Properties

Label 882.4.a.x.1.2
Level $882$
Weight $4$
Character 882.1
Self dual yes
Analytic conductor $52.040$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,4,Mod(1,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 882.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.0396846251\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{58}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 58 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(7.61577\) of defining polynomial
Character \(\chi\) \(=\) 882.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +4.00000 q^{4} +15.2315 q^{5} -8.00000 q^{8} -30.4631 q^{10} -2.00000 q^{11} +30.4631 q^{13} +16.0000 q^{16} -45.6946 q^{17} -152.315 q^{19} +60.9262 q^{20} +4.00000 q^{22} -30.0000 q^{23} +107.000 q^{25} -60.9262 q^{26} -212.000 q^{29} -213.242 q^{31} -32.0000 q^{32} +91.3893 q^{34} +246.000 q^{37} +304.631 q^{38} -121.852 q^{40} -319.862 q^{41} -284.000 q^{43} -8.00000 q^{44} +60.0000 q^{46} +60.9262 q^{47} -214.000 q^{50} +121.852 q^{52} -548.000 q^{53} -30.4631 q^{55} +424.000 q^{58} -670.188 q^{59} +517.873 q^{61} +426.483 q^{62} +64.0000 q^{64} +464.000 q^{65} +652.000 q^{67} -182.779 q^{68} -770.000 q^{71} +974.819 q^{73} -492.000 q^{74} -609.262 q^{76} +472.000 q^{79} +243.705 q^{80} +639.725 q^{82} +182.779 q^{83} -696.000 q^{85} +568.000 q^{86} +16.0000 q^{88} +715.883 q^{89} -120.000 q^{92} -121.852 q^{94} -2320.00 q^{95} -304.631 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} + 8 q^{4} - 16 q^{8} - 4 q^{11} + 32 q^{16} + 8 q^{22} - 60 q^{23} + 214 q^{25} - 424 q^{29} - 64 q^{32} + 492 q^{37} - 568 q^{43} - 16 q^{44} + 120 q^{46} - 428 q^{50} - 1096 q^{53} + 848 q^{58}+ \cdots - 4640 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 0 0
\(4\) 4.00000 0.500000
\(5\) 15.2315 1.36235 0.681175 0.732120i \(-0.261469\pi\)
0.681175 + 0.732120i \(0.261469\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −8.00000 −0.353553
\(9\) 0 0
\(10\) −30.4631 −0.963328
\(11\) −2.00000 −0.0548202 −0.0274101 0.999624i \(-0.508726\pi\)
−0.0274101 + 0.999624i \(0.508726\pi\)
\(12\) 0 0
\(13\) 30.4631 0.649919 0.324959 0.945728i \(-0.394649\pi\)
0.324959 + 0.945728i \(0.394649\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) −45.6946 −0.651916 −0.325958 0.945384i \(-0.605687\pi\)
−0.325958 + 0.945384i \(0.605687\pi\)
\(18\) 0 0
\(19\) −152.315 −1.83913 −0.919567 0.392932i \(-0.871461\pi\)
−0.919567 + 0.392932i \(0.871461\pi\)
\(20\) 60.9262 0.681175
\(21\) 0 0
\(22\) 4.00000 0.0387638
\(23\) −30.0000 −0.271975 −0.135988 0.990711i \(-0.543421\pi\)
−0.135988 + 0.990711i \(0.543421\pi\)
\(24\) 0 0
\(25\) 107.000 0.856000
\(26\) −60.9262 −0.459562
\(27\) 0 0
\(28\) 0 0
\(29\) −212.000 −1.35750 −0.678748 0.734371i \(-0.737477\pi\)
−0.678748 + 0.734371i \(0.737477\pi\)
\(30\) 0 0
\(31\) −213.242 −1.23546 −0.617731 0.786389i \(-0.711948\pi\)
−0.617731 + 0.786389i \(0.711948\pi\)
\(32\) −32.0000 −0.176777
\(33\) 0 0
\(34\) 91.3893 0.460974
\(35\) 0 0
\(36\) 0 0
\(37\) 246.000 1.09303 0.546516 0.837449i \(-0.315954\pi\)
0.546516 + 0.837449i \(0.315954\pi\)
\(38\) 304.631 1.30046
\(39\) 0 0
\(40\) −121.852 −0.481664
\(41\) −319.862 −1.21839 −0.609197 0.793019i \(-0.708508\pi\)
−0.609197 + 0.793019i \(0.708508\pi\)
\(42\) 0 0
\(43\) −284.000 −1.00720 −0.503600 0.863937i \(-0.667991\pi\)
−0.503600 + 0.863937i \(0.667991\pi\)
\(44\) −8.00000 −0.0274101
\(45\) 0 0
\(46\) 60.0000 0.192316
\(47\) 60.9262 0.189085 0.0945425 0.995521i \(-0.469861\pi\)
0.0945425 + 0.995521i \(0.469861\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −214.000 −0.605283
\(51\) 0 0
\(52\) 121.852 0.324959
\(53\) −548.000 −1.42026 −0.710128 0.704072i \(-0.751363\pi\)
−0.710128 + 0.704072i \(0.751363\pi\)
\(54\) 0 0
\(55\) −30.4631 −0.0746844
\(56\) 0 0
\(57\) 0 0
\(58\) 424.000 0.959895
\(59\) −670.188 −1.47883 −0.739416 0.673249i \(-0.764898\pi\)
−0.739416 + 0.673249i \(0.764898\pi\)
\(60\) 0 0
\(61\) 517.873 1.08700 0.543498 0.839410i \(-0.317099\pi\)
0.543498 + 0.839410i \(0.317099\pi\)
\(62\) 426.483 0.873604
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 464.000 0.885417
\(66\) 0 0
\(67\) 652.000 1.18887 0.594436 0.804143i \(-0.297375\pi\)
0.594436 + 0.804143i \(0.297375\pi\)
\(68\) −182.779 −0.325958
\(69\) 0 0
\(70\) 0 0
\(71\) −770.000 −1.28707 −0.643537 0.765415i \(-0.722534\pi\)
−0.643537 + 0.765415i \(0.722534\pi\)
\(72\) 0 0
\(73\) 974.819 1.56293 0.781465 0.623949i \(-0.214473\pi\)
0.781465 + 0.623949i \(0.214473\pi\)
\(74\) −492.000 −0.772890
\(75\) 0 0
\(76\) −609.262 −0.919567
\(77\) 0 0
\(78\) 0 0
\(79\) 472.000 0.672204 0.336102 0.941826i \(-0.390891\pi\)
0.336102 + 0.941826i \(0.390891\pi\)
\(80\) 243.705 0.340588
\(81\) 0 0
\(82\) 639.725 0.861534
\(83\) 182.779 0.241718 0.120859 0.992670i \(-0.461435\pi\)
0.120859 + 0.992670i \(0.461435\pi\)
\(84\) 0 0
\(85\) −696.000 −0.888139
\(86\) 568.000 0.712198
\(87\) 0 0
\(88\) 16.0000 0.0193819
\(89\) 715.883 0.852623 0.426311 0.904577i \(-0.359813\pi\)
0.426311 + 0.904577i \(0.359813\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −120.000 −0.135988
\(93\) 0 0
\(94\) −121.852 −0.133703
\(95\) −2320.00 −2.50555
\(96\) 0 0
\(97\) −304.631 −0.318872 −0.159436 0.987208i \(-0.550968\pi\)
−0.159436 + 0.987208i \(0.550968\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 428.000 0.428000
\(101\) 1020.51 1.00540 0.502698 0.864462i \(-0.332341\pi\)
0.502698 + 0.864462i \(0.332341\pi\)
\(102\) 0 0
\(103\) 578.799 0.553696 0.276848 0.960914i \(-0.410710\pi\)
0.276848 + 0.960914i \(0.410710\pi\)
\(104\) −243.705 −0.229781
\(105\) 0 0
\(106\) 1096.00 1.00427
\(107\) 1646.00 1.48715 0.743574 0.668654i \(-0.233129\pi\)
0.743574 + 0.668654i \(0.233129\pi\)
\(108\) 0 0
\(109\) 982.000 0.862922 0.431461 0.902131i \(-0.357998\pi\)
0.431461 + 0.902131i \(0.357998\pi\)
\(110\) 60.9262 0.0528099
\(111\) 0 0
\(112\) 0 0
\(113\) −1288.00 −1.07226 −0.536128 0.844137i \(-0.680113\pi\)
−0.536128 + 0.844137i \(0.680113\pi\)
\(114\) 0 0
\(115\) −456.946 −0.370526
\(116\) −848.000 −0.678748
\(117\) 0 0
\(118\) 1340.38 1.04569
\(119\) 0 0
\(120\) 0 0
\(121\) −1327.00 −0.996995
\(122\) −1035.75 −0.768623
\(123\) 0 0
\(124\) −852.967 −0.617731
\(125\) −274.168 −0.196179
\(126\) 0 0
\(127\) −1072.00 −0.749013 −0.374506 0.927224i \(-0.622188\pi\)
−0.374506 + 0.927224i \(0.622188\pi\)
\(128\) −128.000 −0.0883883
\(129\) 0 0
\(130\) −928.000 −0.626084
\(131\) −2741.68 −1.82856 −0.914281 0.405081i \(-0.867243\pi\)
−0.914281 + 0.405081i \(0.867243\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −1304.00 −0.840660
\(135\) 0 0
\(136\) 365.557 0.230487
\(137\) −2936.00 −1.83094 −0.915472 0.402381i \(-0.868183\pi\)
−0.915472 + 0.402381i \(0.868183\pi\)
\(138\) 0 0
\(139\) −182.779 −0.111533 −0.0557665 0.998444i \(-0.517760\pi\)
−0.0557665 + 0.998444i \(0.517760\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 1540.00 0.910098
\(143\) −60.9262 −0.0356287
\(144\) 0 0
\(145\) −3229.09 −1.84939
\(146\) −1949.64 −1.10516
\(147\) 0 0
\(148\) 984.000 0.546516
\(149\) 964.000 0.530027 0.265013 0.964245i \(-0.414624\pi\)
0.265013 + 0.964245i \(0.414624\pi\)
\(150\) 0 0
\(151\) −1688.00 −0.909718 −0.454859 0.890563i \(-0.650310\pi\)
−0.454859 + 0.890563i \(0.650310\pi\)
\(152\) 1218.52 0.650232
\(153\) 0 0
\(154\) 0 0
\(155\) −3248.00 −1.68313
\(156\) 0 0
\(157\) −3442.33 −1.74986 −0.874929 0.484251i \(-0.839092\pi\)
−0.874929 + 0.484251i \(0.839092\pi\)
\(158\) −944.000 −0.475320
\(159\) 0 0
\(160\) −487.409 −0.240832
\(161\) 0 0
\(162\) 0 0
\(163\) −3324.00 −1.59727 −0.798637 0.601813i \(-0.794445\pi\)
−0.798637 + 0.601813i \(0.794445\pi\)
\(164\) −1279.45 −0.609197
\(165\) 0 0
\(166\) −365.557 −0.170920
\(167\) 3046.31 1.41156 0.705780 0.708431i \(-0.250597\pi\)
0.705780 + 0.708431i \(0.250597\pi\)
\(168\) 0 0
\(169\) −1269.00 −0.577606
\(170\) 1392.00 0.628009
\(171\) 0 0
\(172\) −1136.00 −0.503600
\(173\) 3274.78 1.43917 0.719587 0.694402i \(-0.244331\pi\)
0.719587 + 0.694402i \(0.244331\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −32.0000 −0.0137051
\(177\) 0 0
\(178\) −1431.77 −0.602895
\(179\) −1254.00 −0.523622 −0.261811 0.965119i \(-0.584320\pi\)
−0.261811 + 0.965119i \(0.584320\pi\)
\(180\) 0 0
\(181\) 3076.77 1.26351 0.631753 0.775170i \(-0.282336\pi\)
0.631753 + 0.775170i \(0.282336\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 240.000 0.0961578
\(185\) 3746.96 1.48909
\(186\) 0 0
\(187\) 91.3893 0.0357382
\(188\) 243.705 0.0945425
\(189\) 0 0
\(190\) 4640.00 1.77169
\(191\) −906.000 −0.343224 −0.171612 0.985165i \(-0.554898\pi\)
−0.171612 + 0.985165i \(0.554898\pi\)
\(192\) 0 0
\(193\) 182.000 0.0678790 0.0339395 0.999424i \(-0.489195\pi\)
0.0339395 + 0.999424i \(0.489195\pi\)
\(194\) 609.262 0.225477
\(195\) 0 0
\(196\) 0 0
\(197\) −3468.00 −1.25424 −0.627119 0.778924i \(-0.715766\pi\)
−0.627119 + 0.778924i \(0.715766\pi\)
\(198\) 0 0
\(199\) 3899.28 1.38901 0.694503 0.719489i \(-0.255624\pi\)
0.694503 + 0.719489i \(0.255624\pi\)
\(200\) −856.000 −0.302642
\(201\) 0 0
\(202\) −2041.03 −0.710922
\(203\) 0 0
\(204\) 0 0
\(205\) −4872.00 −1.65988
\(206\) −1157.60 −0.391523
\(207\) 0 0
\(208\) 487.409 0.162480
\(209\) 304.631 0.100822
\(210\) 0 0
\(211\) −2620.00 −0.854826 −0.427413 0.904057i \(-0.640575\pi\)
−0.427413 + 0.904057i \(0.640575\pi\)
\(212\) −2192.00 −0.710128
\(213\) 0 0
\(214\) −3292.00 −1.05157
\(215\) −4325.76 −1.37216
\(216\) 0 0
\(217\) 0 0
\(218\) −1964.00 −0.610178
\(219\) 0 0
\(220\) −121.852 −0.0373422
\(221\) −1392.00 −0.423693
\(222\) 0 0
\(223\) −1401.30 −0.420799 −0.210399 0.977616i \(-0.567476\pi\)
−0.210399 + 0.977616i \(0.567476\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 2576.00 0.758199
\(227\) −3899.28 −1.14011 −0.570053 0.821608i \(-0.693077\pi\)
−0.570053 + 0.821608i \(0.693077\pi\)
\(228\) 0 0
\(229\) 5513.82 1.59111 0.795553 0.605883i \(-0.207180\pi\)
0.795553 + 0.605883i \(0.207180\pi\)
\(230\) 913.893 0.262001
\(231\) 0 0
\(232\) 1696.00 0.479948
\(233\) 712.000 0.200192 0.100096 0.994978i \(-0.468085\pi\)
0.100096 + 0.994978i \(0.468085\pi\)
\(234\) 0 0
\(235\) 928.000 0.257600
\(236\) −2680.75 −0.739416
\(237\) 0 0
\(238\) 0 0
\(239\) 2586.00 0.699893 0.349947 0.936770i \(-0.386200\pi\)
0.349947 + 0.936770i \(0.386200\pi\)
\(240\) 0 0
\(241\) 2254.27 0.602532 0.301266 0.953540i \(-0.402591\pi\)
0.301266 + 0.953540i \(0.402591\pi\)
\(242\) 2654.00 0.704982
\(243\) 0 0
\(244\) 2071.49 0.543498
\(245\) 0 0
\(246\) 0 0
\(247\) −4640.00 −1.19529
\(248\) 1705.93 0.436802
\(249\) 0 0
\(250\) 548.336 0.138719
\(251\) −4508.54 −1.13377 −0.566885 0.823797i \(-0.691852\pi\)
−0.566885 + 0.823797i \(0.691852\pi\)
\(252\) 0 0
\(253\) 60.0000 0.0149098
\(254\) 2144.00 0.529632
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 4554.23 1.10539 0.552695 0.833384i \(-0.313599\pi\)
0.552695 + 0.833384i \(0.313599\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 1856.00 0.442709
\(261\) 0 0
\(262\) 5483.36 1.29299
\(263\) 2578.00 0.604435 0.302217 0.953239i \(-0.402273\pi\)
0.302217 + 0.953239i \(0.402273\pi\)
\(264\) 0 0
\(265\) −8346.89 −1.93489
\(266\) 0 0
\(267\) 0 0
\(268\) 2608.00 0.594436
\(269\) 929.124 0.210594 0.105297 0.994441i \(-0.466421\pi\)
0.105297 + 0.994441i \(0.466421\pi\)
\(270\) 0 0
\(271\) 1127.13 0.252651 0.126326 0.991989i \(-0.459682\pi\)
0.126326 + 0.991989i \(0.459682\pi\)
\(272\) −731.114 −0.162979
\(273\) 0 0
\(274\) 5872.00 1.29467
\(275\) −214.000 −0.0469261
\(276\) 0 0
\(277\) 1510.00 0.327535 0.163767 0.986499i \(-0.447635\pi\)
0.163767 + 0.986499i \(0.447635\pi\)
\(278\) 365.557 0.0788657
\(279\) 0 0
\(280\) 0 0
\(281\) 4008.00 0.850880 0.425440 0.904987i \(-0.360119\pi\)
0.425440 + 0.904987i \(0.360119\pi\)
\(282\) 0 0
\(283\) −2406.58 −0.505500 −0.252750 0.967532i \(-0.581335\pi\)
−0.252750 + 0.967532i \(0.581335\pi\)
\(284\) −3080.00 −0.643537
\(285\) 0 0
\(286\) 121.852 0.0251933
\(287\) 0 0
\(288\) 0 0
\(289\) −2825.00 −0.575005
\(290\) 6458.18 1.30771
\(291\) 0 0
\(292\) 3899.28 0.781465
\(293\) −5254.88 −1.04776 −0.523880 0.851792i \(-0.675516\pi\)
−0.523880 + 0.851792i \(0.675516\pi\)
\(294\) 0 0
\(295\) −10208.0 −2.01469
\(296\) −1968.00 −0.386445
\(297\) 0 0
\(298\) −1928.00 −0.374785
\(299\) −913.893 −0.176762
\(300\) 0 0
\(301\) 0 0
\(302\) 3376.00 0.643268
\(303\) 0 0
\(304\) −2437.05 −0.459784
\(305\) 7888.00 1.48087
\(306\) 0 0
\(307\) 6366.79 1.18362 0.591811 0.806077i \(-0.298413\pi\)
0.591811 + 0.806077i \(0.298413\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 6496.00 1.19015
\(311\) −7372.07 −1.34415 −0.672077 0.740482i \(-0.734597\pi\)
−0.672077 + 0.740482i \(0.734597\pi\)
\(312\) 0 0
\(313\) −548.336 −0.0990216 −0.0495108 0.998774i \(-0.515766\pi\)
−0.0495108 + 0.998774i \(0.515766\pi\)
\(314\) 6884.66 1.23734
\(315\) 0 0
\(316\) 1888.00 0.336102
\(317\) −3780.00 −0.669735 −0.334867 0.942265i \(-0.608692\pi\)
−0.334867 + 0.942265i \(0.608692\pi\)
\(318\) 0 0
\(319\) 424.000 0.0744183
\(320\) 974.819 0.170294
\(321\) 0 0
\(322\) 0 0
\(323\) 6960.00 1.19896
\(324\) 0 0
\(325\) 3259.55 0.556330
\(326\) 6648.00 1.12944
\(327\) 0 0
\(328\) 2558.90 0.430767
\(329\) 0 0
\(330\) 0 0
\(331\) 6260.00 1.03952 0.519759 0.854313i \(-0.326022\pi\)
0.519759 + 0.854313i \(0.326022\pi\)
\(332\) 731.114 0.120859
\(333\) 0 0
\(334\) −6092.62 −0.998124
\(335\) 9930.97 1.61966
\(336\) 0 0
\(337\) −3166.00 −0.511760 −0.255880 0.966709i \(-0.582365\pi\)
−0.255880 + 0.966709i \(0.582365\pi\)
\(338\) 2538.00 0.408429
\(339\) 0 0
\(340\) −2784.00 −0.444069
\(341\) 426.483 0.0677283
\(342\) 0 0
\(343\) 0 0
\(344\) 2272.00 0.356099
\(345\) 0 0
\(346\) −6549.56 −1.01765
\(347\) 3618.00 0.559725 0.279862 0.960040i \(-0.409711\pi\)
0.279862 + 0.960040i \(0.409711\pi\)
\(348\) 0 0
\(349\) 4478.07 0.686836 0.343418 0.939183i \(-0.388415\pi\)
0.343418 + 0.939183i \(0.388415\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 64.0000 0.00969094
\(353\) −3701.27 −0.558069 −0.279035 0.960281i \(-0.590014\pi\)
−0.279035 + 0.960281i \(0.590014\pi\)
\(354\) 0 0
\(355\) −11728.3 −1.75345
\(356\) 2863.53 0.426311
\(357\) 0 0
\(358\) 2508.00 0.370257
\(359\) −130.000 −0.0191118 −0.00955590 0.999954i \(-0.503042\pi\)
−0.00955590 + 0.999954i \(0.503042\pi\)
\(360\) 0 0
\(361\) 16341.0 2.38242
\(362\) −6153.54 −0.893434
\(363\) 0 0
\(364\) 0 0
\(365\) 14848.0 2.12926
\(366\) 0 0
\(367\) −7798.55 −1.10921 −0.554606 0.832113i \(-0.687131\pi\)
−0.554606 + 0.832113i \(0.687131\pi\)
\(368\) −480.000 −0.0679938
\(369\) 0 0
\(370\) −7493.92 −1.05295
\(371\) 0 0
\(372\) 0 0
\(373\) −50.0000 −0.00694076 −0.00347038 0.999994i \(-0.501105\pi\)
−0.00347038 + 0.999994i \(0.501105\pi\)
\(374\) −182.779 −0.0252707
\(375\) 0 0
\(376\) −487.409 −0.0668517
\(377\) −6458.18 −0.882263
\(378\) 0 0
\(379\) −4956.00 −0.671696 −0.335848 0.941916i \(-0.609023\pi\)
−0.335848 + 0.941916i \(0.609023\pi\)
\(380\) −9280.00 −1.25277
\(381\) 0 0
\(382\) 1812.00 0.242696
\(383\) 6762.81 0.902254 0.451127 0.892460i \(-0.351022\pi\)
0.451127 + 0.892460i \(0.351022\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −364.000 −0.0479977
\(387\) 0 0
\(388\) −1218.52 −0.159436
\(389\) 13140.0 1.71266 0.856330 0.516430i \(-0.172739\pi\)
0.856330 + 0.516430i \(0.172739\pi\)
\(390\) 0 0
\(391\) 1370.84 0.177305
\(392\) 0 0
\(393\) 0 0
\(394\) 6936.00 0.886880
\(395\) 7189.29 0.915778
\(396\) 0 0
\(397\) −3807.89 −0.481391 −0.240696 0.970601i \(-0.577376\pi\)
−0.240696 + 0.970601i \(0.577376\pi\)
\(398\) −7798.55 −0.982176
\(399\) 0 0
\(400\) 1712.00 0.214000
\(401\) −4824.00 −0.600746 −0.300373 0.953822i \(-0.597111\pi\)
−0.300373 + 0.953822i \(0.597111\pi\)
\(402\) 0 0
\(403\) −6496.00 −0.802950
\(404\) 4082.05 0.502698
\(405\) 0 0
\(406\) 0 0
\(407\) −492.000 −0.0599202
\(408\) 0 0
\(409\) −5300.58 −0.640823 −0.320412 0.947278i \(-0.603821\pi\)
−0.320412 + 0.947278i \(0.603821\pi\)
\(410\) 9744.00 1.17371
\(411\) 0 0
\(412\) 2315.20 0.276848
\(413\) 0 0
\(414\) 0 0
\(415\) 2784.00 0.329304
\(416\) −974.819 −0.114890
\(417\) 0 0
\(418\) −609.262 −0.0712918
\(419\) −10540.2 −1.22894 −0.614468 0.788942i \(-0.710629\pi\)
−0.614468 + 0.788942i \(0.710629\pi\)
\(420\) 0 0
\(421\) −4458.00 −0.516080 −0.258040 0.966134i \(-0.583077\pi\)
−0.258040 + 0.966134i \(0.583077\pi\)
\(422\) 5240.00 0.604453
\(423\) 0 0
\(424\) 4384.00 0.502136
\(425\) −4889.33 −0.558040
\(426\) 0 0
\(427\) 0 0
\(428\) 6584.00 0.743574
\(429\) 0 0
\(430\) 8651.52 0.970263
\(431\) 16214.0 1.81207 0.906034 0.423206i \(-0.139095\pi\)
0.906034 + 0.423206i \(0.139095\pi\)
\(432\) 0 0
\(433\) 3594.64 0.398955 0.199478 0.979902i \(-0.436075\pi\)
0.199478 + 0.979902i \(0.436075\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 3928.00 0.431461
\(437\) 4569.46 0.500199
\(438\) 0 0
\(439\) 8590.59 0.933956 0.466978 0.884269i \(-0.345343\pi\)
0.466978 + 0.884269i \(0.345343\pi\)
\(440\) 243.705 0.0264049
\(441\) 0 0
\(442\) 2784.00 0.299596
\(443\) −15006.0 −1.60938 −0.804691 0.593693i \(-0.797669\pi\)
−0.804691 + 0.593693i \(0.797669\pi\)
\(444\) 0 0
\(445\) 10904.0 1.16157
\(446\) 2802.60 0.297550
\(447\) 0 0
\(448\) 0 0
\(449\) −1824.00 −0.191715 −0.0958573 0.995395i \(-0.530559\pi\)
−0.0958573 + 0.995395i \(0.530559\pi\)
\(450\) 0 0
\(451\) 639.725 0.0667926
\(452\) −5152.00 −0.536128
\(453\) 0 0
\(454\) 7798.55 0.806177
\(455\) 0 0
\(456\) 0 0
\(457\) −586.000 −0.0599823 −0.0299912 0.999550i \(-0.509548\pi\)
−0.0299912 + 0.999550i \(0.509548\pi\)
\(458\) −11027.6 −1.12508
\(459\) 0 0
\(460\) −1827.79 −0.185263
\(461\) 15399.1 1.55576 0.777882 0.628410i \(-0.216294\pi\)
0.777882 + 0.628410i \(0.216294\pi\)
\(462\) 0 0
\(463\) −88.0000 −0.00883306 −0.00441653 0.999990i \(-0.501406\pi\)
−0.00441653 + 0.999990i \(0.501406\pi\)
\(464\) −3392.00 −0.339374
\(465\) 0 0
\(466\) −1424.00 −0.141557
\(467\) −9748.19 −0.965937 −0.482968 0.875638i \(-0.660441\pi\)
−0.482968 + 0.875638i \(0.660441\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −1856.00 −0.182151
\(471\) 0 0
\(472\) 5361.50 0.522846
\(473\) 568.000 0.0552149
\(474\) 0 0
\(475\) −16297.8 −1.57430
\(476\) 0 0
\(477\) 0 0
\(478\) −5172.00 −0.494899
\(479\) 4935.02 0.470745 0.235373 0.971905i \(-0.424369\pi\)
0.235373 + 0.971905i \(0.424369\pi\)
\(480\) 0 0
\(481\) 7493.92 0.710381
\(482\) −4508.54 −0.426054
\(483\) 0 0
\(484\) −5308.00 −0.498497
\(485\) −4640.00 −0.434416
\(486\) 0 0
\(487\) −824.000 −0.0766715 −0.0383357 0.999265i \(-0.512206\pi\)
−0.0383357 + 0.999265i \(0.512206\pi\)
\(488\) −4142.98 −0.384311
\(489\) 0 0
\(490\) 0 0
\(491\) 15426.0 1.41785 0.708926 0.705283i \(-0.249180\pi\)
0.708926 + 0.705283i \(0.249180\pi\)
\(492\) 0 0
\(493\) 9687.26 0.884974
\(494\) 9280.00 0.845196
\(495\) 0 0
\(496\) −3411.87 −0.308866
\(497\) 0 0
\(498\) 0 0
\(499\) 5844.00 0.524275 0.262138 0.965030i \(-0.415573\pi\)
0.262138 + 0.965030i \(0.415573\pi\)
\(500\) −1096.67 −0.0980893
\(501\) 0 0
\(502\) 9017.08 0.801697
\(503\) 10174.7 0.901921 0.450960 0.892544i \(-0.351082\pi\)
0.450960 + 0.892544i \(0.351082\pi\)
\(504\) 0 0
\(505\) 15544.0 1.36970
\(506\) −120.000 −0.0105428
\(507\) 0 0
\(508\) −4288.00 −0.374506
\(509\) −11804.4 −1.02794 −0.513971 0.857807i \(-0.671826\pi\)
−0.513971 + 0.857807i \(0.671826\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −512.000 −0.0441942
\(513\) 0 0
\(514\) −9108.46 −0.781629
\(515\) 8816.00 0.754329
\(516\) 0 0
\(517\) −121.852 −0.0103657
\(518\) 0 0
\(519\) 0 0
\(520\) −3712.00 −0.313042
\(521\) −1568.85 −0.131924 −0.0659621 0.997822i \(-0.521012\pi\)
−0.0659621 + 0.997822i \(0.521012\pi\)
\(522\) 0 0
\(523\) 19130.8 1.59949 0.799744 0.600341i \(-0.204968\pi\)
0.799744 + 0.600341i \(0.204968\pi\)
\(524\) −10966.7 −0.914281
\(525\) 0 0
\(526\) −5156.00 −0.427400
\(527\) 9744.00 0.805418
\(528\) 0 0
\(529\) −11267.0 −0.926029
\(530\) 16693.8 1.36817
\(531\) 0 0
\(532\) 0 0
\(533\) −9744.00 −0.791856
\(534\) 0 0
\(535\) 25071.1 2.02602
\(536\) −5216.00 −0.420330
\(537\) 0 0
\(538\) −1858.25 −0.148912
\(539\) 0 0
\(540\) 0 0
\(541\) −6626.00 −0.526569 −0.263285 0.964718i \(-0.584806\pi\)
−0.263285 + 0.964718i \(0.584806\pi\)
\(542\) −2254.27 −0.178652
\(543\) 0 0
\(544\) 1462.23 0.115244
\(545\) 14957.4 1.17560
\(546\) 0 0
\(547\) −19964.0 −1.56051 −0.780255 0.625462i \(-0.784911\pi\)
−0.780255 + 0.625462i \(0.784911\pi\)
\(548\) −11744.0 −0.915472
\(549\) 0 0
\(550\) 428.000 0.0331818
\(551\) 32290.9 2.49662
\(552\) 0 0
\(553\) 0 0
\(554\) −3020.00 −0.231602
\(555\) 0 0
\(556\) −731.114 −0.0557665
\(557\) −6780.00 −0.515759 −0.257880 0.966177i \(-0.583024\pi\)
−0.257880 + 0.966177i \(0.583024\pi\)
\(558\) 0 0
\(559\) −8651.52 −0.654598
\(560\) 0 0
\(561\) 0 0
\(562\) −8016.00 −0.601663
\(563\) 18948.0 1.41841 0.709205 0.705002i \(-0.249054\pi\)
0.709205 + 0.705002i \(0.249054\pi\)
\(564\) 0 0
\(565\) −19618.2 −1.46079
\(566\) 4813.17 0.357443
\(567\) 0 0
\(568\) 6160.00 0.455049
\(569\) 192.000 0.0141460 0.00707299 0.999975i \(-0.497749\pi\)
0.00707299 + 0.999975i \(0.497749\pi\)
\(570\) 0 0
\(571\) −23028.0 −1.68773 −0.843863 0.536558i \(-0.819724\pi\)
−0.843863 + 0.536558i \(0.819724\pi\)
\(572\) −243.705 −0.0178143
\(573\) 0 0
\(574\) 0 0
\(575\) −3210.00 −0.232811
\(576\) 0 0
\(577\) −10723.0 −0.773665 −0.386832 0.922150i \(-0.626431\pi\)
−0.386832 + 0.922150i \(0.626431\pi\)
\(578\) 5650.00 0.406590
\(579\) 0 0
\(580\) −12916.4 −0.924694
\(581\) 0 0
\(582\) 0 0
\(583\) 1096.00 0.0778588
\(584\) −7798.55 −0.552579
\(585\) 0 0
\(586\) 10509.8 0.740878
\(587\) −19496.4 −1.37087 −0.685436 0.728133i \(-0.740388\pi\)
−0.685436 + 0.728133i \(0.740388\pi\)
\(588\) 0 0
\(589\) 32480.0 2.27218
\(590\) 20416.0 1.42460
\(591\) 0 0
\(592\) 3936.00 0.273258
\(593\) −13388.5 −0.927152 −0.463576 0.886057i \(-0.653434\pi\)
−0.463576 + 0.886057i \(0.653434\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 3856.00 0.265013
\(597\) 0 0
\(598\) 1827.79 0.124989
\(599\) −18066.0 −1.23232 −0.616158 0.787623i \(-0.711312\pi\)
−0.616158 + 0.787623i \(0.711312\pi\)
\(600\) 0 0
\(601\) 19861.9 1.34806 0.674031 0.738703i \(-0.264561\pi\)
0.674031 + 0.738703i \(0.264561\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −6752.00 −0.454859
\(605\) −20212.3 −1.35826
\(606\) 0 0
\(607\) −5300.58 −0.354438 −0.177219 0.984171i \(-0.556710\pi\)
−0.177219 + 0.984171i \(0.556710\pi\)
\(608\) 4874.09 0.325116
\(609\) 0 0
\(610\) −15776.0 −1.04713
\(611\) 1856.00 0.122890
\(612\) 0 0
\(613\) 15938.0 1.05013 0.525065 0.851062i \(-0.324041\pi\)
0.525065 + 0.851062i \(0.324041\pi\)
\(614\) −12733.6 −0.836947
\(615\) 0 0
\(616\) 0 0
\(617\) 11696.0 0.763149 0.381575 0.924338i \(-0.375382\pi\)
0.381575 + 0.924338i \(0.375382\pi\)
\(618\) 0 0
\(619\) −13464.7 −0.874300 −0.437150 0.899389i \(-0.644012\pi\)
−0.437150 + 0.899389i \(0.644012\pi\)
\(620\) −12992.0 −0.841567
\(621\) 0 0
\(622\) 14744.1 0.950460
\(623\) 0 0
\(624\) 0 0
\(625\) −17551.0 −1.12326
\(626\) 1096.67 0.0700189
\(627\) 0 0
\(628\) −13769.3 −0.874929
\(629\) −11240.9 −0.712565
\(630\) 0 0
\(631\) 11856.0 0.747987 0.373994 0.927431i \(-0.377988\pi\)
0.373994 + 0.927431i \(0.377988\pi\)
\(632\) −3776.00 −0.237660
\(633\) 0 0
\(634\) 7560.00 0.473574
\(635\) −16328.2 −1.02042
\(636\) 0 0
\(637\) 0 0
\(638\) −848.000 −0.0526217
\(639\) 0 0
\(640\) −1949.64 −0.120416
\(641\) −5608.00 −0.345558 −0.172779 0.984961i \(-0.555275\pi\)
−0.172779 + 0.984961i \(0.555275\pi\)
\(642\) 0 0
\(643\) 25314.8 1.55260 0.776298 0.630366i \(-0.217095\pi\)
0.776298 + 0.630366i \(0.217095\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −13920.0 −0.847794
\(647\) 5848.91 0.355401 0.177701 0.984085i \(-0.443134\pi\)
0.177701 + 0.984085i \(0.443134\pi\)
\(648\) 0 0
\(649\) 1340.38 0.0810699
\(650\) −6519.10 −0.393385
\(651\) 0 0
\(652\) −13296.0 −0.798637
\(653\) 28636.0 1.71610 0.858050 0.513566i \(-0.171676\pi\)
0.858050 + 0.513566i \(0.171676\pi\)
\(654\) 0 0
\(655\) −41760.0 −2.49114
\(656\) −5117.80 −0.304598
\(657\) 0 0
\(658\) 0 0
\(659\) −31786.0 −1.87892 −0.939459 0.342662i \(-0.888672\pi\)
−0.939459 + 0.342662i \(0.888672\pi\)
\(660\) 0 0
\(661\) −9474.02 −0.557484 −0.278742 0.960366i \(-0.589917\pi\)
−0.278742 + 0.960366i \(0.589917\pi\)
\(662\) −12520.0 −0.735051
\(663\) 0 0
\(664\) −1462.23 −0.0854600
\(665\) 0 0
\(666\) 0 0
\(667\) 6360.00 0.369206
\(668\) 12185.2 0.705780
\(669\) 0 0
\(670\) −19861.9 −1.14527
\(671\) −1035.75 −0.0595894
\(672\) 0 0
\(673\) 24986.0 1.43111 0.715557 0.698555i \(-0.246173\pi\)
0.715557 + 0.698555i \(0.246173\pi\)
\(674\) 6332.00 0.361869
\(675\) 0 0
\(676\) −5076.00 −0.288803
\(677\) 45.6946 0.00259407 0.00129704 0.999999i \(-0.499587\pi\)
0.00129704 + 0.999999i \(0.499587\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 5568.00 0.314004
\(681\) 0 0
\(682\) −852.967 −0.0478912
\(683\) −30094.0 −1.68597 −0.842983 0.537940i \(-0.819203\pi\)
−0.842983 + 0.537940i \(0.819203\pi\)
\(684\) 0 0
\(685\) −44719.8 −2.49439
\(686\) 0 0
\(687\) 0 0
\(688\) −4544.00 −0.251800
\(689\) −16693.8 −0.923051
\(690\) 0 0
\(691\) −16937.5 −0.932463 −0.466232 0.884663i \(-0.654389\pi\)
−0.466232 + 0.884663i \(0.654389\pi\)
\(692\) 13099.1 0.719587
\(693\) 0 0
\(694\) −7236.00 −0.395785
\(695\) −2784.00 −0.151947
\(696\) 0 0
\(697\) 14616.0 0.794290
\(698\) −8956.15 −0.485667
\(699\) 0 0
\(700\) 0 0
\(701\) −7660.00 −0.412716 −0.206358 0.978477i \(-0.566161\pi\)
−0.206358 + 0.978477i \(0.566161\pi\)
\(702\) 0 0
\(703\) −37469.6 −2.01023
\(704\) −128.000 −0.00685253
\(705\) 0 0
\(706\) 7402.53 0.394615
\(707\) 0 0
\(708\) 0 0
\(709\) 10654.0 0.564343 0.282172 0.959364i \(-0.408945\pi\)
0.282172 + 0.959364i \(0.408945\pi\)
\(710\) 23456.6 1.23987
\(711\) 0 0
\(712\) −5727.06 −0.301448
\(713\) 6397.25 0.336015
\(714\) 0 0
\(715\) −928.000 −0.0485388
\(716\) −5016.00 −0.261811
\(717\) 0 0
\(718\) 260.000 0.0135141
\(719\) 37104.0 1.92454 0.962272 0.272089i \(-0.0877144\pi\)
0.962272 + 0.272089i \(0.0877144\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −32682.0 −1.68462
\(723\) 0 0
\(724\) 12307.1 0.631753
\(725\) −22684.0 −1.16202
\(726\) 0 0
\(727\) 17760.0 0.906027 0.453013 0.891504i \(-0.350349\pi\)
0.453013 + 0.891504i \(0.350349\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −29696.0 −1.50561
\(731\) 12977.3 0.656610
\(732\) 0 0
\(733\) 2528.44 0.127408 0.0637039 0.997969i \(-0.479709\pi\)
0.0637039 + 0.997969i \(0.479709\pi\)
\(734\) 15597.1 0.784332
\(735\) 0 0
\(736\) 960.000 0.0480789
\(737\) −1304.00 −0.0651743
\(738\) 0 0
\(739\) −8156.00 −0.405986 −0.202993 0.979180i \(-0.565067\pi\)
−0.202993 + 0.979180i \(0.565067\pi\)
\(740\) 14987.8 0.744546
\(741\) 0 0
\(742\) 0 0
\(743\) 2910.00 0.143684 0.0718422 0.997416i \(-0.477112\pi\)
0.0718422 + 0.997416i \(0.477112\pi\)
\(744\) 0 0
\(745\) 14683.2 0.722082
\(746\) 100.000 0.00490786
\(747\) 0 0
\(748\) 365.557 0.0178691
\(749\) 0 0
\(750\) 0 0
\(751\) 13584.0 0.660036 0.330018 0.943975i \(-0.392945\pi\)
0.330018 + 0.943975i \(0.392945\pi\)
\(752\) 974.819 0.0472713
\(753\) 0 0
\(754\) 12916.4 0.623854
\(755\) −25710.9 −1.23936
\(756\) 0 0
\(757\) 19054.0 0.914834 0.457417 0.889252i \(-0.348775\pi\)
0.457417 + 0.889252i \(0.348775\pi\)
\(758\) 9912.00 0.474960
\(759\) 0 0
\(760\) 18560.0 0.885845
\(761\) −5011.18 −0.238706 −0.119353 0.992852i \(-0.538082\pi\)
−0.119353 + 0.992852i \(0.538082\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −3624.00 −0.171612
\(765\) 0 0
\(766\) −13525.6 −0.637990
\(767\) −20416.0 −0.961120
\(768\) 0 0
\(769\) 21506.9 1.00853 0.504265 0.863549i \(-0.331763\pi\)
0.504265 + 0.863549i \(0.331763\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 728.000 0.0339395
\(773\) −23715.5 −1.10348 −0.551739 0.834017i \(-0.686035\pi\)
−0.551739 + 0.834017i \(0.686035\pi\)
\(774\) 0 0
\(775\) −22816.9 −1.05756
\(776\) 2437.05 0.112738
\(777\) 0 0
\(778\) −26280.0 −1.21103
\(779\) 48720.0 2.24079
\(780\) 0 0
\(781\) 1540.00 0.0705577
\(782\) −2741.68 −0.125374
\(783\) 0 0
\(784\) 0 0
\(785\) −52432.0 −2.38392
\(786\) 0 0
\(787\) 36982.2 1.67506 0.837530 0.546391i \(-0.183999\pi\)
0.837530 + 0.546391i \(0.183999\pi\)
\(788\) −13872.0 −0.627119
\(789\) 0 0
\(790\) −14378.6 −0.647553
\(791\) 0 0
\(792\) 0 0
\(793\) 15776.0 0.706459
\(794\) 7615.77 0.340395
\(795\) 0 0
\(796\) 15597.1 0.694503
\(797\) 5346.27 0.237609 0.118805 0.992918i \(-0.462094\pi\)
0.118805 + 0.992918i \(0.462094\pi\)
\(798\) 0 0
\(799\) −2784.00 −0.123268
\(800\) −3424.00 −0.151321
\(801\) 0 0
\(802\) 9648.00 0.424791
\(803\) −1949.64 −0.0856802
\(804\) 0 0
\(805\) 0 0
\(806\) 12992.0 0.567771
\(807\) 0 0
\(808\) −8164.11 −0.355461
\(809\) −19776.0 −0.859440 −0.429720 0.902962i \(-0.641388\pi\)
−0.429720 + 0.902962i \(0.641388\pi\)
\(810\) 0 0
\(811\) −15962.7 −0.691153 −0.345576 0.938391i \(-0.612317\pi\)
−0.345576 + 0.938391i \(0.612317\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 984.000 0.0423700
\(815\) −50629.7 −2.17605
\(816\) 0 0
\(817\) 43257.6 1.85238
\(818\) 10601.2 0.453130
\(819\) 0 0
\(820\) −19488.0 −0.829940
\(821\) −29972.0 −1.27409 −0.637046 0.770826i \(-0.719844\pi\)
−0.637046 + 0.770826i \(0.719844\pi\)
\(822\) 0 0
\(823\) −38816.0 −1.64403 −0.822017 0.569462i \(-0.807151\pi\)
−0.822017 + 0.569462i \(0.807151\pi\)
\(824\) −4630.39 −0.195761
\(825\) 0 0
\(826\) 0 0
\(827\) −34386.0 −1.44585 −0.722925 0.690926i \(-0.757203\pi\)
−0.722925 + 0.690926i \(0.757203\pi\)
\(828\) 0 0
\(829\) 13129.6 0.550072 0.275036 0.961434i \(-0.411310\pi\)
0.275036 + 0.961434i \(0.411310\pi\)
\(830\) −5568.00 −0.232853
\(831\) 0 0
\(832\) 1949.64 0.0812398
\(833\) 0 0
\(834\) 0 0
\(835\) 46400.0 1.92304
\(836\) 1218.52 0.0504109
\(837\) 0 0
\(838\) 21080.5 0.868989
\(839\) 27051.2 1.11313 0.556563 0.830806i \(-0.312120\pi\)
0.556563 + 0.830806i \(0.312120\pi\)
\(840\) 0 0
\(841\) 20555.0 0.842798
\(842\) 8916.00 0.364924
\(843\) 0 0
\(844\) −10480.0 −0.427413
\(845\) −19328.8 −0.786902
\(846\) 0 0
\(847\) 0 0
\(848\) −8768.00 −0.355064
\(849\) 0 0
\(850\) 9778.65 0.394594
\(851\) −7380.00 −0.297277
\(852\) 0 0
\(853\) −14774.6 −0.593051 −0.296526 0.955025i \(-0.595828\pi\)
−0.296526 + 0.955025i \(0.595828\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −13168.0 −0.525786
\(857\) 19603.0 0.781360 0.390680 0.920527i \(-0.372240\pi\)
0.390680 + 0.920527i \(0.372240\pi\)
\(858\) 0 0
\(859\) 12520.3 0.497309 0.248654 0.968592i \(-0.420012\pi\)
0.248654 + 0.968592i \(0.420012\pi\)
\(860\) −17303.0 −0.686080
\(861\) 0 0
\(862\) −32428.0 −1.28132
\(863\) −30774.0 −1.21386 −0.606929 0.794756i \(-0.707599\pi\)
−0.606929 + 0.794756i \(0.707599\pi\)
\(864\) 0 0
\(865\) 49880.0 1.96066
\(866\) −7189.29 −0.282104
\(867\) 0 0
\(868\) 0 0
\(869\) −944.000 −0.0368504
\(870\) 0 0
\(871\) 19861.9 0.772671
\(872\) −7856.00 −0.305089
\(873\) 0 0
\(874\) −9138.93 −0.353694
\(875\) 0 0
\(876\) 0 0
\(877\) −16758.0 −0.645242 −0.322621 0.946528i \(-0.604564\pi\)
−0.322621 + 0.946528i \(0.604564\pi\)
\(878\) −17181.2 −0.660406
\(879\) 0 0
\(880\) −487.409 −0.0186711
\(881\) −25208.2 −0.964002 −0.482001 0.876171i \(-0.660090\pi\)
−0.482001 + 0.876171i \(0.660090\pi\)
\(882\) 0 0
\(883\) −5468.00 −0.208395 −0.104198 0.994557i \(-0.533227\pi\)
−0.104198 + 0.994557i \(0.533227\pi\)
\(884\) −5568.00 −0.211846
\(885\) 0 0
\(886\) 30012.0 1.13801
\(887\) 27051.2 1.02400 0.512002 0.858984i \(-0.328904\pi\)
0.512002 + 0.858984i \(0.328904\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −21808.0 −0.821355
\(891\) 0 0
\(892\) −5605.21 −0.210399
\(893\) −9280.00 −0.347753
\(894\) 0 0
\(895\) −19100.4 −0.713357
\(896\) 0 0
\(897\) 0 0
\(898\) 3648.00 0.135563
\(899\) 45207.2 1.67714
\(900\) 0 0
\(901\) 25040.7 0.925888
\(902\) −1279.45 −0.0472295
\(903\) 0 0
\(904\) 10304.0 0.379099
\(905\) 46864.0 1.72134
\(906\) 0 0
\(907\) −5876.00 −0.215115 −0.107558 0.994199i \(-0.534303\pi\)
−0.107558 + 0.994199i \(0.534303\pi\)
\(908\) −15597.1 −0.570053
\(909\) 0 0
\(910\) 0 0
\(911\) −17962.0 −0.653247 −0.326623 0.945155i \(-0.605911\pi\)
−0.326623 + 0.945155i \(0.605911\pi\)
\(912\) 0 0
\(913\) −365.557 −0.0132510
\(914\) 1172.00 0.0424139
\(915\) 0 0
\(916\) 22055.3 0.795553
\(917\) 0 0
\(918\) 0 0
\(919\) 53424.0 1.91762 0.958811 0.284044i \(-0.0916761\pi\)
0.958811 + 0.284044i \(0.0916761\pi\)
\(920\) 3655.57 0.131001
\(921\) 0 0
\(922\) −30798.2 −1.10009
\(923\) −23456.6 −0.836493
\(924\) 0 0
\(925\) 26322.0 0.935635
\(926\) 176.000 0.00624592
\(927\) 0 0
\(928\) 6784.00 0.239974
\(929\) −5986.00 −0.211404 −0.105702 0.994398i \(-0.533709\pi\)
−0.105702 + 0.994398i \(0.533709\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 2848.00 0.100096
\(933\) 0 0
\(934\) 19496.4 0.683020
\(935\) 1392.00 0.0486880
\(936\) 0 0
\(937\) −3655.57 −0.127452 −0.0637259 0.997967i \(-0.520298\pi\)
−0.0637259 + 0.997967i \(0.520298\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 3712.00 0.128800
\(941\) 53142.9 1.84103 0.920514 0.390709i \(-0.127770\pi\)
0.920514 + 0.390709i \(0.127770\pi\)
\(942\) 0 0
\(943\) 9595.87 0.331373
\(944\) −10723.0 −0.369708
\(945\) 0 0
\(946\) −1136.00 −0.0390429
\(947\) −10202.0 −0.350074 −0.175037 0.984562i \(-0.556005\pi\)
−0.175037 + 0.984562i \(0.556005\pi\)
\(948\) 0 0
\(949\) 29696.0 1.01578
\(950\) 32595.5 1.11320
\(951\) 0 0
\(952\) 0 0
\(953\) 8856.00 0.301022 0.150511 0.988608i \(-0.451908\pi\)
0.150511 + 0.988608i \(0.451908\pi\)
\(954\) 0 0
\(955\) −13799.8 −0.467592
\(956\) 10344.0 0.349947
\(957\) 0 0
\(958\) −9870.04 −0.332867
\(959\) 0 0
\(960\) 0 0
\(961\) 15681.0 0.526367
\(962\) −14987.8 −0.502315
\(963\) 0 0
\(964\) 9017.08 0.301266
\(965\) 2772.14 0.0924750
\(966\) 0 0
\(967\) −40760.0 −1.35548 −0.677742 0.735300i \(-0.737041\pi\)
−0.677742 + 0.735300i \(0.737041\pi\)
\(968\) 10616.0 0.352491
\(969\) 0 0
\(970\) 9280.00 0.307178
\(971\) −46182.0 −1.52632 −0.763158 0.646212i \(-0.776352\pi\)
−0.763158 + 0.646212i \(0.776352\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 1648.00 0.0542149
\(975\) 0 0
\(976\) 8285.96 0.271749
\(977\) −23360.0 −0.764946 −0.382473 0.923967i \(-0.624928\pi\)
−0.382473 + 0.923967i \(0.624928\pi\)
\(978\) 0 0
\(979\) −1431.77 −0.0467410
\(980\) 0 0
\(981\) 0 0
\(982\) −30852.0 −1.00257
\(983\) −12550.8 −0.407231 −0.203616 0.979051i \(-0.565269\pi\)
−0.203616 + 0.979051i \(0.565269\pi\)
\(984\) 0 0
\(985\) −52823.0 −1.70871
\(986\) −19374.5 −0.625771
\(987\) 0 0
\(988\) −18560.0 −0.597644
\(989\) 8520.00 0.273934
\(990\) 0 0
\(991\) −19480.0 −0.624422 −0.312211 0.950013i \(-0.601070\pi\)
−0.312211 + 0.950013i \(0.601070\pi\)
\(992\) 6823.73 0.218401
\(993\) 0 0
\(994\) 0 0
\(995\) 59392.0 1.89231
\(996\) 0 0
\(997\) −36525.2 −1.16025 −0.580123 0.814529i \(-0.696996\pi\)
−0.580123 + 0.814529i \(0.696996\pi\)
\(998\) −11688.0 −0.370719
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.4.a.x.1.2 yes 2
3.2 odd 2 882.4.a.bf.1.1 yes 2
7.2 even 3 882.4.g.bh.361.1 4
7.3 odd 6 882.4.g.bh.667.2 4
7.4 even 3 882.4.g.bh.667.1 4
7.5 odd 6 882.4.g.bh.361.2 4
7.6 odd 2 inner 882.4.a.x.1.1 2
21.2 odd 6 882.4.g.bb.361.2 4
21.5 even 6 882.4.g.bb.361.1 4
21.11 odd 6 882.4.g.bb.667.2 4
21.17 even 6 882.4.g.bb.667.1 4
21.20 even 2 882.4.a.bf.1.2 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
882.4.a.x.1.1 2 7.6 odd 2 inner
882.4.a.x.1.2 yes 2 1.1 even 1 trivial
882.4.a.bf.1.1 yes 2 3.2 odd 2
882.4.a.bf.1.2 yes 2 21.20 even 2
882.4.g.bb.361.1 4 21.5 even 6
882.4.g.bb.361.2 4 21.2 odd 6
882.4.g.bb.667.1 4 21.17 even 6
882.4.g.bb.667.2 4 21.11 odd 6
882.4.g.bh.361.1 4 7.2 even 3
882.4.g.bh.361.2 4 7.5 odd 6
882.4.g.bh.667.1 4 7.4 even 3
882.4.g.bh.667.2 4 7.3 odd 6