0 0
\(430\) 4808.33 0.539251
\(431\) 2700.00 0.301750 0.150875 0.988553i \(-0.451791\pi\)
0.150875 + 0.988553i \(0.451791\pi\)
\(432\) 0 0
\(433\) 5876.06 0.652160 0.326080 0.945342i \(-0.394272\pi\)
0.326080 + 0.945342i \(0.394272\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −1616.00 −0.177505
\(437\) 769.332 0.0842154
\(438\) 0 0
\(439\) −6346.99 −0.690035 −0.345017 0.938596i \(-0.612127\pi\)
−0.345017 + 0.938596i \(0.612127\pi\)
\(440\) 2262.74 0.245164
\(441\) 0 0
\(442\) 180.000 0.0193704
\(443\) 6928.00 0.743023 0.371512 0.928428i \(-0.378840\pi\)
0.371512 + 0.928428i \(0.378840\pi\)
\(444\) 0 0
\(445\) −8150.00 −0.868196
\(446\) −5260.87 −0.558542
\(447\) 0 0
\(448\) 0 0
\(449\) 1320.00 0.138741 0.0693704 0.997591i \(-0.477901\pi\)
0.0693704 + 0.997591i \(0.477901\pi\)
\(450\) 0 0
\(451\) 1979.90 0.206718
\(452\) −4032.00 −0.419578
\(453\) 0 0
\(454\) −339.411 −0.0350867
\(455\) 0 0
\(456\) 0 0
\(457\) 1290.00 0.132043 0.0660215 0.997818i \(-0.478969\pi\)
0.0660215 + 0.997818i \(0.478969\pi\)
\(458\) 6287.59 0.641485
\(459\) 0 0
\(460\) 1923.33 0.194947
\(461\) −17642.3 −1.78240 −0.891198 0.453615i \(-0.850134\pi\)
−0.891198 + 0.453615i \(0.850134\pi\)
\(462\) 0 0
\(463\) 5680.00 0.570134 0.285067 0.958508i \(-0.407984\pi\)
0.285067 + 0.958508i \(0.407984\pi\)
\(464\) −1760.00 −0.176090
\(465\) 0 0
\(466\) 8964.00 0.891093
\(467\) 7693.32 0.762322 0.381161 0.924509i \(-0.375524\pi\)
0.381161 + 0.924509i \(0.375524\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −1280.00 −0.125621
\(471\) 0 0
\(472\) −7014.50 −0.684043
\(473\) 13600.0 1.32205
\(474\) 0 0
\(475\) 848.528 0.0819645
\(476\) 0 0
\(477\) 0 0
\(478\) 3480.00 0.332995
\(479\) 16518.0 1.57563 0.787816 0.615911i \(-0.211212\pi\)
0.787816 + 0.615911i \(0.211212\pi\)
\(480\) 0 0
\(481\) −1272.79 −0.120653
\(482\) −2520.13 −0.238151
\(483\) 0 0
\(484\) 1076.00 0.101052
\(485\) −3550.00 −0.332365
\(486\) 0 0
\(487\) 13680.0 1.27290 0.636448 0.771320i \(-0.280403\pi\)
0.636448 + 0.771320i \(0.280403\pi\)
\(488\) −7342.60 −0.681114
\(489\) 0 0
\(490\) 0 0
\(491\) −2280.00 −0.209562 −0.104781 0.994495i \(-0.533414\pi\)
−0.104781 + 0.994495i \(0.533414\pi\)
\(492\) 0 0
\(493\) −155.563 −0.0142114
\(494\) −1440.00 −0.131151
\(495\) 0 0
\(496\) 1900.70 0.172065
\(497\) 0 0
\(498\) 0 0
\(499\) 860.000 0.0771521 0.0385760 0.999256i \(-0.487718\pi\)
0.0385760 + 0.999256i \(0.487718\pi\)
\(500\) 5656.85 0.505964
\(501\) 0 0
\(502\) −11653.1 −1.03606
\(503\) 5730.39 0.507963 0.253982 0.967209i \(-0.418260\pi\)
0.253982 + 0.967209i \(0.418260\pi\)
\(504\) 0 0
\(505\) 12450.0 1.09706
\(506\) 5440.00 0.477940
\(507\) 0 0
\(508\) 4000.00 0.349353
\(509\) 4589.12 0.399625 0.199813 0.979834i \(-0.435967\pi\)
0.199813 + 0.979834i \(0.435967\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 512.000 0.0441942
\(513\) 0 0
\(514\) −9376.24 −0.804607
\(515\) 1600.00 0.136902
\(516\) 0 0
\(517\) −3620.39 −0.307978
\(518\) 0 0
\(519\) 0 0
\(520\) −3600.00 −0.303597
\(521\) 14587.6 1.22667 0.613335 0.789823i \(-0.289828\pi\)
0.613335 + 0.789823i \(0.289828\pi\)
\(522\) 0 0
\(523\) 6109.40 0.510794 0.255397 0.966836i \(-0.417794\pi\)
0.255397 + 0.966836i \(0.417794\pi\)
\(524\) 339.411 0.0282963
\(525\) 0 0
\(526\) −4344.00 −0.360090
\(527\) 168.000 0.0138865
\(528\) 0 0
\(529\) −7543.00 −0.619956
\(530\) 8881.26 0.727882
\(531\) 0 0
\(532\) 0 0
\(533\) −3150.00 −0.255988
\(534\) 0 0
\(535\) 14311.8 1.15655
\(536\) 4320.00 0.348126
\(537\) 0 0
\(538\) −5416.44 −0.434051
\(539\) 0 0
\(540\) 0 0
\(541\) −17210.0 −1.36768 −0.683841 0.729631i \(-0.739692\pi\)
−0.683841 + 0.729631i \(0.739692\pi\)
\(542\) −12377.2 −0.980897
\(543\) 0 0
\(544\) 45.2548 0.00356670
\(545\) 2856.71 0.224529
\(546\) 0 0
\(547\) 4060.00 0.317355 0.158677 0.987330i \(-0.449277\pi\)
0.158677 + 0.987330i \(0.449277\pi\)
\(548\) −8136.00 −0.634220
\(549\) 0 0
\(550\) 6000.00 0.465165
\(551\) 1244.51 0.0962211
\(552\) 0 0
\(553\) 0 0
\(554\) 12260.0 0.940212
\(555\) 0 0
\(556\) 6946.62 0.529860
\(557\) −10356.0 −0.787788 −0.393894 0.919156i \(-0.628872\pi\)
−0.393894 + 0.919156i \(0.628872\pi\)
\(558\) 0 0
\(559\) −21637.5 −1.63715
\(560\) 0 0
\(561\) 0 0
\(562\) 3940.00 0.295728
\(563\) −23210.1 −1.73746 −0.868728 0.495289i \(-0.835062\pi\)
−0.868728 + 0.495289i \(0.835062\pi\)
\(564\) 0 0
\(565\) 7127.64 0.530729
\(566\) 3111.27 0.231054
\(567\) 0 0
\(568\) 3360.00 0.248209
\(569\) −5890.00 −0.433957 −0.216979 0.976176i \(-0.569620\pi\)
−0.216979 + 0.976176i \(0.569620\pi\)
\(570\) 0 0
\(571\) −5612.00 −0.411305 −0.205652 0.978625i \(-0.565932\pi\)
−0.205652 + 0.978625i \(0.565932\pi\)
\(572\) −10182.3 −0.744309
\(573\) 0 0
\(574\) 0 0
\(575\) 5100.00 0.369886
\(576\) 0 0
\(577\) −17797.9 −1.28412 −0.642058 0.766656i \(-0.721919\pi\)
−0.642058 + 0.766656i \(0.721919\pi\)
\(578\) −9822.00 −0.706819
\(579\) 0 0
\(580\) 3111.27 0.222739
\(581\) 0 0
\(582\) 0 0
\(583\) 25120.0 1.78450
\(584\) −2319.31 −0.164339
\(585\) 0 0
\(586\) 15372.5 1.08367
\(587\) 7942.22 0.558451 0.279225 0.960226i \(-0.409922\pi\)
0.279225 + 0.960226i \(0.409922\pi\)
\(588\) 0 0
\(589\) −1344.00 −0.0940213
\(590\) 12400.0 0.865254
\(591\) 0 0
\(592\) −320.000 −0.0222161
\(593\) −14078.5 −0.974932 −0.487466 0.873142i \(-0.662079\pi\)
−0.487466 + 0.873142i \(0.662079\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −8560.00 −0.588307
\(597\) 0 0
\(598\) −8654.99 −0.591854
\(599\) 7300.00 0.497946 0.248973 0.968510i \(-0.419907\pi\)
0.248973 + 0.968510i \(0.419907\pi\)
\(600\) 0 0
\(601\) −8727.11 −0.592323 −0.296162 0.955138i \(-0.595707\pi\)
−0.296162 + 0.955138i \(0.595707\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 8480.00 0.571269
\(605\) −1902.12 −0.127822
\(606\) 0 0
\(607\) 10606.6 0.709240 0.354620 0.935011i \(-0.384610\pi\)
0.354620 + 0.935011i \(0.384610\pi\)
\(608\) −362.039 −0.0241490
\(609\) 0 0
\(610\) 12980.0 0.861549
\(611\) 5760.00 0.381382
\(612\) 0 0
\(613\) −13980.0 −0.921121 −0.460560 0.887628i \(-0.652351\pi\)
−0.460560 + 0.887628i \(0.652351\pi\)
\(614\) 17196.8 1.13031
\(615\) 0 0
\(616\) 0 0
\(617\) 2654.00 0.173170 0.0865851 0.996244i \(-0.472405\pi\)
0.0865851 + 0.996244i \(0.472405\pi\)
\(618\) 0 0
\(619\) 23883.2 1.55081 0.775403 0.631467i \(-0.217547\pi\)
0.775403 + 0.631467i \(0.217547\pi\)
\(620\) −3360.00 −0.217647
\(621\) 0 0
\(622\) 15160.4 0.977292
\(623\) 0 0
\(624\) 0 0
\(625\) −625.000 −0.0400000
\(626\) −6151.83 −0.392774
\(627\) 0 0
\(628\) −6986.21 −0.443918
\(629\) −28.2843 −0.00179295
\(630\) 0 0
\(631\) −6400.00 −0.403772 −0.201886 0.979409i \(-0.564707\pi\)
−0.201886 + 0.979409i \(0.564707\pi\)
\(632\) −6080.00 −0.382673
\(633\) 0 0
\(634\) 4648.00 0.291160
\(635\) −7071.07 −0.441900
\(636\) 0 0
\(637\) 0 0
\(638\) 8800.00 0.546074
\(639\) 0 0
\(640\) −905.097 −0.0559017
\(641\) −15350.0 −0.945848 −0.472924 0.881103i \(-0.656801\pi\)
−0.472924 + 0.881103i \(0.656801\pi\)
\(642\) 0 0
\(643\) −17847.4 −1.09461 −0.547303 0.836934i \(-0.684345\pi\)
−0.547303 + 0.836934i \(0.684345\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −32.0000 −0.00194895
\(647\) −14000.7 −0.850734 −0.425367 0.905021i \(-0.639855\pi\)
−0.425367 + 0.905021i \(0.639855\pi\)
\(648\) 0 0
\(649\) 35072.5 2.12129
\(650\) −9545.94 −0.576035
\(651\) 0 0
\(652\) 13360.0 0.802482
\(653\) −26382.0 −1.58102 −0.790511 0.612448i \(-0.790185\pi\)
−0.790511 + 0.612448i \(0.790185\pi\)
\(654\) 0 0
\(655\) −600.000 −0.0357923
\(656\) −791.960 −0.0471354
\(657\) 0 0
\(658\) 0 0
\(659\) −14400.0 −0.851205 −0.425603 0.904910i \(-0.639938\pi\)
−0.425603 + 0.904910i \(0.639938\pi\)
\(660\) 0 0
\(661\) −28582.7 −1.68190 −0.840951 0.541112i \(-0.818004\pi\)
−0.840951 + 0.541112i \(0.818004\pi\)
\(662\) 19016.0 1.11643
\(663\) 0 0
\(664\) 7557.56 0.441702
\(665\) 0 0
\(666\) 0 0
\(667\) 7480.00 0.434223
\(668\) 1470.78 0.0851890
\(669\) 0 0
\(670\) −7636.75 −0.440349
\(671\) 36713.0 2.11220
\(672\) 0 0
\(673\) −18120.0 −1.03785 −0.518926 0.854819i \(-0.673668\pi\)
−0.518926 + 0.854819i \(0.673668\pi\)
\(674\) −9440.00 −0.539488
\(675\) 0 0
\(676\) 7412.00 0.421711
\(677\) 17797.9 1.01038 0.505191 0.863008i \(-0.331422\pi\)
0.505191 + 0.863008i \(0.331422\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −80.0000 −0.00451156
\(681\) 0 0
\(682\) −9503.52 −0.533590
\(683\) −1728.00 −0.0968083 −0.0484042 0.998828i \(-0.515414\pi\)
−0.0484042 + 0.998828i \(0.515414\pi\)
\(684\) 0 0
\(685\) 14382.6 0.802232
\(686\) 0 0
\(687\) 0 0
\(688\) −5440.00 −0.301451
\(689\) −39965.7 −2.20983
\(690\) 0 0
\(691\) −17089.4 −0.940825 −0.470412 0.882447i \(-0.655895\pi\)
−0.470412 + 0.882447i \(0.655895\pi\)
\(692\) 13559.5 0.744876
\(693\) 0 0
\(694\) 13008.0 0.711494
\(695\) −12280.0 −0.670226
\(696\) 0 0
\(697\) −70.0000 −0.00380407
\(698\) 10513.3 0.570104
\(699\) 0 0
\(700\) 0 0
\(701\) −13410.0 −0.722523 −0.361262 0.932465i \(-0.617654\pi\)
−0.361262 + 0.932465i \(0.617654\pi\)
\(702\) 0 0
\(703\) 226.274 0.0121395
\(704\) −2560.00 −0.137051
\(705\) 0 0
\(706\) 24423.5 1.30197
\(707\) 0 0
\(708\) 0 0
\(709\) −140.000 −0.00741581 −0.00370791 0.999993i \(-0.501180\pi\)
−0.00370791 + 0.999993i \(0.501180\pi\)
\(710\) −5939.70 −0.313962
\(711\) 0 0
\(712\) 9220.67 0.485336
\(713\) −8077.99 −0.424296
\(714\) 0 0
\(715\) 18000.0 0.941485
\(716\) −2880.00 −0.150322
\(717\) 0 0
\(718\) 14680.0 0.763026
\(719\) 25936.7 1.34531 0.672653 0.739958i \(-0.265155\pi\)
0.672653 + 0.739958i \(0.265155\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −13462.0 −0.693911
\(723\) 0 0
\(724\) 7416.14 0.380689
\(725\) 8250.00 0.422617
\(726\) 0 0
\(727\) −9277.24 −0.473279 −0.236639 0.971598i \(-0.576046\pi\)
−0.236639 + 0.971598i \(0.576046\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 4100.00 0.207874
\(731\) −480.833 −0.0243286
\(732\) 0 0
\(733\) 25477.1 1.28379 0.641894 0.766793i \(-0.278149\pi\)
0.641894 + 0.766793i \(0.278149\pi\)
\(734\) 15330.1 0.770904
\(735\) 0 0
\(736\) −2176.00 −0.108979
\(737\) −21600.0 −1.07957
\(738\) 0 0
\(739\) −6924.00 −0.344660 −0.172330 0.985039i \(-0.555129\pi\)
−0.172330 + 0.985039i \(0.555129\pi\)
\(740\) 565.685 0.0281014
\(741\) 0 0
\(742\) 0 0
\(743\) 29108.0 1.43724 0.718620 0.695403i \(-0.244774\pi\)
0.718620 + 0.695403i \(0.244774\pi\)
\(744\) 0 0
\(745\) 15132.1 0.744157
\(746\) −5980.00 −0.293490
\(747\) 0 0
\(748\) −226.274 −0.0110607
\(749\) 0 0
\(750\) 0 0
\(751\) 31448.0 1.52803 0.764017 0.645196i \(-0.223224\pi\)
0.764017 + 0.645196i \(0.223224\pi\)
\(752\) 1448.15 0.0702244
\(753\) 0 0
\(754\) −14000.7 −0.676228
\(755\) −14990.7 −0.722604
\(756\) 0 0
\(757\) −13300.0 −0.638569 −0.319284 0.947659i \(-0.603443\pi\)
−0.319284 + 0.947659i \(0.603443\pi\)
\(758\) −23800.0 −1.14044
\(759\) 0 0
\(760\) 640.000 0.0305464
\(761\) 4801.26 0.228706 0.114353 0.993440i \(-0.463520\pi\)
0.114353 + 0.993440i \(0.463520\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −15920.0 −0.753881
\(765\) 0 0
\(766\) −19425.6 −0.916288
\(767\) −55800.0 −2.62689
\(768\) 0 0
\(769\) −16932.4 −0.794015 −0.397007 0.917815i \(-0.629951\pi\)
−0.397007 + 0.917815i \(0.629951\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 14840.0 0.691844
\(773\) −19441.2 −0.904594 −0.452297 0.891867i \(-0.649395\pi\)
−0.452297 + 0.891867i \(0.649395\pi\)
\(774\) 0 0
\(775\) −8909.55 −0.412955
\(776\) 4016.37 0.185798
\(777\) 0 0
\(778\) −4300.00 −0.198152
\(779\) 560.000 0.0257562
\(780\) 0 0
\(781\) −16800.0 −0.769720
\(782\) −192.333 −0.00879516
\(783\) 0 0
\(784\) 0 0
\(785\) 12350.0 0.561516
\(786\) 0 0
\(787\) 20732.4 0.939046 0.469523 0.882920i \(-0.344426\pi\)
0.469523 + 0.882920i \(0.344426\pi\)
\(788\) −3824.00 −0.172874
\(789\) 0 0
\(790\) 10748.0 0.484047
\(791\) 0 0
\(792\) 0 0
\(793\) −58410.0 −2.61564
\(794\) −6802.37 −0.304039
\(795\) 0 0
\(796\) −16359.6 −0.728457
\(797\) 28582.7 1.27033 0.635163 0.772378i \(-0.280933\pi\)
0.635163 + 0.772378i \(0.280933\pi\)
\(798\) 0 0
\(799\) 128.000 0.00566748
\(800\) −2400.00 −0.106066
\(801\) 0 0
\(802\) 24180.0 1.06462
\(803\) 11596.6 0.509631
\(804\) 0 0
\(805\) 0 0
\(806\) 15120.0 0.660768
\(807\) 0 0
\(808\) −14085.6 −0.613278
\(809\) −22280.0 −0.968261 −0.484130 0.874996i \(-0.660864\pi\)
−0.484130 + 0.874996i \(0.660864\pi\)
\(810\) 0 0
\(811\) −26100.7 −1.13011 −0.565056 0.825053i \(-0.691145\pi\)
−0.565056 + 0.825053i \(0.691145\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 1600.00 0.0688943
\(815\) −23617.4 −1.01507
\(816\) 0 0
\(817\) 3846.66 0.164722
\(818\) −16385.1 −0.700356
\(819\) 0 0
\(820\) 1400.00 0.0596221
\(821\) 3540.00 0.150483 0.0752417 0.997165i \(-0.476027\pi\)
0.0752417 + 0.997165i \(0.476027\pi\)
\(822\) 0 0
\(823\) −28400.0 −1.20287 −0.601435 0.798922i \(-0.705404\pi\)
−0.601435 + 0.798922i \(0.705404\pi\)
\(824\) −1810.19 −0.0765304
\(825\) 0 0
\(826\) 0 0
\(827\) −38736.0 −1.62876 −0.814379 0.580334i \(-0.802922\pi\)
−0.814379 + 0.580334i \(0.802922\pi\)
\(828\) 0 0
\(829\) 23409.5 0.980754 0.490377 0.871511i \(-0.336859\pi\)
0.490377 + 0.871511i \(0.336859\pi\)
\(830\) −13360.0 −0.558714
\(831\) 0 0
\(832\) 4072.94 0.169716
\(833\) 0 0
\(834\) 0 0
\(835\) −2600.00 −0.107757
\(836\) 1810.19 0.0748886
\(837\) 0 0
\(838\) −2093.04 −0.0862801
\(839\) −29387.4 −1.20925 −0.604627 0.796509i \(-0.706678\pi\)
−0.604627 + 0.796509i \(0.706678\pi\)
\(840\) 0 0
\(841\) −12289.0 −0.503875
\(842\) −7740.00 −0.316791
\(843\) 0 0
\(844\) 11472.0 0.467870
\(845\) −13102.7 −0.533427
\(846\) 0 0
\(847\) 0 0
\(848\) −10048.0 −0.406898
\(849\) 0 0
\(850\) −212.132 −0.00856008
\(851\) 1360.00 0.0547828
\(852\) 0 0
\(853\) −22252.7 −0.893220 −0.446610 0.894729i \(-0.647369\pi\)
−0.446610 + 0.894729i \(0.647369\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −16192.0 −0.646532
\(857\) −13832.4 −0.551350 −0.275675 0.961251i \(-0.588901\pi\)
−0.275675 + 0.961251i \(0.588901\pi\)
\(858\) 0 0
\(859\) −39665.9 −1.57553 −0.787766 0.615975i \(-0.788762\pi\)
−0.787766 + 0.615975i \(0.788762\pi\)
\(860\) 9616.65 0.381308
\(861\) 0 0
\(862\) 5400.00 0.213370
\(863\) −31988.0 −1.26174 −0.630871 0.775887i \(-0.717302\pi\)
−0.630871 + 0.775887i \(0.717302\pi\)
\(864\) 0 0
\(865\) −23970.0 −0.942202
\(866\) 11752.1 0.461147
\(867\) 0 0
\(868\) 0 0
\(869\) 30400.0 1.18671
\(870\) 0 0
\(871\) 34365.4 1.33688
\(872\) −3232.00 −0.125515
\(873\) 0 0
\(874\) 1538.66 0.0595493
\(875\) 0 0
\(876\) 0 0
\(877\) −33460.0 −1.28833 −0.644164 0.764887i \(-0.722795\pi\)
−0.644164 + 0.764887i \(0.722795\pi\)
\(878\) −12694.0 −0.487928
\(879\) 0 0
\(880\) 4525.48 0.173357
\(881\) 12791.6 0.489170 0.244585 0.969628i \(-0.421348\pi\)
0.244585 + 0.969628i \(0.421348\pi\)
\(882\) 0 0
\(883\) −35260.0 −1.34382 −0.671910 0.740633i \(-0.734526\pi\)
−0.671910 + 0.740633i \(0.734526\pi\)
\(884\) 360.000 0.0136970
\(885\) 0 0
\(886\) 13856.0 0.525397
\(887\) 15437.6 0.584377 0.292188 0.956361i \(-0.405617\pi\)
0.292188 + 0.956361i \(0.405617\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −16300.0 −0.613907
\(891\) 0 0
\(892\) −10521.7 −0.394949
\(893\) −1024.00 −0.0383727
\(894\) 0 0
\(895\) 5091.17 0.190144
\(896\) 0 0
\(897\) 0 0
\(898\) 2640.00 0.0981046
\(899\) −13067.3 −0.484783
\(900\) 0 0
\(901\) −888.126 −0.0328388
\(902\) 3959.80 0.146172
\(903\) 0 0
\(904\) −8064.00 −0.296687
\(905\) −13110.0 −0.481537
\(906\) 0 0
\(907\) 33100.0 1.21176 0.605881 0.795556i \(-0.292821\pi\)
0.605881 + 0.795556i \(0.292821\pi\)
\(908\) −678.823 −0.0248100
\(909\) 0 0
\(910\) 0 0
\(911\) −39620.0 −1.44091 −0.720455 0.693502i \(-0.756067\pi\)
−0.720455 + 0.693502i \(0.756067\pi\)
\(912\) 0 0
\(913\) −37787.8 −1.36976
\(914\) 2580.00 0.0933685
\(915\) 0 0
\(916\) 12575.2 0.453598
\(917\) 0 0
\(918\) 0 0
\(919\) 20944.0 0.751772 0.375886 0.926666i \(-0.377338\pi\)
0.375886 + 0.926666i \(0.377338\pi\)
\(920\) 3846.66 0.137849
\(921\) 0 0
\(922\) −35284.6 −1.26034
\(923\) 26728.6 0.953179
\(924\) 0 0
\(925\) 1500.00 0.0533186
\(926\) 11360.0 0.403146
\(927\) 0 0
\(928\) −3520.00 −0.124515
\(929\) 46237.7 1.63295 0.816475 0.577381i \(-0.195925\pi\)
0.816475 + 0.577381i \(0.195925\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 17928.0 0.630098
\(933\) 0 0
\(934\) 15386.6 0.539043
\(935\) 400.000 0.0139908
\(936\) 0 0
\(937\) 50522.8 1.76148 0.880740 0.473600i \(-0.157046\pi\)
0.880740 + 0.473600i \(0.157046\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −2560.00 −0.0888277
\(941\) 9878.28 0.342213 0.171107 0.985253i \(-0.445266\pi\)
0.171107 + 0.985253i \(0.445266\pi\)
\(942\) 0 0
\(943\) 3365.83 0.116232
\(944\) −14029.0 −0.483692
\(945\) 0 0
\(946\) 27200.0 0.934829
\(947\) −30216.0 −1.03684 −0.518420 0.855126i \(-0.673480\pi\)
−0.518420 + 0.855126i \(0.673480\pi\)
\(948\) 0 0
\(949\) −18450.0 −0.631098
\(950\) 1697.06 0.0579577
\(951\) 0 0
\(952\) 0 0
\(953\) −35512.0 −1.20708 −0.603540 0.797333i \(-0.706243\pi\)
−0.603540 + 0.797333i \(0.706243\pi\)
\(954\) 0 0
\(955\) 28142.8 0.953593
\(956\) 6960.00 0.235463
\(957\) 0 0
\(958\) 33036.0 1.11414
\(959\) 0 0
\(960\) 0 0
\(961\) −15679.0 −0.526300
\(962\) −2545.58 −0.0853149
\(963\) 0 0
\(964\) −5040.26 −0.168398
\(965\) −26233.7 −0.875121
\(966\) 0 0
\(967\) −720.000 −0.0239438 −0.0119719 0.999928i \(-0.503811\pi\)
−0.0119719 + 0.999928i \(0.503811\pi\)
\(968\) 2152.00 0.0714544
\(969\) 0 0
\(970\) −7100.00 −0.235018
\(971\) −15386.6 −0.508528 −0.254264 0.967135i \(-0.581833\pi\)
−0.254264 + 0.967135i \(0.581833\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 27360.0 0.900073
\(975\) 0 0
\(976\) −14685.2 −0.481620
\(977\) 41574.0 1.36138 0.680691 0.732571i \(-0.261680\pi\)
0.680691 + 0.732571i \(0.261680\pi\)
\(978\) 0 0
\(979\) −46103.4 −1.50508
\(980\) 0 0
\(981\) 0 0
\(982\) −4560.00 −0.148183
\(983\) 44236.6 1.43533 0.717665 0.696389i \(-0.245211\pi\)
0.717665 + 0.696389i \(0.245211\pi\)
\(984\) 0 0
\(985\) 6759.94 0.218670
\(986\) −311.127 −0.0100490
\(987\) 0 0
\(988\) −2880.00 −0.0927379
\(989\) 23120.0 0.743350
\(990\) 0 0
\(991\) 12272.0 0.393373 0.196687 0.980466i \(-0.436982\pi\)
0.196687 + 0.980466i \(0.436982\pi\)
\(992\) 3801.41 0.121668
\(993\) 0 0
\(994\) 0 0
\(995\) 28920.0 0.921433
\(996\) 0 0
\(997\) −57692.8 −1.83265 −0.916324 0.400437i \(-0.868858\pi\)
−0.916324 + 0.400437i \(0.868858\pi\)
\(998\) 1720.00 0.0545548
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.4.a.be.1.1 yes 2
3.2 odd 2 882.4.a.y.1.2 yes 2
7.2 even 3 882.4.g.bc.361.2 4
7.3 odd 6 882.4.g.bc.667.1 4
7.4 even 3 882.4.g.bc.667.2 4
7.5 odd 6 882.4.g.bc.361.1 4
7.6 odd 2 inner 882.4.a.be.1.2 yes 2
21.2 odd 6 882.4.g.bg.361.1 4
21.5 even 6 882.4.g.bg.361.2 4
21.11 odd 6 882.4.g.bg.667.1 4
21.17 even 6 882.4.g.bg.667.2 4
21.20 even 2 882.4.a.y.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
882.4.a.y.1.1 2 21.20 even 2
882.4.a.y.1.2 yes 2 3.2 odd 2
882.4.a.be.1.1 yes 2 1.1 even 1 trivial
882.4.a.be.1.2 yes 2 7.6 odd 2 inner
882.4.g.bc.361.1 4 7.5 odd 6
882.4.g.bc.361.2 4 7.2 even 3
882.4.g.bc.667.1 4 7.3 odd 6
882.4.g.bc.667.2 4 7.4 even 3
882.4.g.bg.361.1 4 21.2 odd 6
882.4.g.bg.361.2 4 21.5 even 6
882.4.g.bg.667.1 4 21.11 odd 6
882.4.g.bg.667.2 4 21.17 even 6