Properties

Label 882.6.a.y.1.1
Level $882$
Weight $6$
Character 882.1
Self dual yes
Analytic conductor $141.459$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,6,Mod(1,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 882.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.458529075\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 882.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} +16.0000 q^{4} +86.0000 q^{5} +64.0000 q^{8} +344.000 q^{10} -34.0000 q^{11} +3.00000 q^{13} +256.000 q^{16} -1904.00 q^{17} +1489.00 q^{19} +1376.00 q^{20} -136.000 q^{22} +224.000 q^{23} +4271.00 q^{25} +12.0000 q^{26} +6508.00 q^{29} -1731.00 q^{31} +1024.00 q^{32} -7616.00 q^{34} -7633.00 q^{37} +5956.00 q^{38} +5504.00 q^{40} +15414.0 q^{41} +18491.0 q^{43} -544.000 q^{44} +896.000 q^{46} +18462.0 q^{47} +17084.0 q^{50} +48.0000 q^{52} +19956.0 q^{53} -2924.00 q^{55} +26032.0 q^{58} -31828.0 q^{59} +57654.0 q^{61} -6924.00 q^{62} +4096.00 q^{64} +258.000 q^{65} -60563.0 q^{67} -30464.0 q^{68} +44834.0 q^{71} -20821.0 q^{73} -30532.0 q^{74} +23824.0 q^{76} -30531.0 q^{79} +22016.0 q^{80} +61656.0 q^{82} +110602. q^{83} -163744. q^{85} +73964.0 q^{86} -2176.00 q^{88} -58992.0 q^{89} +3584.00 q^{92} +73848.0 q^{94} +128054. q^{95} +119846. q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107
\(3\) 0 0
\(4\) 16.0000 0.500000
\(5\) 86.0000 1.53841 0.769207 0.638999i \(-0.220651\pi\)
0.769207 + 0.638999i \(0.220651\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 64.0000 0.353553
\(9\) 0 0
\(10\) 344.000 1.08782
\(11\) −34.0000 −0.0847222 −0.0423611 0.999102i \(-0.513488\pi\)
−0.0423611 + 0.999102i \(0.513488\pi\)
\(12\) 0 0
\(13\) 3.00000 0.00492337 0.00246169 0.999997i \(-0.499216\pi\)
0.00246169 + 0.999997i \(0.499216\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) −1904.00 −1.59788 −0.798941 0.601410i \(-0.794606\pi\)
−0.798941 + 0.601410i \(0.794606\pi\)
\(18\) 0 0
\(19\) 1489.00 0.946260 0.473130 0.880992i \(-0.343124\pi\)
0.473130 + 0.880992i \(0.343124\pi\)
\(20\) 1376.00 0.769207
\(21\) 0 0
\(22\) −136.000 −0.0599076
\(23\) 224.000 0.0882934 0.0441467 0.999025i \(-0.485943\pi\)
0.0441467 + 0.999025i \(0.485943\pi\)
\(24\) 0 0
\(25\) 4271.00 1.36672
\(26\) 12.0000 0.00348135
\(27\) 0 0
\(28\) 0 0
\(29\) 6508.00 1.43699 0.718493 0.695534i \(-0.244832\pi\)
0.718493 + 0.695534i \(0.244832\pi\)
\(30\) 0 0
\(31\) −1731.00 −0.323514 −0.161757 0.986831i \(-0.551716\pi\)
−0.161757 + 0.986831i \(0.551716\pi\)
\(32\) 1024.00 0.176777
\(33\) 0 0
\(34\) −7616.00 −1.12987
\(35\) 0 0
\(36\) 0 0
\(37\) −7633.00 −0.916623 −0.458312 0.888792i \(-0.651546\pi\)
−0.458312 + 0.888792i \(0.651546\pi\)
\(38\) 5956.00 0.669107
\(39\) 0 0
\(40\) 5504.00 0.543912
\(41\) 15414.0 1.43204 0.716021 0.698079i \(-0.245961\pi\)
0.716021 + 0.698079i \(0.245961\pi\)
\(42\) 0 0
\(43\) 18491.0 1.52507 0.762534 0.646948i \(-0.223955\pi\)
0.762534 + 0.646948i \(0.223955\pi\)
\(44\) −544.000 −0.0423611
\(45\) 0 0
\(46\) 896.000 0.0624329
\(47\) 18462.0 1.21909 0.609543 0.792753i \(-0.291353\pi\)
0.609543 + 0.792753i \(0.291353\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 17084.0 0.966417
\(51\) 0 0
\(52\) 48.0000 0.00246169
\(53\) 19956.0 0.975852 0.487926 0.872885i \(-0.337754\pi\)
0.487926 + 0.872885i \(0.337754\pi\)
\(54\) 0 0
\(55\) −2924.00 −0.130338
\(56\) 0 0
\(57\) 0 0
\(58\) 26032.0 1.01610
\(59\) −31828.0 −1.19036 −0.595181 0.803591i \(-0.702920\pi\)
−0.595181 + 0.803591i \(0.702920\pi\)
\(60\) 0 0
\(61\) 57654.0 1.98383 0.991916 0.126897i \(-0.0405017\pi\)
0.991916 + 0.126897i \(0.0405017\pi\)
\(62\) −6924.00 −0.228759
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) 258.000 0.00757419
\(66\) 0 0
\(67\) −60563.0 −1.64824 −0.824120 0.566415i \(-0.808330\pi\)
−0.824120 + 0.566415i \(0.808330\pi\)
\(68\) −30464.0 −0.798941
\(69\) 0 0
\(70\) 0 0
\(71\) 44834.0 1.05551 0.527754 0.849397i \(-0.323034\pi\)
0.527754 + 0.849397i \(0.323034\pi\)
\(72\) 0 0
\(73\) −20821.0 −0.457293 −0.228646 0.973510i \(-0.573430\pi\)
−0.228646 + 0.973510i \(0.573430\pi\)
\(74\) −30532.0 −0.648151
\(75\) 0 0
\(76\) 23824.0 0.473130
\(77\) 0 0
\(78\) 0 0
\(79\) −30531.0 −0.550394 −0.275197 0.961388i \(-0.588743\pi\)
−0.275197 + 0.961388i \(0.588743\pi\)
\(80\) 22016.0 0.384604
\(81\) 0 0
\(82\) 61656.0 1.01261
\(83\) 110602. 1.76225 0.881125 0.472883i \(-0.156787\pi\)
0.881125 + 0.472883i \(0.156787\pi\)
\(84\) 0 0
\(85\) −163744. −2.45820
\(86\) 73964.0 1.07839
\(87\) 0 0
\(88\) −2176.00 −0.0299538
\(89\) −58992.0 −0.789438 −0.394719 0.918802i \(-0.629158\pi\)
−0.394719 + 0.918802i \(0.629158\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 3584.00 0.0441467
\(93\) 0 0
\(94\) 73848.0 0.862023
\(95\) 128054. 1.45574
\(96\) 0 0
\(97\) 119846. 1.29328 0.646642 0.762793i \(-0.276173\pi\)
0.646642 + 0.762793i \(0.276173\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 68336.0 0.683360
\(101\) 100010. 0.975529 0.487764 0.872975i \(-0.337813\pi\)
0.487764 + 0.872975i \(0.337813\pi\)
\(102\) 0 0
\(103\) −121691. −1.13023 −0.565113 0.825013i \(-0.691167\pi\)
−0.565113 + 0.825013i \(0.691167\pi\)
\(104\) 192.000 0.00174068
\(105\) 0 0
\(106\) 79824.0 0.690031
\(107\) 48648.0 0.410776 0.205388 0.978681i \(-0.434154\pi\)
0.205388 + 0.978681i \(0.434154\pi\)
\(108\) 0 0
\(109\) −152075. −1.22600 −0.613002 0.790082i \(-0.710038\pi\)
−0.613002 + 0.790082i \(0.710038\pi\)
\(110\) −11696.0 −0.0921628
\(111\) 0 0
\(112\) 0 0
\(113\) 60886.0 0.448561 0.224280 0.974525i \(-0.427997\pi\)
0.224280 + 0.974525i \(0.427997\pi\)
\(114\) 0 0
\(115\) 19264.0 0.135832
\(116\) 104128. 0.718493
\(117\) 0 0
\(118\) −127312. −0.841714
\(119\) 0 0
\(120\) 0 0
\(121\) −159895. −0.992822
\(122\) 230616. 1.40278
\(123\) 0 0
\(124\) −27696.0 −0.161757
\(125\) 98556.0 0.564167
\(126\) 0 0
\(127\) −151965. −0.836054 −0.418027 0.908435i \(-0.637278\pi\)
−0.418027 + 0.908435i \(0.637278\pi\)
\(128\) 16384.0 0.0883883
\(129\) 0 0
\(130\) 1032.00 0.00535576
\(131\) 235502. 1.19899 0.599496 0.800378i \(-0.295368\pi\)
0.599496 + 0.800378i \(0.295368\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −242252. −1.16548
\(135\) 0 0
\(136\) −121856. −0.564937
\(137\) −325508. −1.48170 −0.740850 0.671671i \(-0.765577\pi\)
−0.740850 + 0.671671i \(0.765577\pi\)
\(138\) 0 0
\(139\) −3211.00 −0.0140962 −0.00704812 0.999975i \(-0.502244\pi\)
−0.00704812 + 0.999975i \(0.502244\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 179336. 0.746357
\(143\) −102.000 −0.000417119 0
\(144\) 0 0
\(145\) 559688. 2.21068
\(146\) −83284.0 −0.323355
\(147\) 0 0
\(148\) −122128. −0.458312
\(149\) 151884. 0.560462 0.280231 0.959933i \(-0.409589\pi\)
0.280231 + 0.959933i \(0.409589\pi\)
\(150\) 0 0
\(151\) 76648.0 0.273564 0.136782 0.990601i \(-0.456324\pi\)
0.136782 + 0.990601i \(0.456324\pi\)
\(152\) 95296.0 0.334554
\(153\) 0 0
\(154\) 0 0
\(155\) −148866. −0.497698
\(156\) 0 0
\(157\) 389710. 1.26181 0.630903 0.775862i \(-0.282685\pi\)
0.630903 + 0.775862i \(0.282685\pi\)
\(158\) −122124. −0.389187
\(159\) 0 0
\(160\) 88064.0 0.271956
\(161\) 0 0
\(162\) 0 0
\(163\) −112372. −0.331275 −0.165638 0.986187i \(-0.552968\pi\)
−0.165638 + 0.986187i \(0.552968\pi\)
\(164\) 246624. 0.716021
\(165\) 0 0
\(166\) 442408. 1.24610
\(167\) 52550.0 0.145808 0.0729040 0.997339i \(-0.476773\pi\)
0.0729040 + 0.997339i \(0.476773\pi\)
\(168\) 0 0
\(169\) −371284. −0.999976
\(170\) −654976. −1.73821
\(171\) 0 0
\(172\) 295856. 0.762534
\(173\) −135256. −0.343591 −0.171795 0.985133i \(-0.554957\pi\)
−0.171795 + 0.985133i \(0.554957\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −8704.00 −0.0211805
\(177\) 0 0
\(178\) −235968. −0.558217
\(179\) −250638. −0.584675 −0.292337 0.956315i \(-0.594433\pi\)
−0.292337 + 0.956315i \(0.594433\pi\)
\(180\) 0 0
\(181\) −199233. −0.452027 −0.226014 0.974124i \(-0.572569\pi\)
−0.226014 + 0.974124i \(0.572569\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 14336.0 0.0312164
\(185\) −656438. −1.41015
\(186\) 0 0
\(187\) 64736.0 0.135376
\(188\) 295392. 0.609543
\(189\) 0 0
\(190\) 512216. 1.02936
\(191\) 238770. 0.473583 0.236792 0.971560i \(-0.423904\pi\)
0.236792 + 0.971560i \(0.423904\pi\)
\(192\) 0 0
\(193\) 85691.0 0.165593 0.0827965 0.996566i \(-0.473615\pi\)
0.0827965 + 0.996566i \(0.473615\pi\)
\(194\) 479384. 0.914491
\(195\) 0 0
\(196\) 0 0
\(197\) 71408.0 0.131094 0.0655468 0.997849i \(-0.479121\pi\)
0.0655468 + 0.997849i \(0.479121\pi\)
\(198\) 0 0
\(199\) 711352. 1.27336 0.636681 0.771127i \(-0.280307\pi\)
0.636681 + 0.771127i \(0.280307\pi\)
\(200\) 273344. 0.483208
\(201\) 0 0
\(202\) 400040. 0.689803
\(203\) 0 0
\(204\) 0 0
\(205\) 1.32560e6 2.20307
\(206\) −486764. −0.799191
\(207\) 0 0
\(208\) 768.000 0.00123084
\(209\) −50626.0 −0.0801693
\(210\) 0 0
\(211\) −260260. −0.402440 −0.201220 0.979546i \(-0.564491\pi\)
−0.201220 + 0.979546i \(0.564491\pi\)
\(212\) 319296. 0.487926
\(213\) 0 0
\(214\) 194592. 0.290463
\(215\) 1.59023e6 2.34619
\(216\) 0 0
\(217\) 0 0
\(218\) −608300. −0.866915
\(219\) 0 0
\(220\) −46784.0 −0.0651689
\(221\) −5712.00 −0.00786697
\(222\) 0 0
\(223\) −105656. −0.142276 −0.0711381 0.997466i \(-0.522663\pi\)
−0.0711381 + 0.997466i \(0.522663\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 243544. 0.317180
\(227\) 654750. 0.843356 0.421678 0.906746i \(-0.361441\pi\)
0.421678 + 0.906746i \(0.361441\pi\)
\(228\) 0 0
\(229\) −557713. −0.702784 −0.351392 0.936228i \(-0.614292\pi\)
−0.351392 + 0.936228i \(0.614292\pi\)
\(230\) 77056.0 0.0960477
\(231\) 0 0
\(232\) 416512. 0.508051
\(233\) 1.24759e6 1.50551 0.752755 0.658301i \(-0.228725\pi\)
0.752755 + 0.658301i \(0.228725\pi\)
\(234\) 0 0
\(235\) 1.58773e6 1.87546
\(236\) −509248. −0.595181
\(237\) 0 0
\(238\) 0 0
\(239\) 496926. 0.562726 0.281363 0.959601i \(-0.409214\pi\)
0.281363 + 0.959601i \(0.409214\pi\)
\(240\) 0 0
\(241\) 277618. 0.307897 0.153948 0.988079i \(-0.450801\pi\)
0.153948 + 0.988079i \(0.450801\pi\)
\(242\) −639580. −0.702031
\(243\) 0 0
\(244\) 922464. 0.991916
\(245\) 0 0
\(246\) 0 0
\(247\) 4467.00 0.00465879
\(248\) −110784. −0.114379
\(249\) 0 0
\(250\) 394224. 0.398927
\(251\) −308328. −0.308908 −0.154454 0.988000i \(-0.549362\pi\)
−0.154454 + 0.988000i \(0.549362\pi\)
\(252\) 0 0
\(253\) −7616.00 −0.00748041
\(254\) −607860. −0.591179
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) 408762. 0.386045 0.193022 0.981194i \(-0.438171\pi\)
0.193022 + 0.981194i \(0.438171\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 4128.00 0.00378710
\(261\) 0 0
\(262\) 942008. 0.847816
\(263\) −1.08812e6 −0.970039 −0.485019 0.874503i \(-0.661187\pi\)
−0.485019 + 0.874503i \(0.661187\pi\)
\(264\) 0 0
\(265\) 1.71622e6 1.50126
\(266\) 0 0
\(267\) 0 0
\(268\) −969008. −0.824120
\(269\) −668290. −0.563098 −0.281549 0.959547i \(-0.590848\pi\)
−0.281549 + 0.959547i \(0.590848\pi\)
\(270\) 0 0
\(271\) 830664. 0.687072 0.343536 0.939140i \(-0.388375\pi\)
0.343536 + 0.939140i \(0.388375\pi\)
\(272\) −487424. −0.399470
\(273\) 0 0
\(274\) −1.30203e6 −1.04772
\(275\) −145214. −0.115792
\(276\) 0 0
\(277\) 925073. 0.724397 0.362198 0.932101i \(-0.382026\pi\)
0.362198 + 0.932101i \(0.382026\pi\)
\(278\) −12844.0 −0.00996755
\(279\) 0 0
\(280\) 0 0
\(281\) −1.33635e6 −1.00961 −0.504805 0.863233i \(-0.668436\pi\)
−0.504805 + 0.863233i \(0.668436\pi\)
\(282\) 0 0
\(283\) 992957. 0.736995 0.368497 0.929629i \(-0.379872\pi\)
0.368497 + 0.929629i \(0.379872\pi\)
\(284\) 717344. 0.527754
\(285\) 0 0
\(286\) −408.000 −0.000294948 0
\(287\) 0 0
\(288\) 0 0
\(289\) 2.20536e6 1.55323
\(290\) 2.23875e6 1.56319
\(291\) 0 0
\(292\) −333136. −0.228646
\(293\) 563544. 0.383494 0.191747 0.981444i \(-0.438585\pi\)
0.191747 + 0.981444i \(0.438585\pi\)
\(294\) 0 0
\(295\) −2.73721e6 −1.83127
\(296\) −488512. −0.324075
\(297\) 0 0
\(298\) 607536. 0.396307
\(299\) 672.000 0.000434702 0
\(300\) 0 0
\(301\) 0 0
\(302\) 306592. 0.193439
\(303\) 0 0
\(304\) 381184. 0.236565
\(305\) 4.95824e6 3.05196
\(306\) 0 0
\(307\) −2.82703e6 −1.71193 −0.855963 0.517037i \(-0.827035\pi\)
−0.855963 + 0.517037i \(0.827035\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −595464. −0.351926
\(311\) −1.12731e6 −0.660912 −0.330456 0.943821i \(-0.607203\pi\)
−0.330456 + 0.943821i \(0.607203\pi\)
\(312\) 0 0
\(313\) 2.36013e6 1.36168 0.680840 0.732432i \(-0.261615\pi\)
0.680840 + 0.732432i \(0.261615\pi\)
\(314\) 1.55884e6 0.892231
\(315\) 0 0
\(316\) −488496. −0.275197
\(317\) 2.22420e6 1.24316 0.621578 0.783352i \(-0.286492\pi\)
0.621578 + 0.783352i \(0.286492\pi\)
\(318\) 0 0
\(319\) −221272. −0.121745
\(320\) 352256. 0.192302
\(321\) 0 0
\(322\) 0 0
\(323\) −2.83506e6 −1.51201
\(324\) 0 0
\(325\) 12813.0 0.00672887
\(326\) −449488. −0.234247
\(327\) 0 0
\(328\) 986496. 0.506303
\(329\) 0 0
\(330\) 0 0
\(331\) −3.70304e6 −1.85775 −0.928877 0.370388i \(-0.879225\pi\)
−0.928877 + 0.370388i \(0.879225\pi\)
\(332\) 1.76963e6 0.881125
\(333\) 0 0
\(334\) 210200. 0.103102
\(335\) −5.20842e6 −2.53568
\(336\) 0 0
\(337\) 1.21432e6 0.582452 0.291226 0.956654i \(-0.405937\pi\)
0.291226 + 0.956654i \(0.405937\pi\)
\(338\) −1.48514e6 −0.707090
\(339\) 0 0
\(340\) −2.61990e6 −1.22910
\(341\) 58854.0 0.0274088
\(342\) 0 0
\(343\) 0 0
\(344\) 1.18342e6 0.539193
\(345\) 0 0
\(346\) −541024. −0.242955
\(347\) 977904. 0.435986 0.217993 0.975950i \(-0.430049\pi\)
0.217993 + 0.975950i \(0.430049\pi\)
\(348\) 0 0
\(349\) −511282. −0.224697 −0.112348 0.993669i \(-0.535837\pi\)
−0.112348 + 0.993669i \(0.535837\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −34816.0 −0.0149769
\(353\) 3.02752e6 1.29315 0.646577 0.762848i \(-0.276200\pi\)
0.646577 + 0.762848i \(0.276200\pi\)
\(354\) 0 0
\(355\) 3.85572e6 1.62381
\(356\) −943872. −0.394719
\(357\) 0 0
\(358\) −1.00255e6 −0.413427
\(359\) −4.59456e6 −1.88151 −0.940757 0.339082i \(-0.889884\pi\)
−0.940757 + 0.339082i \(0.889884\pi\)
\(360\) 0 0
\(361\) −258978. −0.104591
\(362\) −796932. −0.319632
\(363\) 0 0
\(364\) 0 0
\(365\) −1.79061e6 −0.703506
\(366\) 0 0
\(367\) 1.11273e6 0.431246 0.215623 0.976477i \(-0.430822\pi\)
0.215623 + 0.976477i \(0.430822\pi\)
\(368\) 57344.0 0.0220734
\(369\) 0 0
\(370\) −2.62575e6 −0.997125
\(371\) 0 0
\(372\) 0 0
\(373\) −2.45895e6 −0.915119 −0.457559 0.889179i \(-0.651276\pi\)
−0.457559 + 0.889179i \(0.651276\pi\)
\(374\) 258944. 0.0957253
\(375\) 0 0
\(376\) 1.18157e6 0.431012
\(377\) 19524.0 0.00707482
\(378\) 0 0
\(379\) −4.10130e6 −1.46664 −0.733320 0.679884i \(-0.762030\pi\)
−0.733320 + 0.679884i \(0.762030\pi\)
\(380\) 2.04886e6 0.727871
\(381\) 0 0
\(382\) 955080. 0.334874
\(383\) −2.59413e6 −0.903639 −0.451820 0.892109i \(-0.649225\pi\)
−0.451820 + 0.892109i \(0.649225\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 342764. 0.117092
\(387\) 0 0
\(388\) 1.91754e6 0.646642
\(389\) −2.23407e6 −0.748552 −0.374276 0.927317i \(-0.622109\pi\)
−0.374276 + 0.927317i \(0.622109\pi\)
\(390\) 0 0
\(391\) −426496. −0.141082
\(392\) 0 0
\(393\) 0 0
\(394\) 285632. 0.0926971
\(395\) −2.62567e6 −0.846733
\(396\) 0 0
\(397\) 2.06400e6 0.657253 0.328627 0.944460i \(-0.393414\pi\)
0.328627 + 0.944460i \(0.393414\pi\)
\(398\) 2.84541e6 0.900403
\(399\) 0 0
\(400\) 1.09338e6 0.341680
\(401\) −1.15283e6 −0.358017 −0.179008 0.983848i \(-0.557289\pi\)
−0.179008 + 0.983848i \(0.557289\pi\)
\(402\) 0 0
\(403\) −5193.00 −0.00159278
\(404\) 1.60016e6 0.487764
\(405\) 0 0
\(406\) 0 0
\(407\) 259522. 0.0776583
\(408\) 0 0
\(409\) −5.93412e6 −1.75408 −0.877038 0.480421i \(-0.840484\pi\)
−0.877038 + 0.480421i \(0.840484\pi\)
\(410\) 5.30242e6 1.55781
\(411\) 0 0
\(412\) −1.94706e6 −0.565113
\(413\) 0 0
\(414\) 0 0
\(415\) 9.51177e6 2.71107
\(416\) 3072.00 0.000870338 0
\(417\) 0 0
\(418\) −202504. −0.0566882
\(419\) 771666. 0.214731 0.107365 0.994220i \(-0.465759\pi\)
0.107365 + 0.994220i \(0.465759\pi\)
\(420\) 0 0
\(421\) −2.87542e6 −0.790671 −0.395336 0.918537i \(-0.629372\pi\)
−0.395336 + 0.918537i \(0.629372\pi\)
\(422\) −1.04104e6 −0.284568
\(423\) 0 0
\(424\) 1.27718e6 0.345016
\(425\) −8.13198e6 −2.18386
\(426\) 0 0
\(427\) 0 0
\(428\) 778368. 0.205388
\(429\) 0 0
\(430\) 6.36090e6 1.65901
\(431\) 137862. 0.0357480 0.0178740 0.999840i \(-0.494310\pi\)
0.0178740 + 0.999840i \(0.494310\pi\)
\(432\) 0 0
\(433\) −1.56526e6 −0.401204 −0.200602 0.979673i \(-0.564290\pi\)
−0.200602 + 0.979673i \(0.564290\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −2.43320e6 −0.613002
\(437\) 333536. 0.0835486
\(438\) 0 0
\(439\) −4.88158e6 −1.20892 −0.604462 0.796634i \(-0.706612\pi\)
−0.604462 + 0.796634i \(0.706612\pi\)
\(440\) −187136. −0.0460814
\(441\) 0 0
\(442\) −22848.0 −0.00556279
\(443\) 1.30152e6 0.315094 0.157547 0.987511i \(-0.449641\pi\)
0.157547 + 0.987511i \(0.449641\pi\)
\(444\) 0 0
\(445\) −5.07331e6 −1.21448
\(446\) −422624. −0.100604
\(447\) 0 0
\(448\) 0 0
\(449\) 3.13141e6 0.733034 0.366517 0.930411i \(-0.380550\pi\)
0.366517 + 0.930411i \(0.380550\pi\)
\(450\) 0 0
\(451\) −524076. −0.121326
\(452\) 974176. 0.224280
\(453\) 0 0
\(454\) 2.61900e6 0.596343
\(455\) 0 0
\(456\) 0 0
\(457\) 6.49268e6 1.45423 0.727116 0.686514i \(-0.240860\pi\)
0.727116 + 0.686514i \(0.240860\pi\)
\(458\) −2.23085e6 −0.496944
\(459\) 0 0
\(460\) 308224. 0.0679160
\(461\) 5.34717e6 1.17185 0.585925 0.810365i \(-0.300731\pi\)
0.585925 + 0.810365i \(0.300731\pi\)
\(462\) 0 0
\(463\) 3.37285e6 0.731215 0.365607 0.930769i \(-0.380861\pi\)
0.365607 + 0.930769i \(0.380861\pi\)
\(464\) 1.66605e6 0.359247
\(465\) 0 0
\(466\) 4.99038e6 1.06456
\(467\) 2.23452e6 0.474125 0.237062 0.971494i \(-0.423815\pi\)
0.237062 + 0.971494i \(0.423815\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 6.35093e6 1.32615
\(471\) 0 0
\(472\) −2.03699e6 −0.420857
\(473\) −628694. −0.129207
\(474\) 0 0
\(475\) 6.35952e6 1.29327
\(476\) 0 0
\(477\) 0 0
\(478\) 1.98770e6 0.397907
\(479\) −2.52136e6 −0.502108 −0.251054 0.967973i \(-0.580777\pi\)
−0.251054 + 0.967973i \(0.580777\pi\)
\(480\) 0 0
\(481\) −22899.0 −0.00451288
\(482\) 1.11047e6 0.217716
\(483\) 0 0
\(484\) −2.55832e6 −0.496411
\(485\) 1.03068e7 1.98961
\(486\) 0 0
\(487\) 1.91672e6 0.366215 0.183107 0.983093i \(-0.441384\pi\)
0.183107 + 0.983093i \(0.441384\pi\)
\(488\) 3.68986e6 0.701390
\(489\) 0 0
\(490\) 0 0
\(491\) −5.82875e6 −1.09112 −0.545559 0.838073i \(-0.683683\pi\)
−0.545559 + 0.838073i \(0.683683\pi\)
\(492\) 0 0
\(493\) −1.23912e7 −2.29613
\(494\) 17868.0 0.00329427
\(495\) 0 0
\(496\) −443136. −0.0808785
\(497\) 0 0
\(498\) 0 0
\(499\) −1.00049e7 −1.79870 −0.899352 0.437225i \(-0.855961\pi\)
−0.899352 + 0.437225i \(0.855961\pi\)
\(500\) 1.57690e6 0.282084
\(501\) 0 0
\(502\) −1.23331e6 −0.218431
\(503\) 1.13666e6 0.200313 0.100157 0.994972i \(-0.468066\pi\)
0.100157 + 0.994972i \(0.468066\pi\)
\(504\) 0 0
\(505\) 8.60086e6 1.50077
\(506\) −30464.0 −0.00528945
\(507\) 0 0
\(508\) −2.43144e6 −0.418027
\(509\) 4.01937e6 0.687644 0.343822 0.939035i \(-0.388278\pi\)
0.343822 + 0.939035i \(0.388278\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 262144. 0.0441942
\(513\) 0 0
\(514\) 1.63505e6 0.272975
\(515\) −1.04654e7 −1.73876
\(516\) 0 0
\(517\) −627708. −0.103284
\(518\) 0 0
\(519\) 0 0
\(520\) 16512.0 0.00267788
\(521\) −5.52028e6 −0.890977 −0.445488 0.895288i \(-0.646970\pi\)
−0.445488 + 0.895288i \(0.646970\pi\)
\(522\) 0 0
\(523\) −8.94472e6 −1.42992 −0.714961 0.699164i \(-0.753556\pi\)
−0.714961 + 0.699164i \(0.753556\pi\)
\(524\) 3.76803e6 0.599496
\(525\) 0 0
\(526\) −4.35250e6 −0.685921
\(527\) 3.29582e6 0.516937
\(528\) 0 0
\(529\) −6.38617e6 −0.992204
\(530\) 6.86486e6 1.06155
\(531\) 0 0
\(532\) 0 0
\(533\) 46242.0 0.00705048
\(534\) 0 0
\(535\) 4.18373e6 0.631945
\(536\) −3.87603e6 −0.582741
\(537\) 0 0
\(538\) −2.67316e6 −0.398171
\(539\) 0 0
\(540\) 0 0
\(541\) 849057. 0.124722 0.0623611 0.998054i \(-0.480137\pi\)
0.0623611 + 0.998054i \(0.480137\pi\)
\(542\) 3.32266e6 0.485833
\(543\) 0 0
\(544\) −1.94970e6 −0.282468
\(545\) −1.30784e7 −1.88610
\(546\) 0 0
\(547\) 8.61340e6 1.23085 0.615426 0.788194i \(-0.288984\pi\)
0.615426 + 0.788194i \(0.288984\pi\)
\(548\) −5.20813e6 −0.740850
\(549\) 0 0
\(550\) −580856. −0.0818770
\(551\) 9.69041e6 1.35976
\(552\) 0 0
\(553\) 0 0
\(554\) 3.70029e6 0.512226
\(555\) 0 0
\(556\) −51376.0 −0.00704812
\(557\) −7.79879e6 −1.06510 −0.532549 0.846399i \(-0.678766\pi\)
−0.532549 + 0.846399i \(0.678766\pi\)
\(558\) 0 0
\(559\) 55473.0 0.00750848
\(560\) 0 0
\(561\) 0 0
\(562\) −5.34539e6 −0.713902
\(563\) 1.07271e6 0.142631 0.0713153 0.997454i \(-0.477280\pi\)
0.0713153 + 0.997454i \(0.477280\pi\)
\(564\) 0 0
\(565\) 5.23620e6 0.690073
\(566\) 3.97183e6 0.521134
\(567\) 0 0
\(568\) 2.86938e6 0.373179
\(569\) 1.01524e6 0.131459 0.0657293 0.997837i \(-0.479063\pi\)
0.0657293 + 0.997837i \(0.479063\pi\)
\(570\) 0 0
\(571\) −6.78093e6 −0.870361 −0.435180 0.900343i \(-0.643315\pi\)
−0.435180 + 0.900343i \(0.643315\pi\)
\(572\) −1632.00 −0.000208560 0
\(573\) 0 0
\(574\) 0 0
\(575\) 956704. 0.120672
\(576\) 0 0
\(577\) 3.30537e6 0.413314 0.206657 0.978413i \(-0.433742\pi\)
0.206657 + 0.978413i \(0.433742\pi\)
\(578\) 8.82144e6 1.09830
\(579\) 0 0
\(580\) 8.95501e6 1.10534
\(581\) 0 0
\(582\) 0 0
\(583\) −678504. −0.0826763
\(584\) −1.33254e6 −0.161677
\(585\) 0 0
\(586\) 2.25418e6 0.271171
\(587\) −1.19833e7 −1.43543 −0.717715 0.696337i \(-0.754812\pi\)
−0.717715 + 0.696337i \(0.754812\pi\)
\(588\) 0 0
\(589\) −2.57746e6 −0.306128
\(590\) −1.09488e7 −1.29490
\(591\) 0 0
\(592\) −1.95405e6 −0.229156
\(593\) −5.31020e6 −0.620117 −0.310059 0.950717i \(-0.600349\pi\)
−0.310059 + 0.950717i \(0.600349\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 2.43014e6 0.280231
\(597\) 0 0
\(598\) 2688.00 0.000307380 0
\(599\) −2.42236e6 −0.275849 −0.137924 0.990443i \(-0.544043\pi\)
−0.137924 + 0.990443i \(0.544043\pi\)
\(600\) 0 0
\(601\) 7.10659e6 0.802556 0.401278 0.915956i \(-0.368566\pi\)
0.401278 + 0.915956i \(0.368566\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 1.22637e6 0.136782
\(605\) −1.37510e7 −1.52737
\(606\) 0 0
\(607\) −1.79194e7 −1.97402 −0.987011 0.160655i \(-0.948640\pi\)
−0.987011 + 0.160655i \(0.948640\pi\)
\(608\) 1.52474e6 0.167277
\(609\) 0 0
\(610\) 1.98330e7 2.15806
\(611\) 55386.0 0.00600201
\(612\) 0 0
\(613\) 1.39790e7 1.50254 0.751269 0.659997i \(-0.229442\pi\)
0.751269 + 0.659997i \(0.229442\pi\)
\(614\) −1.13081e7 −1.21051
\(615\) 0 0
\(616\) 0 0
\(617\) 5.25594e6 0.555824 0.277912 0.960606i \(-0.410358\pi\)
0.277912 + 0.960606i \(0.410358\pi\)
\(618\) 0 0
\(619\) −1.44301e6 −0.151371 −0.0756857 0.997132i \(-0.524115\pi\)
−0.0756857 + 0.997132i \(0.524115\pi\)
\(620\) −2.38186e6 −0.248849
\(621\) 0 0
\(622\) −4.50926e6 −0.467336
\(623\) 0 0
\(624\) 0 0
\(625\) −4.87106e6 −0.498796
\(626\) 9.44052e6 0.962853
\(627\) 0 0
\(628\) 6.23536e6 0.630903
\(629\) 1.45332e7 1.46466
\(630\) 0 0
\(631\) 1.51723e7 1.51697 0.758487 0.651688i \(-0.225939\pi\)
0.758487 + 0.651688i \(0.225939\pi\)
\(632\) −1.95398e6 −0.194593
\(633\) 0 0
\(634\) 8.89680e6 0.879044
\(635\) −1.30690e7 −1.28620
\(636\) 0 0
\(637\) 0 0
\(638\) −885088. −0.0860864
\(639\) 0 0
\(640\) 1.40902e6 0.135978
\(641\) 144848. 0.0139241 0.00696205 0.999976i \(-0.497784\pi\)
0.00696205 + 0.999976i \(0.497784\pi\)
\(642\) 0 0
\(643\) 27469.0 0.00262009 0.00131004 0.999999i \(-0.499583\pi\)
0.00131004 + 0.999999i \(0.499583\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −1.13402e7 −1.06915
\(647\) 8.55783e6 0.803717 0.401858 0.915702i \(-0.368364\pi\)
0.401858 + 0.915702i \(0.368364\pi\)
\(648\) 0 0
\(649\) 1.08215e6 0.100850
\(650\) 51252.0 0.00475803
\(651\) 0 0
\(652\) −1.79795e6 −0.165638
\(653\) −1.25030e7 −1.14745 −0.573723 0.819049i \(-0.694502\pi\)
−0.573723 + 0.819049i \(0.694502\pi\)
\(654\) 0 0
\(655\) 2.02532e7 1.84455
\(656\) 3.94598e6 0.358010
\(657\) 0 0
\(658\) 0 0
\(659\) −1.80471e7 −1.61880 −0.809400 0.587258i \(-0.800207\pi\)
−0.809400 + 0.587258i \(0.800207\pi\)
\(660\) 0 0
\(661\) −3.34144e6 −0.297461 −0.148731 0.988878i \(-0.547519\pi\)
−0.148731 + 0.988878i \(0.547519\pi\)
\(662\) −1.48122e7 −1.31363
\(663\) 0 0
\(664\) 7.07853e6 0.623050
\(665\) 0 0
\(666\) 0 0
\(667\) 1.45779e6 0.126876
\(668\) 840800. 0.0729040
\(669\) 0 0
\(670\) −2.08337e7 −1.79299
\(671\) −1.96024e6 −0.168075
\(672\) 0 0
\(673\) −8.47066e6 −0.720907 −0.360454 0.932777i \(-0.617378\pi\)
−0.360454 + 0.932777i \(0.617378\pi\)
\(674\) 4.85730e6 0.411856
\(675\) 0 0
\(676\) −5.94054e6 −0.499988
\(677\) 1.46553e7 1.22892 0.614458 0.788949i \(-0.289375\pi\)
0.614458 + 0.788949i \(0.289375\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −1.04796e7 −0.869107
\(681\) 0 0
\(682\) 235416. 0.0193809
\(683\) −1.97616e7 −1.62095 −0.810477 0.585771i \(-0.800792\pi\)
−0.810477 + 0.585771i \(0.800792\pi\)
\(684\) 0 0
\(685\) −2.79937e7 −2.27947
\(686\) 0 0
\(687\) 0 0
\(688\) 4.73370e6 0.381267
\(689\) 59868.0 0.00480448
\(690\) 0 0
\(691\) −1.35832e7 −1.08220 −0.541101 0.840958i \(-0.681992\pi\)
−0.541101 + 0.840958i \(0.681992\pi\)
\(692\) −2.16410e6 −0.171795
\(693\) 0 0
\(694\) 3.91162e6 0.308289
\(695\) −276146. −0.0216859
\(696\) 0 0
\(697\) −2.93483e7 −2.28823
\(698\) −2.04513e6 −0.158885
\(699\) 0 0
\(700\) 0 0
\(701\) 1.29915e7 0.998538 0.499269 0.866447i \(-0.333602\pi\)
0.499269 + 0.866447i \(0.333602\pi\)
\(702\) 0 0
\(703\) −1.13655e7 −0.867365
\(704\) −139264. −0.0105903
\(705\) 0 0
\(706\) 1.21101e7 0.914399
\(707\) 0 0
\(708\) 0 0
\(709\) 1.90873e6 0.142603 0.0713017 0.997455i \(-0.477285\pi\)
0.0713017 + 0.997455i \(0.477285\pi\)
\(710\) 1.54229e7 1.14821
\(711\) 0 0
\(712\) −3.77549e6 −0.279109
\(713\) −387744. −0.0285641
\(714\) 0 0
\(715\) −8772.00 −0.000641702 0
\(716\) −4.01021e6 −0.292337
\(717\) 0 0
\(718\) −1.83782e7 −1.33043
\(719\) −1.11200e7 −0.802198 −0.401099 0.916035i \(-0.631372\pi\)
−0.401099 + 0.916035i \(0.631372\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −1.03591e6 −0.0739571
\(723\) 0 0
\(724\) −3.18773e6 −0.226014
\(725\) 2.77957e7 1.96396
\(726\) 0 0
\(727\) −8.37406e6 −0.587624 −0.293812 0.955863i \(-0.594924\pi\)
−0.293812 + 0.955863i \(0.594924\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −7.16242e6 −0.497454
\(731\) −3.52069e7 −2.43688
\(732\) 0 0
\(733\) −4.64448e6 −0.319284 −0.159642 0.987175i \(-0.551034\pi\)
−0.159642 + 0.987175i \(0.551034\pi\)
\(734\) 4.45092e6 0.304937
\(735\) 0 0
\(736\) 229376. 0.0156082
\(737\) 2.05914e6 0.139642
\(738\) 0 0
\(739\) −1.10623e7 −0.745136 −0.372568 0.928005i \(-0.621523\pi\)
−0.372568 + 0.928005i \(0.621523\pi\)
\(740\) −1.05030e7 −0.705074
\(741\) 0 0
\(742\) 0 0
\(743\) −1.97245e6 −0.131079 −0.0655395 0.997850i \(-0.520877\pi\)
−0.0655395 + 0.997850i \(0.520877\pi\)
\(744\) 0 0
\(745\) 1.30620e7 0.862223
\(746\) −9.83580e6 −0.647087
\(747\) 0 0
\(748\) 1.03578e6 0.0676880
\(749\) 0 0
\(750\) 0 0
\(751\) 1.50246e7 0.972085 0.486042 0.873935i \(-0.338440\pi\)
0.486042 + 0.873935i \(0.338440\pi\)
\(752\) 4.72627e6 0.304771
\(753\) 0 0
\(754\) 78096.0 0.00500265
\(755\) 6.59173e6 0.420854
\(756\) 0 0
\(757\) −4.72426e6 −0.299636 −0.149818 0.988714i \(-0.547869\pi\)
−0.149818 + 0.988714i \(0.547869\pi\)
\(758\) −1.64052e7 −1.03707
\(759\) 0 0
\(760\) 8.19546e6 0.514682
\(761\) −8.57835e6 −0.536960 −0.268480 0.963285i \(-0.586521\pi\)
−0.268480 + 0.963285i \(0.586521\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 3.82032e6 0.236792
\(765\) 0 0
\(766\) −1.03765e7 −0.638970
\(767\) −95484.0 −0.00586060
\(768\) 0 0
\(769\) −1.76168e7 −1.07426 −0.537131 0.843499i \(-0.680492\pi\)
−0.537131 + 0.843499i \(0.680492\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 1.37106e6 0.0827965
\(773\) −1.25420e6 −0.0754951 −0.0377475 0.999287i \(-0.512018\pi\)
−0.0377475 + 0.999287i \(0.512018\pi\)
\(774\) 0 0
\(775\) −7.39310e6 −0.442153
\(776\) 7.67014e6 0.457245
\(777\) 0 0
\(778\) −8.93626e6 −0.529306
\(779\) 2.29514e7 1.35508
\(780\) 0 0
\(781\) −1.52436e6 −0.0894250
\(782\) −1.70598e6 −0.0997604
\(783\) 0 0
\(784\) 0 0
\(785\) 3.35151e7 1.94118
\(786\) 0 0
\(787\) −7.09121e6 −0.408116 −0.204058 0.978959i \(-0.565413\pi\)
−0.204058 + 0.978959i \(0.565413\pi\)
\(788\) 1.14253e6 0.0655468
\(789\) 0 0
\(790\) −1.05027e7 −0.598731
\(791\) 0 0
\(792\) 0 0
\(793\) 172962. 0.00976715
\(794\) 8.25599e6 0.464748
\(795\) 0 0
\(796\) 1.13816e7 0.636681
\(797\) −2.71630e6 −0.151472 −0.0757358 0.997128i \(-0.524131\pi\)
−0.0757358 + 0.997128i \(0.524131\pi\)
\(798\) 0 0
\(799\) −3.51516e7 −1.94795
\(800\) 4.37350e6 0.241604
\(801\) 0 0
\(802\) −4.61131e6 −0.253156
\(803\) 707914. 0.0387429
\(804\) 0 0
\(805\) 0 0
\(806\) −20772.0 −0.00112627
\(807\) 0 0
\(808\) 6.40064e6 0.344901
\(809\) 2.18739e7 1.17505 0.587524 0.809207i \(-0.300103\pi\)
0.587524 + 0.809207i \(0.300103\pi\)
\(810\) 0 0
\(811\) 1.72352e7 0.920164 0.460082 0.887876i \(-0.347820\pi\)
0.460082 + 0.887876i \(0.347820\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 1.03809e6 0.0549127
\(815\) −9.66399e6 −0.509639
\(816\) 0 0
\(817\) 2.75331e7 1.44311
\(818\) −2.37365e7 −1.24032
\(819\) 0 0
\(820\) 2.12097e7 1.10154
\(821\) 2.26191e7 1.17116 0.585582 0.810613i \(-0.300866\pi\)
0.585582 + 0.810613i \(0.300866\pi\)
\(822\) 0 0
\(823\) 1.62633e6 0.0836967 0.0418484 0.999124i \(-0.486675\pi\)
0.0418484 + 0.999124i \(0.486675\pi\)
\(824\) −7.78822e6 −0.399595
\(825\) 0 0
\(826\) 0 0
\(827\) 2.28304e7 1.16078 0.580391 0.814338i \(-0.302900\pi\)
0.580391 + 0.814338i \(0.302900\pi\)
\(828\) 0 0
\(829\) −2.58593e7 −1.30686 −0.653432 0.756985i \(-0.726672\pi\)
−0.653432 + 0.756985i \(0.726672\pi\)
\(830\) 3.80471e7 1.91702
\(831\) 0 0
\(832\) 12288.0 0.000615422 0
\(833\) 0 0
\(834\) 0 0
\(835\) 4.51930e6 0.224313
\(836\) −810016. −0.0400846
\(837\) 0 0
\(838\) 3.08666e6 0.151838
\(839\) −1.23061e7 −0.603554 −0.301777 0.953379i \(-0.597580\pi\)
−0.301777 + 0.953379i \(0.597580\pi\)
\(840\) 0 0
\(841\) 2.18429e7 1.06493
\(842\) −1.15017e7 −0.559089
\(843\) 0 0
\(844\) −4.16416e6 −0.201220
\(845\) −3.19304e7 −1.53838
\(846\) 0 0
\(847\) 0 0
\(848\) 5.10874e6 0.243963
\(849\) 0 0
\(850\) −3.25279e7 −1.54422
\(851\) −1.70979e6 −0.0809318
\(852\) 0 0
\(853\) 1.91416e7 0.900753 0.450377 0.892839i \(-0.351290\pi\)
0.450377 + 0.892839i \(0.351290\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 3.11347e6 0.145231
\(857\) −4.75507e6 −0.221159 −0.110580 0.993867i \(-0.535271\pi\)
−0.110580 + 0.993867i \(0.535271\pi\)
\(858\) 0 0
\(859\) 9.19876e6 0.425350 0.212675 0.977123i \(-0.431782\pi\)
0.212675 + 0.977123i \(0.431782\pi\)
\(860\) 2.54436e7 1.17309
\(861\) 0 0
\(862\) 551448. 0.0252776
\(863\) 1.73532e7 0.793144 0.396572 0.918004i \(-0.370200\pi\)
0.396572 + 0.918004i \(0.370200\pi\)
\(864\) 0 0
\(865\) −1.16320e7 −0.528585
\(866\) −6.26102e6 −0.283694
\(867\) 0 0
\(868\) 0 0
\(869\) 1.03805e6 0.0466305
\(870\) 0 0
\(871\) −181689. −0.00811490
\(872\) −9.73280e6 −0.433458
\(873\) 0 0
\(874\) 1.33414e6 0.0590778
\(875\) 0 0
\(876\) 0 0
\(877\) −3.55622e7 −1.56131 −0.780655 0.624962i \(-0.785115\pi\)
−0.780655 + 0.624962i \(0.785115\pi\)
\(878\) −1.95263e7 −0.854838
\(879\) 0 0
\(880\) −748544. −0.0325845
\(881\) −2.63056e7 −1.14185 −0.570923 0.821003i \(-0.693415\pi\)
−0.570923 + 0.821003i \(0.693415\pi\)
\(882\) 0 0
\(883\) 1.20394e7 0.519642 0.259821 0.965657i \(-0.416336\pi\)
0.259821 + 0.965657i \(0.416336\pi\)
\(884\) −91392.0 −0.00393349
\(885\) 0 0
\(886\) 5.20606e6 0.222805
\(887\) −133590. −0.00570118 −0.00285059 0.999996i \(-0.500907\pi\)
−0.00285059 + 0.999996i \(0.500907\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −2.02932e7 −0.858769
\(891\) 0 0
\(892\) −1.69050e6 −0.0711381
\(893\) 2.74899e7 1.15357
\(894\) 0 0
\(895\) −2.15549e7 −0.899472
\(896\) 0 0
\(897\) 0 0
\(898\) 1.25256e7 0.518333
\(899\) −1.12653e7 −0.464885
\(900\) 0 0
\(901\) −3.79962e7 −1.55930
\(902\) −2.09630e6 −0.0857902
\(903\) 0 0
\(904\) 3.89670e6 0.158590
\(905\) −1.71340e7 −0.695406
\(906\) 0 0
\(907\) −1.27476e7 −0.514529 −0.257264 0.966341i \(-0.582821\pi\)
−0.257264 + 0.966341i \(0.582821\pi\)
\(908\) 1.04760e7 0.421678
\(909\) 0 0
\(910\) 0 0
\(911\) −2.43253e7 −0.971095 −0.485548 0.874210i \(-0.661380\pi\)
−0.485548 + 0.874210i \(0.661380\pi\)
\(912\) 0 0
\(913\) −3.76047e6 −0.149302
\(914\) 2.59707e7 1.02830
\(915\) 0 0
\(916\) −8.92341e6 −0.351392
\(917\) 0 0
\(918\) 0 0
\(919\) −3.84805e7 −1.50297 −0.751487 0.659748i \(-0.770663\pi\)
−0.751487 + 0.659748i \(0.770663\pi\)
\(920\) 1.23290e6 0.0480238
\(921\) 0 0
\(922\) 2.13887e7 0.828623
\(923\) 134502. 0.00519666
\(924\) 0 0
\(925\) −3.26005e7 −1.25277
\(926\) 1.34914e7 0.517047
\(927\) 0 0
\(928\) 6.66419e6 0.254026
\(929\) 3.96678e7 1.50799 0.753996 0.656879i \(-0.228124\pi\)
0.753996 + 0.656879i \(0.228124\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 1.99615e7 0.752755
\(933\) 0 0
\(934\) 8.93809e6 0.335257
\(935\) 5.56730e6 0.208265
\(936\) 0 0
\(937\) −1.48428e7 −0.552288 −0.276144 0.961116i \(-0.589057\pi\)
−0.276144 + 0.961116i \(0.589057\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 2.54037e7 0.937729
\(941\) 4.67063e7 1.71950 0.859748 0.510718i \(-0.170620\pi\)
0.859748 + 0.510718i \(0.170620\pi\)
\(942\) 0 0
\(943\) 3.45274e6 0.126440
\(944\) −8.14797e6 −0.297591
\(945\) 0 0
\(946\) −2.51478e6 −0.0913632
\(947\) −4.02379e7 −1.45801 −0.729006 0.684508i \(-0.760017\pi\)
−0.729006 + 0.684508i \(0.760017\pi\)
\(948\) 0 0
\(949\) −62463.0 −0.00225142
\(950\) 2.54381e7 0.914482
\(951\) 0 0
\(952\) 0 0
\(953\) −2.45579e7 −0.875908 −0.437954 0.898997i \(-0.644297\pi\)
−0.437954 + 0.898997i \(0.644297\pi\)
\(954\) 0 0
\(955\) 2.05342e7 0.728567
\(956\) 7.95082e6 0.281363
\(957\) 0 0
\(958\) −1.00855e7 −0.355044
\(959\) 0 0
\(960\) 0 0
\(961\) −2.56328e7 −0.895339
\(962\) −91596.0 −0.00319109
\(963\) 0 0
\(964\) 4.44189e6 0.153948
\(965\) 7.36943e6 0.254751
\(966\) 0 0
\(967\) 5.34313e7 1.83751 0.918754 0.394830i \(-0.129197\pi\)
0.918754 + 0.394830i \(0.129197\pi\)
\(968\) −1.02333e7 −0.351016
\(969\) 0 0
\(970\) 4.12270e7 1.40687
\(971\) −2.81485e6 −0.0958093 −0.0479046 0.998852i \(-0.515254\pi\)
−0.0479046 + 0.998852i \(0.515254\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 7.66687e6 0.258953
\(975\) 0 0
\(976\) 1.47594e7 0.495958
\(977\) −2.54713e7 −0.853718 −0.426859 0.904318i \(-0.640380\pi\)
−0.426859 + 0.904318i \(0.640380\pi\)
\(978\) 0 0
\(979\) 2.00573e6 0.0668829
\(980\) 0 0
\(981\) 0 0
\(982\) −2.33150e7 −0.771537
\(983\) −2.90135e6 −0.0957670 −0.0478835 0.998853i \(-0.515248\pi\)
−0.0478835 + 0.998853i \(0.515248\pi\)
\(984\) 0 0
\(985\) 6.14109e6 0.201676
\(986\) −4.95649e7 −1.62361
\(987\) 0 0
\(988\) 71472.0 0.00232940
\(989\) 4.14198e6 0.134654
\(990\) 0 0
\(991\) 2.73784e6 0.0885570 0.0442785 0.999019i \(-0.485901\pi\)
0.0442785 + 0.999019i \(0.485901\pi\)
\(992\) −1.77254e6 −0.0571897
\(993\) 0 0
\(994\) 0 0
\(995\) 6.11763e7 1.95896
\(996\) 0 0
\(997\) 2.74079e7 0.873249 0.436624 0.899644i \(-0.356174\pi\)
0.436624 + 0.899644i \(0.356174\pi\)
\(998\) −4.00194e7 −1.27188
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.6.a.y.1.1 1
3.2 odd 2 294.6.a.e.1.1 1
7.3 odd 6 126.6.g.b.37.1 2
7.5 odd 6 126.6.g.b.109.1 2
7.6 odd 2 882.6.a.m.1.1 1
21.2 odd 6 294.6.e.m.67.1 2
21.5 even 6 42.6.e.b.25.1 2
21.11 odd 6 294.6.e.m.79.1 2
21.17 even 6 42.6.e.b.37.1 yes 2
21.20 even 2 294.6.a.d.1.1 1
84.47 odd 6 336.6.q.a.193.1 2
84.59 odd 6 336.6.q.a.289.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.6.e.b.25.1 2 21.5 even 6
42.6.e.b.37.1 yes 2 21.17 even 6
126.6.g.b.37.1 2 7.3 odd 6
126.6.g.b.109.1 2 7.5 odd 6
294.6.a.d.1.1 1 21.20 even 2
294.6.a.e.1.1 1 3.2 odd 2
294.6.e.m.67.1 2 21.2 odd 6
294.6.e.m.79.1 2 21.11 odd 6
336.6.q.a.193.1 2 84.47 odd 6
336.6.q.a.289.1 2 84.59 odd 6
882.6.a.m.1.1 1 7.6 odd 2
882.6.a.y.1.1 1 1.1 even 1 trivial